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Figure 4.10: Single drop impingement onto a liquid layer of non-dimensional thickness h* = 2:
(left) experiments and (right) numerical simulations (Beberovic et. al. [10]). The evolution of
the cavity formed by an isopropanol drop (We = 392, F'r = 257, Re = 1,733) impingement at
various non-dimensional time instants

69



Chapter 4: Single drop impingement onto a liquid film of finite thickness

hemispherical to conical, see Figures 4.9(j) and 4.9(1) for distilled water and Figures 4.10(j)
and 4.10(1) for isopropanol. At the receding phase, capillary waves travel downwards along
the surface of the cavity. At the moment that the capillary waves merge at the bottom of the
cavity, this leads to a sharp bottom of the cavity, where high pressure differences and surface
tension forces are present, due to which the cavity retracts from the bottom of the liquid film
and forms a central jet, Figure 4.1.

In this paragraph the drop impingement process, in particular the dynamics of the cav-
ity that appears below the liquid surface film upon drop impingement, has been described and
analysed in a detailed qualitative way. Drop impingement is characterised by several typical
time and length scales, among others the depths and diameters of the cavities and the times at
which the maximum values of these length scales are reached. To determine quantitatively the
influence of the different drop and film parameters, which have been described above, on the
impingement process, the next paragraphs focus on the time evolution of these typical length
scales.

4.2 Evolution of the diameter of the cavity in time

This paragraph presents the detailed results of the diameter evolution of the cavity in time upon
impingement of a single drop onto a steady liquid film of finite thickness. The diameter of the
cavity is determined at a depth of 50% of the initial film thickness, hence, y..,/h* = 0.5, where
Yeaw 18 the vertical distance measured from the free surface of the liquid film. For the analysis of
the numerical simulations shown hereafter, the diameter is determined using the computational
cells where the volume fraction becomes v > 0.5. The results of the experiments are compared
with the analytical models and numerical simulations to validate the theoretical models and
the numerical code. Several particular impingements of the many impingement experiments
conducted are selected and presented in more detail hereafter. The impingement parameters
of all the experiments, together with the inputs for the analytical models, are listed in Table 4.2.

4.2.1 Theoretical analysis of the cavity radius evolution: propagation
of a kinematic discontinuity

One of the significant results of the experimental and theoretical study conducted by Yarin and
Weiss [196] is the theoretical model of a flow generated by drop impingement and the emergence
of the uprising liquid sheet. A remote asymptotic solution for the film flow in the liquid layer
is obtained in non-dimensional form:

A
R 4.1
film (t* _ sz't)Q ( )
R*
* — cav 4.9
u'r,lem P — Trit ( )

Here h* is the non-dimensional film thickness, t* the non-dimensional time after impingement,
Tfix the non-dimensional time-shift needed for curve-fitting, R}, the non-dimensional radius
of the cavity and u} the non-dimensional radial film velocity, whereas A is a constant. To

make the variables non-dimensional, the initial drop diameter is used as a length scale and the
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4.2 Evolution of the diameter of the cavity in time

Table 4.2: Parameters of the conducted experiments used for discussion of the impingement
outcomes and comparison with analytical models and numerical simulations

LiqUid h* We Fr Re D :av mazx tzav max t:etractiun ﬁ T

Distilled water 0.5 111 99 4,871  3.07 6.2 13.1 0.93 0.50
Distilled water 0.5 238 207 7,173 3.86 9.3 20.4 0.77  0.50
Distilled water 0.5 332 299 8,392 4.39 11.9 28.5 0.75 0.50
Distilled water 1.0 105 94 4,744 2.98 8.4 12.9 0.74 0.94
Distilled water 1.0 239 202 7,241 3.83 13.1 22.4 0.61 0.94
Distilled water 1.0 328 296 8,342 4.54 15.7 31.1 0.60 0.94
Distilled water 1.5 110 95 4,870  2.55 6.2 12.6 0.60 1.30
Distilled water 1.5 232 199 4,115 3.31 114 21.6 0.52  1.30
Distilled water 1.5 341 296 8,587 3.97 17.2 30.3 0.51  1.30
Distilled water 2.0 113 98 4,948  2.39 6.7 11.9 0.55 1.70
Distilled water 2.0 215 194 6,750 3.13 10.9 21.1 0.50 1.70
Distilled water 2.0 345 294 8,644 3.84 15.5 29.8 0.48 0.70
[sopropanol 0.5 194 132 1,208 3.85 9.0 18.3 0.85 0.50
[sopropanol 0.5 384 261 1,701 4.50 154 31.8 0.74  0.50
[sopropanol 0.5 541 375 2,007 4.90 21.7 41.6 0.73  0.50
[sopropanol 1.0 192 131 1,201 3.50 8.5 18.5 0.64 0.94
[sopropanol 1.0 384 261 1,701 4.76 19.2 33.2 0.60 0.94
[sopropanol 1.0 539 367 2,013 491 20.2 44.9 0.53 0.94
[sopropanol 1.5 192 128 1,206 3.11 9.8 17.9 0.54 1.30
[sopropanol 1.5 392 257 1,733 4.27 18.2 31.8 0.51 1.30
[sopropanol 1.5 535 365 2,006 4.65 21.7 42.9 048 1.30
[sopropanol 20 18 127 1,199 2.92 10.1 18.3 0.54 1.70
[sopropanol 20 392 257 1,733 4.03 19.1 31.8 0.50 1.70
[sopropanol 2.0 527 366 1982 4.32 21.8 41.6 0.46  1.70
Glycerine/Water 0.5 151 128 299 2.96 6.0 15.5 0.76  0.50
Glycerine/Water 0.5 318 258 444 3.99 12.0 26.5 0.68 0.50
Glycerine/Water 0.5 472 383 539 4.12 16.7 36.7 0.59  0.50
Glycerine/Water 1.0 162 130 341 2.70 7.1 15.4 0.55 0.94
Glycerine/Water 1.0 329 260 428 3.74 12.6 27.6 0.52  0.94
Glycerine/Water 1.0 465 384 526 4.53 21.7 39.1 0.51 0.94
Glycerine/Water 1.5 156 129 317 2.69 7.2 15.2 0.52  1.30
Glycerine/Water 1.5 328 260 447 3.48 13.7 27.3 0.45 1.30
Glycerine/Water 1.5 473 378 529 4.20 19.9 38.4 0.44 1.30
Glycerine/Water 2.0 157 128 320 2.45 74 14.5 0.47 1.70
Glycerine/Water 2.0 308 254 434 3.35 14.8 27.2 0.44 1.70
Glycerine/Water 2.0 505 399 561 3.83 19.3 38.8 0.40 1.70
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Chapter 4: Single drop impingement onto a liquid film of finite thickness

