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Abstract. The neutrino-induced nucleosynthesis (ν process) in supernova explosions of
massive stars of solar metallicity with initial main sequence masses between 15 and 40 M�
has been studied. A new extensive set of neutrino-nucleus cross-sections for all the nuclei
included in the reaction network is used and the average neutrino energies are reduced to agree
with modern supernova simulations. Despite these changes the ν process is found to contribute
still significantly to the production of the nuclei 7Li, 11B, 19F, 138La and 180Ta, even though
the total yields for those nuclei are reduced. Furthermore we study in detail contributions of
the ν process to the production of radioactive isotopes 26Al, 22Na and confirm the production
of 92Nb and 98Tc.

1. Introduction
Core-Collapse-Supernova explosions are the most energetic events known to astronomers. The
conditions created by the passage of the supernova shockwave through the chemically enriched
layers of massive stars allow for important nucleosynthesis processes to occur which are crucial
for the enrichment of the interstellar medium and chemical evolution of the universe. A major
part of the energy released by the core-collapse leaves the stellar core as neutrinos of all flavors.
Those neutrinos can interact with the shock-heated material and affect the nucleosynthesis.
In recent years multi-dimensional supernova simulations have given new insights concerning the
neutrino radiation. Neutrinos with energies of the order of 10 MeV can lead to nuclear excitations
beyond the particle separation threshold, affecting the chemical composition and density of free
nucleons. Furthermore, electron neutrinos and electron antineutrinos can be captured by nuclei,
leading to the inverse process of β-decay.
Following the approach of previous studies we choose a highly parametrized supernova model
as described in reference [1] which allows a exploration of the parameter space of the neutrino
properties and the explosion. The key ingredient of the explosive nucleosynthesis is the peak
temperature of the shock heated material. This is estimated by an analytic expression that
has been shown to agree reasonably well with hydrodynamical simulation. The decrease of
temperature and density are modeled to be exponential on a density dependent timescale.
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Table 1. Production factors relative to solar abundances from reference [8], normalized to
16O production. Shown are the results obtained without neutrinos, with our choice of neutrino
temperatures (“Low energies”, Tνe = 2.8 MeV, Tν̄e = Tν̄µ,τ = Tνµ,τ = 4.0 MeV), and with the
choice of ref. [5] (“High energies”, Tνe = Tν̄e = 4.0 MeV, Tνµ,τ = Tν̄µ,τ = 6.0 MeV) for 25 M�
progenitor model.

Star Nucleus no ν Low energies High energies
25 M�

7Li 0.0005 0.11 0.55
11B 0.003 0.80 2.61
15N 0.08 0.10 0.13
19F 0.06 0.24 0.43
138La 0.03 0.63 1.14
180Ta 0.14 1.80 2.81

Neutrinos are assumed to have Fermi-Dirac spectra with chemical potential µν = 0, characterized
by a neutrino temperature Tν related to the average energy by 〈Eν〉 ≈ 3.14 Tν . Neutrino
luminosities are modeled with and exponential decrease on the timescale of 3 s. A total energy
of 1053 erg is distributed equally among the 6 neutrino flavors, leading to number fluxes according
to the average energy of the prescribed to the corresponding neutrino type.
Our set of neutrino-nucleus cross-sections has been calculated for both, charged- and neutral-
current reactions, based on Random Phase Approximation (RPA) [2]. Spallation products in
the case of states above particle separation threshold are computed based on statistical models
[3].

We use solar metallicity supernova progenitors calculated by A. Heger et al. [4], with main
sequence masses ranging between 15 and 40 M�. The stellar models have been evolved up to core-
collapse, providing the initial conditions and composition for the further evolution parametrized
as stated above.

2. Canonical ν process nuclei
The ν process is known to have significant effects on the production of 7Li, 11B, 19F, 138La and
180Ta. Previous studies of neutrino nucleosynthesis have assumed average neutrino energies of
〈Eνe,ν̄e〉 = 12.6 MeV, 〈Eνx〉 = 18.8 MeV, where νx corresponds to νµ, ν̄µ, ντ and ν̄τ [5]. Using
instead significantly reduced values of 〈Eνe〉 = 8.8 MeV, 〈Eν̄e,νx〉 = 12.6 MeV as suggested by
detailed simulations e.g. in references [6, 7] we still see a significant increase in the production
of 7Li, 11B, 19F, 138La and 180Ta due to neutrino-induced reactions (see Table 1).
We observe, that the the 15 M� progenitor model overproduces 19F even without neutrinos
mainly via the reaction chain 18O(p, α)15N(α, γ)19F operating on 18O at the lower edge of the
He-shell. Due to the stellar structure this process does not work for the more massive progenitor
models and here the ν process can make a major contribution.

A direct comparison between the present results and the results of reference [5] tends to be
misleading, since differences appear due to the different treatment of hydrodynamic variables.
Work to disentangle changes due to different neutrino interactions from changes due to the hy-
drodynamics is in progress.

3. Impact on radioactive nuclei
Observations of γ-rays allow direct access to the production of 26Al in the galaxy. Supernova
explosions are assumed to give a significant contribution to the overall abundance of 26Al [9].
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Figure 1. Shown are the results of calculations without neutrinos (dashed lines) and including
neutrinos with different spectra. Electron neutrinos and anti-neutrinos are assumed have a
distribution with Tνe = Tν̄e = 4 MeV.

Previous studies have already reported an enhancement of the production of 26Al by 30% to 50%
[10] due to neutrinos. This effect is largely due to neutral-current spallation reactions that in-
crease the abundance of free protons, enhancing capture reactions on 25Mg in the Oxygen-Neon
shells. In our calculations we even find an increase in the production of 26Al of up to a factor
of 2 for the 30 and 35 M� progenitor models. Especially in those cases the charged-current
reaction 26Mg(νe,e

−)26Al is found to be the dominating channel for the increased production.

The decay of 22Na it is relevant for the description of supernova lightcurves [11]. In our
calculations the production of 22Na is increased up to a factor of 3 , mainly due to increased
proton captures on 22Ne and 22Ne(νe,e

−)22Na.
In total we find also for 22Na an increase of the relative importance of charged-current channels,
as discussed in more detail in reference [12].
We can also confirm significant contributions of the ν process to the production of92Nb and 98Tc
due to electron neutrino absorption on the corresponding isobars, as also discussed in [13].
Furthermore, we find a significant enhancement of the production of the short-lived radioisotope
36Cl. The characteristic γ-rays from the decay of 44Ti and 60Fe are also used as tracers for active
nucleosynthesis sites [9, 14]. The effect of neutrino interactions on the yields of 44Ti and 60Fe
have been found to be at most 2% in the case of 44Ti and even less for 60Fe.
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