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Abstract. Dielectric laser accelerators (DLA) driven by ultrashort laser pulses can reach
orders of magnitude larger gradients than contemporary RF electron accelerators. A new
implemented field solver based on the finite element method in the frequency domain allows
the efficient calculation of the structure constant, i.e. the ratio of energy gain to laser peak
amplitude. We present the maximization of this ratio as a parameter study looking at a single
grating period only. Based on this optimized shape the entire design of a beta-matched grating
is completed in an iterative process. The period length of a beta-matched grating increases
due to the increasing velocity of the electron when a subrelativistic beam is accelerated. The
determination of the optimal length of each grating period thus requires the knowledge of the
energy gain within all so far crossed periods. Furthermore, we outline to reverse the excitation
in the presented solver for beam coupling impedance calculations and an estimation of the beam
loading intensity limit.

1. Introduction

Several applications of particle accelerators request higher acceleration gradients than delivered
by current rf-accelerators for more compact devices. Dielectric laser accelerators (DLAs) [1]
are potential candidates for advanced linear electron accelerators with gradients in the range
of GeV/m. In the future, such compact DLAs will provide the opportunity for compact
radiotherapy devices and free electron lasers, for example.

Recently, DLA experiments have demonstrated acceleration gradients of about 376MeV/m
for subrelativistic electrons and acceleration gradients of about 690MeV/m for relativistic beams
at SLAC [2].

In these experiments, electrical near-fields of pulsed solid state lasers modulated by dielectric
nanostructures are used to accelerate electrons. The structures are fabricated by lithographic
techniques. Of particular interest for characterizing such periodic structures is the maximum
reachable acceleration gradient expressed by the structure constant

SC =
max (∆W )

eE0λgz
= |en| (1)

with the energy gain ∆W of an electron passing through period of length λgz in positive z-
direction. The driving (z-polarized) laser with peak amplitude E0 propagates in y-direction and
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the longitudinal electric laser field Ez in the frequency domain is expanded in a spatial Fourier
series with the normalized harmonic coefficients

en =
1

E0λgz

∫ λgz/2

−λgz/2
Eze

in 2π
λgz

z
dz. (2)

In order to calculate the Fourier coefficients, we implemented a simulation tool based on the
finite element method in 2D on an unstructured triangular mesh using FEniCS [3], an open-
source toolbox for automated solution of PDEs. The mesh originates from Gmsh [4] and is
imported via DOLFIN-CONVERT [5]. The advantage of such a mesh is a better adaptability
to curved geometries than a hexahedral mesh commonly used in time domain simulations.
Since most of the DLA structures are translation invariant in one direction, two-dimensional
simulations suffice at the first design stage.

2. 2D FEM field solver

The fields E : Ω ⊂ R
2 → C

2 required to calculate the Fourier coefficients are solutions of the
curl-curl-equation

∇×
[

µ−10 ∇×E
]

− ω2εE = −iωJ (3)

with the permeability constant µ0 and the permittivity ε = ε0εr (y, z) as a function of position.
The current density J models the incident laser and is imprinted as a constant on a small stripe
of the mesh outside the dielectric.

Testing with functions vi ∈ Hcurl
2D , where Hcurl

2D is the Sobolev space of square integrable
functions with square integrable two dimensional curl, results in the weak formulation

∫

Ω

[

µ−10 {∇ ×E} · {∇ × v} − ω2εE · v
]

dΩ−
∫

∂Ω

[

µ−10 {∇ ×E} × n
]

·vds = −
∫

Ω
iωJ ·vdΩ (4)

with the outward unit vector n normal to the boundary ∂Ω. The Galerkin ansatz

E =
∑

n

anvn (5)

with degrees of freedom an and Nédélec edge elements vn [6] provides a linear equation system
which is solved numerically.

A periodic boundary condition is applied on the boundary normal to the beam path. Two
different boundary conditions can be chosen on the lateral sides: a Sommerfeld boundary
condition [7]

n× (∇×E) = −iωc−1n× (n×E) (6)

or a perfectly matched layer [8].

3. Simulation examples

The new simulation tool has various applications in the design of DLA structures. We analyze
a new ”slightly resonant” silicon structure (εr = 11.63) which is proposed in [9]. The design
is called cavity structure in the following. The structure constant depends significantly on the
values of three geometry parameters depicted in the schematic drawing in Figure 1.