impingement velocity as the velocity scale. The radially expanding flow generated by drop im-
pingement onto a dry wall (Roisman et al. [136]) or the velocity field in the inner region of the
flow generated by drop impingement onto a liquid film (Roisman and Tropea [138] and [137])
can be described very well by the equations (4.1) and (4.2).

The dynamics of the motion of the crown base can be described theoretically by approximat-
ing it as a propagation of a kinematic discontinuity in the liquid film (Yarin and Weiss [196]).
The expression for the non-dimensional radius of the crown and thus of the upper part of the
cavity Re., can be obtained in the form:

Rewy = VBt —7) (4.3)

Here (3 is a constant. This constant is determined by the initial phase of the drop deformation
at impingement and by the drop penetration in the liquid film. Generally it also depends on the
Reynolds number and Weber number, as well as on the non-dimensional initial film thickness.
In the case of inertia dominated drop impingement, however, the effects of the viscosity and
surface tension are negligibly small and the parameter § is determined solely by the initial
thickness of the undisturbed liquid film (Yarin and Weiss [196]).

In the theoretical study by Trujillo and Lee [173] the effect of the viscosity on the propa-
gation of the kinematic discontinuity is taken into account. It is shown that if the Reynolds
number and Weber number of the impinging drop are high enough, the influence of the viscos-
ity on R, is negligibly small. In Roisman and Tropea [137] the theory of Yarin and Weiss is
generalized for non-axisymmetric drop impingements, like oblique impingement, impingement
onto a moving film or the interaction of two impinging drops. They have obtained an analytical
solution for the crown shape.

The classical expression (eq. (4.3)) for the development of the cavity radius with time is
supported by numerous experimental data (Cossali et al. [26]) and by the results of numerical
simulations of the drop impingement process (Rieber and Frohn [129]). The equations (4.1)
and (4.2) describe well the film thickness created by a drop impinging onto a dry spherical
target (Bakshi et al. [7]), since for these cases the liquid surface film is thicker then the viscous
boundary layer.

It has been observed by Sivakumar and Tropea [156], however, that for drop impingement
onto a liquid layer formed by spray impingement, the cavity diameter reaches a maximum and
even starts to reduce due to the influence of the surface tension forces acting on the cavity.
Such behavior cannot be described by eq. (4.3). They show, that the deviation from the
square-root law, given by eq. (4.3), is attributed to the crown-crown interaction during the
spray impingement process. For the experimental data, presented hereafter, the diameter evo-
lution of the cavity /crown, produced by a single drop impingement onto a liquid layer of finite
thickness, also deviates from the ¢'/>-law. This deviation can thus be explained only by the
influence of surface tension and gravity, which is not accounted for in the derivation of eq. (4.3).

Governing equations

If the drop impingement velocity is high enough, the Reynolds number and Weber number
are much higher than unity, resulting in a flow associated with the cavity expansion, that is
governed mainly by inertia, surface tension and gravity. The expansion of the cavity is described
by the propagation of a kinematic discontinuity (Yarin and Weiss [196]) that divides the liquid
surface film into the inner region of thickness h(r,t) and the outer stationary undisturbed
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4.2 Evolution of the diameter of the cavity in time

surface film of constant thickness h*.

Figure 4.11: Sketch of a kinematic discontinuity propagating towards the liquid layer: 1 is the
target surface, 2 the inner region of the liquid surface film, 3 the outer static undisturbed region
of the liquid surface film and 4 the uprising crown-like sheet

The average velocity through the film cross-section is denoted u(r,t). A sketch of the propa-
gating kinematic discontinuity is shown in Figure 4.11.

It can be shown that the remote asymptotic solution, given by eq. (4.1) and eq. (4.2),
exactly satisfies the mass and the momentum balance equations for the inviscid flow, even
if the capillary forces and gravity are significant. The propagation velocity of the kinematic
discontinuity can be found by applying the quasi-stationary Bernoulli equation (Roisman and
Tropea [137]). Here, this equation is modified accounting for the average pressure drop associ-
ated with gravity and surface tension, denoted respectively as:

144 h_hoca
py o 2~ oen) (4.4)

1 1
Do = _U(R + fiz) (45)

Here R, is the curvature of the film profile, whereas R.,, is the radius of the cavity at z =
h/2. The expression for the capillary pressure is obtained from the Young-Laplace relation,
describing the correlation between the surface tension, pressure and curvature of the surface.
In this expression, the last term within the brackets is the approximate expression for the total
curvature of a surface of rotation. The Bernoulli equation yields the following equation for the
velocity U, of the propagation of the kinematic discontinuity:

2 2
plu=Us)® _ pUZ,
2 2

In the derivation of this equation the pressure drop due to the viscous drag is neglected. This

assumption is valid only for the very high impingement Reynolds numbers leading to the cavity

formation and typical of the experiments described hereafter. At such high Reynolds numbers

the viscosity effect is significant only at relatively thin boundary layers. The viscous dissipation

in these layers leads to the thickening of the boundary layer, but it cannot influence the outer
solution and thus does not effect the crown propagation.

+ pg (4.6)

The solution of the Bernoulli equation (eq. (4.6)), hence, the velocity with which the
cavity surface is moving in time, can be written as:

73



Chapter 4: Single drop impingement onto a liquid film of finite thickness

2 2 Ry ' Reaw ) pu

Equation (4.7) can be written in non-dimensional form and simplified, accounting for the fact
that at large times after impingement h; ., < h*:

Ué‘avzdRc‘wzu—— I —(i+ ! ) ! (4.8)

dt* 2 2u*Fr R R, ) uWe
The variables in this equation are written in non-dimensional form using the initial drop di-
ameter as a length scale and the impingement velocity as a velocity scale. This is an ordinary
differential equation for the propagation of the cavity radius in time R, (¢*), which can be
solved numerically with the help of equations (4.1) and (4.2), when the value of R} is known.
From geometrical considerations (see the sketch in Figure 4.11) it is assumed that Rj is com-
parable with the initial surface film thickness 2*. In the present model the value for 7} is set to
R} = h*/2. This assumption is based on the fitting of the model predictions to the experimental
data, presented in §(4.2.2). It can be shown that in the case of We — oo and Fr — oo eq.
(4.8) has an analytical solution in the asymptotic form given by eq. (4.3) obtained by Yarin
and Weiss [196].

h — hioca 1 1
Ucav - E - g# - ( + ) 7 (47)

Asymptotic solution for maximum cavity radius at We > 1 and Fr > 1

In this paragraph drop impingements with finite, but large values of the impingement Weber
number and Froude number are considered. In this case the terms corresponding to gravity
and surface tension become significant only at the late stages of the cavity spreading period.
The cavity radius deviates from the asymptotic square-root behavior (eq. (4.1) and eq. (4.2)),
when the velocity of the inner region is small enough, hence: u ~ Fr~'/? or u ~ We 2. The
cavity radius at this stage is comparable with the maximum cavity radius R, ... Accounting

for the small values of the terms involving 1/Fr and 1/We eq. (4.8) can be simplified to the
following form:

dR; u* h* 2 1 1
U =—2L~— — — | = 4.9
o dt* 2 2u*Fr (h* i R:av,ma:r) wWe (4.9)
The solution of this equation is given as:
2h* 4 h*2 T*Q
R, =4/|T"— | =—————— + — 4.10
\/5 (Rzav,mMWe Twe Fr) W (410)
T"=t"—71 (4.11)
Here 3 is defined as a constant, see eq. (4.3). The instant 77, ., at which the radius of the
expanding cavity reaches its maximum value can therefore be expressed in the form:
. 3h* 2" 4 p\T
T = — 4.12
cav,maz 2 \ 2, maWe * We * Fr ( )

The value of the maximum cavity radius can now be obtained as the positive real root of the
equation:
R (T =T ) =R} (4.13)

cav cav,max cav,max
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4.2 Evolution of the diameter of the cavity in time

which, with the help of eq. (4.10) and accounting for the large values of We and Fr, yields:

.

= — 4.14

cav,max 9 /_G GWe ( )
4 h*2

G = m + F_T (415)

The value of the parameter 7 is by definition independent of the Weber number and Froude
number, hence, it is only a function of the initial surface film thickness, 7 = 7(h*), whereas
is a function of the Reynolds number and the initial film thickness, 7 = 3(Re, h*).

4.2.2 Results: dynamics of the diameter of the cavity in time

Evaluation of the analytical models

In order to compare the experimental results of the time evolution of the diameter of the
cavity, measured at y..,/h* = 0.5, with the analytical model for the time evolution of the
cavity diameter, derived in §(4.2.1) and described by eq. (4.10), it is important to evaluate
this theoretical model before. This evaluation is done by looking at two important scaling
parameters that are relevant to spray impingement modeling: the magnitude of the maximum
cavity diameter Dy, ... and the non-dimensional time at which this maximum cavity diameter
is reached 17, ..., - By comparing the experimentally obtained maximum diameter of the
cavity and the non-dimensional time at which this maximum cavity diameter is reached with,
respectively, the analytical solutions given by eq. (4.14) and (4.12) it can be tested whether

this theoretical model can be used to predict the time evolution of the cavity diameter.
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Figure 4.12: Comparison of the theoretical predictions of the maximum diameter of the cavity
and the non-dimensional time at which the maximum cavity diameter is reached with the
experimental data. The impingement parameters and the inputs for the analytical model are
listed in Table 4.2