3

1234567890

8th International Particle Accelerator Conference IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 874 (2017) 012040  doi :10.1088/1742-6596/874/1/012040

Figure 1. Schematic drawing and longitudinal electric field of the cavity structure. The
thickness of the layers is given by the Bragg condition a = λ0/

(

4
√
εr
)

and b = λ0/4 with
εr = 11.63 and the beam path is in the middle of the aperture. The laser strength of the plotted
field is 1V/m.

3.1. Single period optimization

Parameter studies can be used to optimize the structure constant of a single period. Since
the structure constant increases as the aperture decreases, an aperture of 200 nm is a trade-off
between maximum reachable structure constant and maximum admissible transversal beam size.
The absolute value of the structure constant depending on the remaining parameters, width and
height of the tooth, is shown in Figure 2. Choosing a width of 200 nm and a height of 450 nm
results in a maximum structure constant of about 0.74 for a period length of 620 nm (cross-
checked by CST R© time domain simulations, see [9]). In the choice of electron beam parameters
we follow [10], i.e. β = 0.3165.

Furthermore, longer periods, corresponding to larger velocities, can reach much larger
structure constants. The maximum structure constant for a period length of 1800 nm is about
2.1, for example. The geometry parameters of such a period are an aperture of 400 nm and a
tooth width of 550 nm and height of 450 nm (see Figure 3).
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Figure 2. Parameter study of the structure
constant for a period length of 620 nm. The
X symbolizes the geometry parameters with
the maximum structure constant.
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Figure 3. Parameter study of the structure
constant for a period length of 1800 nm.
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First prototypes of the proposed cavity structure are now being fabricated. Since 90◦ corners
are not feasible by lithographic etching techniques, the corners in the original design have to be
rounded with a minimum radius of 50 nm. Such restrictions can be integrated in simulations
by modifying the mesh (see Figure 4). The structure constant is thus reduced to about 0.63 at
the geometry parameters optimized before for a 620 nm period. A new maximum of 0.66 can be
reached at a tooth width of 240 nm and height of 425 nm.

Figure 4. Comparison of the triangular mesh with 90◦ corners on the left and rounded corners
on the right. The upper half of the cavity structure is shown.

3.2. Designing a beta-matched grating

Due to the phase synchronicity condition λgz = nβλ0, where n is the spatial harmonic, the
period length along a grating has to increase for an increasing particle velocity. The energy gain
per period of the synchronous particle is

∆W = eE0λgz|en| cos (ϕs) , (7)

where ϕs = ϕp+arg (en) and the phase ϕp of the particle is referred to the laser phase. Since ϕp

is constant along the beta-matched grating, the phase of the n-th Fourier coefficient also needs
to be as constant as possible in order to accelerate in stable buckets.

3.2.1. Phase stabilization. An increase in period length along a beta-matched grating only is
not sufficient since this changes the phase of the Fourier coefficient significantly. As shown in
Figure 5, the change in arg(e1) is in the range of 30◦, which may lead to particle loss. If the
width of the teeth is adjusted as well, the phase drift can be limited to about 4◦. Here, the
tooth width is optimized as linear function of the period length

t (λgz) = t(0)

(

λgz/λ
(0)
gz − 1

ξ
+ 1

)

, (8)

where t(0) = 200 nm, λ
(0)
gz = 620 nm and ξ ≈ 2.7. Moreover, the decrease of the structure

constant is also reduced from 33% to 17%.

3.2.2. Iterative approach. Finally, an iterative approach can be used to construct such a beta-
matched grating. The optimized design of one period forms the basis of the approach. Since the
velocity of a reference electron in a grating period depends on the energy gain in all previous
periods, an iterative design process is to be favored. As an example we present a beta-matched
grating based on the proposed cavity structure and further informations on the approach in [9].
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Figure 5. Phase and absolute value of the First Fourier coefficient over the period length for
constant tooth width (red) and adapted tooth width according to Equation (8) (blue).

4. Conclusion

The solver described in this contribution calculates the electric field in DLA nanostructures
based on the finite element method in the frequency domain and predicts the structure constant.
The solver can be integrated in the design process of 2D structures, performing all necessary
simulations for a beta-matched grating.

Simulations in the frequency domain require the solution of one linear matrix equation per
calculation of a structure constant in contrast to simulations in the time domain, which require
one matrix multiplication per time step. Furthermore, the use of a triangular mesh is favorable in
the frequency domain. This makes the solver advantageous for simulations of curved geometries.

A further application of the solver is the estimation of the beam loading limit for DLA
structures. Therefore, the excitation is shifted to the beam path to calculate the beam coupling
impedance. The wake potential can then be obtained by a discrete Fourier transform of the
impedance and a convolution with the beam distribution. This upgrade is presently under
development.
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