In the Figures 4.12(a) and 4.12(b) the theoretical predictions of the maximum cavity di-
ameters and the non-dimensional times for the maximum cavity diameters are compared with
the experimentally obtained data. In each figure all the conducted experiments listed in Table
4.2 are taken into account. Both figures show a rather good agreement between the experi-
ments and the analytical solutions for most of the experiments, indicating that the assumptions
taken in the derivation of the theory, see §(4.2.1), are valid. Only for very high maximum
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Chapter 4: Single drop impingement onto a liquid film of finite thickness

non-dimensional diameters of the cavities and non-dimensional times of maximum cavity a dis-
crepancy up to 30% is seen to occur. Several adjustable parameters are used in this model,
hence Ry, 7 and 3. The values of the parameters 7 and 7 are listed for all the experiments in

Table 4.2 and plotted in the Figures 4.13(a) and 4.13(b).
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Figure 4.13: Fitted values of the parameters 7 and 5 as a function of the non-dimensional
initial liquid film thickness and Weber number. The exact values for 3 are listed in Table 4.2

As was mentioned already in the derivation of the equations for the diameter evolution it is
assumed that the values for 7 depend only on the initial liquid film thickness h*, whereas the
values for 3 are a function of the initial film thickness and the Weber number of the impinging
drop. The values for 7 and [ are obtained by fitting the analytical solution (eq. (4.10)) with
the experimental data. The magnitudes of the parameters 7 and 5 can be best expressed in
the following forms:

7 =0.79h" +0.12,

05 <h* <2 (4.16)

g =f(We) b3, 0.5 <h* <2 (4.17)

The results shown above clearly indicate that this model can be used to predict in good
agreement the time evolution of the cavity diameter for all conducted measurements. In the
following discussion the experimentally obtained results for the cavity diameter, together with
the numerical simulations and the analytical model, will be presented to describe the influence
of the initial film thickness, Weber number and liquid properties on the time evolution of the
cavity diameter. In these paragraphs the impingement process is split up into two parts: the
initial phase of drop impingement and the complete impingement process. The initial impinge-
ment stage spans a non-dimensional time range between t* = 0 and t* ~ 12 and is used to
evaluate the models, that describe the initial diameter change. In the paragraph thereafter the
complete drop impingement process will be evaluated, in which the experimental data of the
diameter evolution of the cavity in time will be compared with the analytical models and the
numerical simulations.

Initial phase of drop impingement

Figure 4.14 shows a comparison between the measured evolution of the diameter of the
cavity at the initial stage of drop impingement and the analytical model given by eq. (4.3).
Figures 4.14(a) and 4.14(b) show the change of the cavity diameter squared for three different
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4.2 Evolution of the diameter of the cavity in time

drop Weber numbers for h* = 0.5 and h* = 1.0 respectively for isopropanol, whereas in Figure
4.14(c) the evolution of the cavity diameter squared for distilled water (h* = 1.0) for three
different Weber numbers is presented. A detailed comparison for all the investigated initial film
thicknesses and liquids can be found in Appendix A.
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(c) Distilled water, h* = 1.0

Figure 4.14: Comparison of the experimental results with the analytical solution (eq. (4.3),
Yarin and Weiss [196]) of the diameters of the cavity for various experiments at the initial
stage of the cavity expansion. The square of the diameter D7 is shown as a function of the
non-dimensional time t*. The impingement parameters for the experimental data are listed in

Table 4.2

At the initial stage after impingement, hence 1 < t* < 6, the values of D2 increase linearly

with time, therefore confirming the theoretical predictions given by eq. (4.3). This means that
the remote asymptotic solution, developed by Yarin and Weiss [196] for non-dimensional times
t* > 1, can also be used to describe the expansion of the cavity diameter for the initial im-
pingement phase. For non-dimensional times t* > 6 an increasing deviation from the analytical
solution can be seen for the change of the cavity diameter with time. For lower Weber and
Froude numbers this deviation begins at smaller non-dimensional times and increases faster. To
predict the expansion of the diameter of the cavity precisely for larger times after impingement
a model has to be applied that also accounts for the influence of surface tension and gravity.
This model has been derived in §(4.2.1) and is given by eq. (4.10).
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Chapter 4: Single drop impingement onto a liquid film of finite thickness

Later stages of drop impingement

cav
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(a) Distilled water; O: h* = 0.5, We = 111, Re = (b) Distilled water; O0: h* = 1.0, We = 105, Re =
4,871; O: h* = 0.5, We = 238, Re = 7,173; </: 4,744; O: h* = 1.0, We = 239, Re = 7,241; </:
h* =0.5, We = 332, Re = 8,392 h* =1.0, We = 328, Re = 8,342
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(c) Distilled water; O0: h* = 1.5, We = 110, Re = (d) Distilled water; O0: h* = 2.0, We = 113, Re =
4,870; O: h* = 1.5, We = 232, Re = 7,115; </: 4,948; O: h* = 2.0, We = 215, Re = 6,750; :
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Figure 4.15: Evolution of the diameter of the cavity in time, measured at y/h%,, = 0.5, for
different initial film thicknesses. Comparison of the experimental results (LJ, O, v7) with the
theoretical predictions (eq. (4.10), dashed line) and the numerical simulations (solid line) for
distilled water. The impingement parameters for the experimental data and the inputs for the

analytical model are listed in Table 4.2

Plots of the non-dimensional cavity diameter D}, against the non-dimensional time ¢* for

the four investigated initial liquid film thicknesses are given in Figure 4.15 for distilled water,
in Figure B.5 for isopropanol and in Figure B.6 for the glycerine/water mixture. The symbols
in the figures correspond to the experimental data, the solid lines are the numerical simulations
and the dashed lines the theoretical results (eq. (4.10)). The corresponding values of the
parameters 7 and J are listed in Table 4.2.

In general it can be said that the curves for the cavity diameters all have a parabolic shape,
which can be split up into the expansion phase of the cavity (for 0 < ¢* <7, .. ) and the
receding phase and part of the retraction phase of the cavity (for t* > %, ,....). A comparison
between the curves for the experiments and those for the analytical description and numerical
simulations shows that the theoretical description of the diameter of the cavity (eq. (4.10))
and the simulations agree very well with the experimental data for all investigated liquid film
thicknesses, Weber numbers and liquids during the expansion and receding phases of the cavity.
It is surprising that, although the theory has been developed only for the expansion phase of
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4.2 Evolution of the diameter of the cavity in time

the cavity, the agreement during the receding phase of the cavity is for most of the investigated
cases very well. Several conditions for such good theoretical predictions of the receding phase
can be mentioned. First of all, the thickness of the surface film in the outer region remains
approximately equal to the initial surface film thickness, even during the receding phase, as
is clearly observed by the Shadowgraph recordings (Figure 4.1). Second, during the receding
phase the velocity of the liquid in the outer film is relatively small, resulting in negligibly small
values of the inertial terms in the Bernoulli equation (eq. (4.6)) associated with the flow in the
outer film. Finally, for impingements at high Reynolds numbers, the influence of the viscosity
can be neglected in the experiments. Viscous effects could lead to a decrease of the magnitude
of the propagation velocity of the cavity surface. However, in the experiments such a velocity
decrease is not observed, since the velocity of the cavity during the receding phase is comparable
with the cavity velocity in the spreading phase, hence, viscosity can be neglected.

When comparing the curves of the time evolution of the cavity diameter for different initial
liquid film thicknesses, it is observed that an increase in the film thickness leads to a decrease
of the steepness of the curves during the expansion phase of the cavity. This means that for
single drop impingements onto thicker surface films, but for the same Weber number of the
impinging drop, the cavity expands in radial direction with a lower velocity.
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Figure 4.16: Maximum diameter of the cavity and non-dimensional time of the maximum
diameter as a function of the initial liquid film thickness and impinging drop Weber number

This lower radial expansion velocity is the result of the increased influence of the surface tension
and gravity forces onto the surface of the expanding cavity for larger film thicknesses. Due
to these increased surface tension forces and gravity forces on the surface of the cavity the
conversion of the kinetic energy of the impinging drop takes place faster, resulting in a lower
maximum value of the diameter of the cavity, Figure 4.16(a). Additionally, a lower film thickness
leads to earlier times at which the cavity reaches the bottom of the liquid film (Figure 4.21).
From this time instant on, all the remaining kinetic energy is used to overcome the surface
tension effects during the radial spreading of the cavity. Hence, for the same Weber number
of the impinging drop, more kinetic energy is available for the radial expansion of the cavity,
when the liquid film is thinner.

Although the maximum diameter of the cavity is influenced by the liquid film thickness,
the time instant at which the maximum cavity diameter is reached is independent of the initial
liquid film thickness, as presented in Figure 4.16(b). For the receding phase of the cavity little
to no difference can be seen when comparing the curves of the time evolution of the cavity
diameter for different initial film thicknesses. The decrease of the diameter of the cavity starts
slow, but accelerates in time, due to the increased inertial effects. The non-dimensional times
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(a) Isopropanol; LI: h* = 1.0, We = 192, Re = (b) Isopropanol; O0: h* = 2.0, We = 189, Re =
1,201; O: h* = 1.0, We = 384, Re = 1,701; </: 1,199; O: h* = 2.0, We = 392, Re = 1,733; :
h* = 1.0, We = 539, Re = 2,013 h* = 2.0, We = 527, Re = 1,982
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(c) Distilled water; O0: h* = 1.0, We = 105, Re = (d) Distilled water; O0: h* = 2.0, We = 113, Re =
4,744; O: h* = 1.0, We = 239, Re = 7,241; </: 4,948; O: h* = 2.0, We = 215, Re = 6,750; :
h* = 1.0, We = 328, Re — 8,342 h* = 2.0, We = 343, Re — 8,644
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(e) Glycerine/water; O0: h* = 1.0, We = 162, Re = (f) Glycerine/water; [: h* = 2.0, We = 157, Re =

341; O: h* = 1.0, We = 329, Re = 428; \7: h* 320; O: h* = 2.0, We = 308, Re = 434; x7: h*
1.0, We = 465, Re = 526 2.0, We = 505, Re = 561

Figure 4.17: Evolution of the diameter of the cavity in time, measured at y/hf,, = 0.5, for
the initial film thicknesses of h* = 1.0 (left) and h* = 2.0 (right). Comparison of the ex-
perimental results (CJ, O, ) with the theoretical predictions (eq. (4.10), dashed line) and
the numerical simulations (solid line) for (a)-(b) isopropanol, (¢)-(d) distilled water and (e)-(f)
glycerine /water. The impingement parameters for the experimental data and the inputs for

the analytical model are listed in Table 4.2
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4.2 Evolution of the diameter of the cavity in time

at which the diameters of the cavities at y.,,/h* = 0.5 equal zero (the cavity passes the vertical
point Yea,/h* = 0.5 during the retraction phase) are of about the same order of magnitude
for different initial film thicknesses. This means that the receding of the cavity takes place in
about the same time span for the different film thicknesses, hence, the receding of the cavity is
independent of the initial film thickness, but mainly driven by capillary forces.

The influence of the Weber number of the impinging drop on the evolution of the diameter
of the cavity in time is shown in Figure 4.17 for h* = 1.0 and A* = 2.0, and in Figure B.7 for
h* = 0.5 and h* = 1.5. These figures show the experimentally obtained results for all three
liquids, as well as the results of the numerical simulations (solid lines) and of the theoretical
approximation (dashed lines).

In the first non-dimensional time instants after impingement a steep growth of the cavity di-
ameter is observed for all Weber numbers, which levels off at the moment the cavity approaches
the bottom of the liquid film. The steepness with which the diameter increases, decreases for
lower Weber numbers. This is the direct result of the lower kinetic energy of the drop before
impingement. During the spreading phase of the cavity the inertial forces are dominant over
the capillary forces and gravity effects. For a lower magnitude of the kinetic energy, less energy
is available to overcome the surface tension forces acting on the expanding surface of the cavity
and opposing the cavity expansion. This results in a less dominant influence of the inertia in
comparison with the capillary and gravitational effects. Not only does this result in a lower
radial expansion velocity, but also in a smaller value of the time instant at which the maximum
cavity diameter is reached (Figure 4.16(b)), leading to a smaller maximum cavity diameter
(Figure 4.16(a)). Since the value of the maximum cavity diameter and the time of maximum
cavity diameter are smaller for lower Weber numbers and inertia is overcome earlier by capillary
forces, the receding of the cavity starts earlier and the non-dimensional time instant at which
the cavity passes the vertical point y.q.,/h* = 0.5 during the retraction phase is reached sooner.
This behaviour is seen for all investigated liquids and film thicknesses.

The last investigated parameters that influence the time evolution of the diameter of the
cavity are the liquid properties (viscosity and surface tension), of which the results are shown
in Figure B.8 for the lowest and medium Weber numbers and in Figure 4.18 for the highest
investigated Weber numbers. As has been mentioned already before, the effect of viscosity
can be neglected in the impingement process, since the Reynolds numbers for all investigated
drop impingements are much higher than unity. The influence of the surface tension on the
time evolution of the cavity diameter, however, is much more pronounced. For the three in-
vestigated liquids, isopropanol has the lowest surface tension, followed by the glycerine/water
mixture and distilled water. For a lower value of the surface tension a much more pronounced
spreading of the cavity is observed, resulting from the fact that inertia can overcome easier
the surface tension forces opposing the expansion of the cavity, compare for example Figure
4.18(a) (low surface tension) with Figure 4.18(b) (high surface tension). Resulting from the
more pronounced spreading of the cavity for liquids with a lower surface tension is a larger
value of the maximum cavity diameter, reached at later non-dimensional times after impinge-
ment. This is clearly seen in the Figures 4.16(a) and 4.16(b) for, respectively, the value of the
maximum cavity diameter and the time of maximum cavity diameter, when taking into account
the different values of the Weber numbers for the different investigated liquids.

A lower value of the surface tension leads not only to a wider cavity and therefore larger
value of the maximum cavity diameter, but also to weaker surface tension forces acting on the
surface of the cavity during the receding phase. This results in a longer receding time and a
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Chapter 4: Single drop impingement onto a liquid film of finite thickness

later non-dimensional time instant at which the cavity passes the vertical point y..,/h* = 0.5
during the retraction phase, which can be seen clearly by comparing the Shadowgraph images
for the three liquids (Figures 4.7 and 4.8).
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(a) Isopropanol; [: h* = 0.5, We = 541, Re = (b) Distilled water; O: h* = 0.5, We = 332, Re =

2,007; O: h* = 1.0, We = 539, Re = 2,013; w: 8,392; (O: h* = 1.0, We = 328, Re = 8§,342; /:
h* = 1.5, We = 535, Re = 2,006; %: h* = 2.0, h* = 1.5, We = 341, Re = 8,587; %: h* = 2.0,
We =527, Re = 1,982 We = 343, Re = 8,644
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(c) Glycerine/water; O: h* = 0.5, We = 472, Re =
539; O: h* = 1.0, We = 465, Re = 526; \7: h* =
1.5, We = 473, Re = 529; %: h* = 2.0, We = 505,
Re = 561

Figure 4.18: Evolution of the diameter of the cavity in time, measured at y/h%,, = 0.5, for the
largest drop Weber numbers and four film thicknesses. Comparison of the experimental results
(O, O, v, *) with the theoretical predictions (eq. (4.10), dashed line) and the numerical
simulations (solid line) for (a) isopropanol, (b) distilled water and (c¢) glycerine/water. The
impingement parameters for the experimental data and the inputs for the analytical model are

listed in Table 4.2

4.3 Evolution of the depth of the cavity in time

This paragraph presents the detailed results of the depth evolution of the cavity in time upon
impingement of a single drop onto a steady liquid film of finite thickness. In the experiments
the depth is measured at the lowest point of the cavity observed in the Shadowgraph record-
ings, whereas for the analysis of the numerical simulations, the depth is determined using the
computational cells where the volume fraction becomes v > 0.5. The results of the experiments
are compared with the analytical models derived in Beberovic et al. [10] and the numerical
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4.3 Evolution of the depth of the cavity in time

simulations to validate the theoretical models and the numerical code. Several particular im-
pingements of the many impingement experiments conducted are selected and presented in
more detail hereafter. The impingement parameters of all the experiments, together with the
inputs for the analytical models, are listed in Table 4.2.

In the following paragraphs the impingement process is split up into two parts: the initial
phase of drop impingement and the complete impingement process. The initial impingement
stage spans a non-dimensional time range between t* = 0 and ¢t* ~ 5 and is used to evaluate
the models, that describe the initial depth penetration. In the paragraph thereafter the com-
plete drop impingement process will be evaluated, in which the experimental data of the depth
evolution of the cavity in time will be compared with the analytical models and the numerical
simulations.

4.3.1 Initial phase of drop impingement

In Beberovic et al. [10] a theoretical model has been derived for the description of the pen-
etration depth of the cavity at the initial stage of drop impingement. It was found that the
analytical solution of the depth of the cavity can be written as a function of the non-dimensional
time by:

v =0.574- (5t —6)%/°, > 2 (4.18)

Since the cavity penetrates into the liquid film with a constant vertical velocity, indepen-
dent of the drop impingement Weber number, liquid properties and initial film thickness, it
can be expected that this general equation for the penetration depth at initial stage of drop
impingement can be used to describe the cavity penetration. In order to validate this analyti-
cal solution, the experimental data for the cavity penetration lengths for various impingement
parameters and non-dimensional initial film thicknesses are shown in Figure 4.19 together with
the analytical asymptotic solution described by eq. (4.18) for the penetration depth at initial
stage of drop impingement.

In this figure it can be seen that right after impingement all curves for the depth of the cavity
follow quite well the analytical solution, but that a the non-dimensional time instant t* = 2.5 the
experimental data start to deviate from the analytical solution. This deviation is determined
by the initial film thickness, or more precisely, by the vicinity of the cavity tip to the bottom of
the liquid film. A smaller initial film thickness leads to an earlier deviation from the asymptotic
solution which is developed for deep pools, compare for example We = 328, Re = 8,342 for
h* =1 with We = 215, Re = 6,750 for h* = 2. These results also demonstrate that wall effects
may be significant already at the initial stages of drop impingement.

4.3.2 Later stages of drop impingement

In this section the influences of the initial liquid film thickness, the Weber number of the im-
pinging drop, and the liquid properties (surface tension and viscosity) on the complete evolution
of the cavity depth are investigated and explained. From all the experimental data a selected
group is shown in this section; the results of all the remaining conducted experiments can be
found in Appendix B.

Plots of the non-dimensional cavity depth (Depth?,,) against the non-dimensional time (¢*)
for the four investigated initial liquid film thicknesses are given in Figure 4.20 for distilled water,
in Figure B.1 for isopropanol and in Figure B.2 for the glycerine/water mixture. The symbols
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Figure 4.19: Drop impingement onto a liquid film of finite thickness: experimentally obtained
penetration depth of the cavity (symbols) as a function of time for various film thicknesses
compared to the asymptotic solution (eq. (4.18), Beberovic et al. [10]) for the first time instants
after drop impingement

in the figures correspond to the experimental data, whereas the solid lines are the results of the
numerical simulations.

The first important observation is that the numerical simulations predict very well the time
evolutions of the cavities after impingement for all the investigated film thicknesses, impinging
drop Weber numbers and liquids. This means that the modified volume-of-fluid code, presented
in Beberovic et al. [10], is suited very well for the prediction of the single drop impingement
process.

Right after impingement a steep increase in the depth of the cavity is noticed for all the
curves. In all three figures it can be seen that the penetration velocity of the cavity into the
liquid film is constant and thus independent of the initial liquid film thickness, as has been
mentioned already in the discussion of the impingement observations, presented in §(4.1). This
non-dimensional penetration velocity of the cavity equals U}, = 0.5. At the time instant at
which the cavity nearly touches the bottom of the liquid film, the influence of the bottom be-
comes stronger, resulting in a decrease of the velocity with which the cavity penetrates into the
liquid layer and subsequent leveling of the curves of the depth of the cavity. This influence of
the bottom of the liquid film on the depth penetration of the cavity, together with the influence
of gravity and capillary effects, explains the deviation of the experimentally obtained cavity
depth from the analytical model, shown in Figure 4.19. The times at which the cavities reach
the bottom of the liquid films are shown in Figure 4.21 as a function of the initial liquid film
thickness and Weber number for all three investigated liquids.

As expected for a penetration velocity of the cavity that is constant and independent of the
initial liquid film thickness, an increase in the film thickness leads automatically to an increase
in the time instant at which the cavity reaches the bottom of the liquid film. This increase is
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(a) Distilled water; O: h* = 0.5, We = 111, Re =
4,871; O: h* = 0.5, We = 238, Re = 7,173; </:
h* = 0.5, We = 332, Re = 8,392
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(c) Distilled water; O0: h* = 1.5, We = 110, Re =
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(b) Distilled water; O0: h* = 1.0, We = 105, Re =
4,744; O: h* = 1.0, We = 239, Re = 7,241; </:

h* = 1.0, We = 328, Re = 8, 342

10 20 t*3‘0 10 50

(d) Distilled water; O0: h* = 2.0, We = 113, Re =
4,948; O: h* = 2.0, We = 215, Re = 6,750; :
h* =2.0, We = 343, Re = 8,644

Figure 4.20: Evolution of the depth of the cavity in time for different initial film thicknesses.

Comparison of the experimental results (CJ, O, v/

for distilled water. The impingement parameters
the analytical model are listed in Table 4.2

) with the numerical simulations (solid line)
for the experimental data and the inputs for
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Figure 4.21: Time to reach maximum depth of
thickness and impinging drop Weber number

cavity as a function of the initial liquid film
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Chapter 4: Single drop impingement onto a liquid film of finite thickness

however not linear, as would be expected for a constant penetration velocity, since for higher
film thicknesses the time span in which the curve of the depth of the cavity levels off increases,
compare for example Figure B.3(c) with Figure 4.23(d) for h* = 0.5 and h* = 2.0 respectively.
In the first figure the time for leveling of the curves is negligibly small, whereas for a film
thickness of h* = 2 it takes about eight non-dimensional time steps between the first changes in
penetration velocity and the time at which the cavities have reached the bottom of the liquid
film. This difference is explained by the difference in value of the kinetic energy that is still
available at a certain depth. In case of the same Weber number of the impinging drop, the
bottom of the liquid film is reached sooner for lower film thicknesses. This shorter time span
between impingement and the moment the cavity nears the bottom results in a cavity with a
smaller diameter, as was shown before in the discussion of the diameter evolution of the cavity,
and therefore inertia has to overcome less surface tension forces. For larger film thicknesses
the cavity can penetrate vertically into the liquid film for a longer time, during which it also
continues expanding in radial direction. This results in larger surface tension forces opposing
the expansion of the cavity, that have to be overcome by inertia for a longer time. At later
time instants after impingement less kinetic energy is available to overcome the surface tension
forces, leading to a penetration velocity that becomes weaker at every subsequent time instant.
After the cavities have reached the bottom of the liquid films, they reside a certain period
near the bottom, which is seen in the figures as horizontal lines of constant cavity depth. When
looking closer to the results of the numerical simulations, it can be seen that, in comparison
to the experimental results, the cavities stay close to the bottom of the liquid films, but do
not touch them (see, for example, the numerical calculated shapes of the cavity for distilled
water and isopropanol, Figure 4.9 and 4.10) Due to the limited spatial resolution of the camera
with which the shadowgraph images were made (18.9 wm/piz) and the presence of the cavity
reflections on the bottom of the plexiglass container, it is not possible to define the exact
maximum depths of the cavities close to the bottom of the liquid films in an experimental way.
Since for the numerical simulations grid refinements are applied at the bottom of the liquid film,
this leads to the small differences in the values of the depth of the cavities for the experimental
results and the numerical simulations. The values of the numerically obtained residual film
thicknesses, still present below the cavity at maximum depth, will be discussed in §(4.5).
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Figure 4.22: Time of retraction of the cavity as a function of the initial liquid film thickness
and impinging drop Weber number
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4.3 Evolution of the depth of the cavity in time

It is observed that for lower Weber numbers the cavities stay at their maximum depths for
a longer time period, before retraction of the cavities takes place. The time between impinge-
ment and the retraction of the cavity is shown in Figure 4.22 as a function of the initial liquid
film thickness and Weber number for all three investigated liquids. This figure shows that for a
fixed Weber number of the impinging drop a change in the liquid film thickness does not change
the time at which the cavity starts to retract. A larger Weber number, however, leads to a
later retraction of the cavity, as can also be observed when comparing the curves of the depth
evolutions of the cavities in the Figures 4.20, B.1 and B.2. The explanation for this increase of
the time instant of cavity retraction will be given in the next section.

At the beginning of the retraction phase, the retraction velocities of the cavities are large,
due to the strong influence of the surface tension forces on the surface of the cavity. As time
continues, the curves start to level off, because the surface of the upward moving cavities be-
comes smaller, leading to weaker surface tension forces acting on the cavity.

The second parameter that is changed during the single drop impingement studies, is the
Weber number of the impinging drop. The influence of the Weber number of the impinging
drop on the evolution of the depth of the cavity in time is shown in Figure 4.23 for A* = 1.0 and
h* = 2.0, and in Figure B.3 for h* = 0.5 and h* = 1.5. These figures show the experimentally
obtained results for all three liquids, as well as the results of the numerical simulations.

The first remarkable observation made by looking at the depth evolution of the cavity for
different Weber numbers of the impinging drop is that the velocity with which the cavity pene-
trates into the liquid film after impingement is independent of the terminal velocity of the drop
before impingement, and equals U},, = 0.5 for all drop Weber numbers.

During the penetration and receding phase of the cavity it is noted that the Weber number
of the impinging drop has little to no effect on the time evolution of the depth of the cavity for
all investigated liquids and liquid film thicknesses. This independency on the Weber number
can also be seen for the investigation of the time at which the cavity reaches the bottom of the
liquid film, Figure 4.21. In this figure it is observed that for each of the liquid films investi-
gated a change in Weber number has no influence on the time at which the cavity reaches its
maximum depth, although for A* = 2.0 some scatter in the data can be seen.

The only clear effect of a change of the Weber number on the time evolution of the cav-
ity depth is the time instant at which the cavity starts to retract. An increase in the Weber
number results in a later retraction of the cavity, as was observed already in the Figures 4.5
and 4.6 where the Shadowgraph images were shown for the impingement of a distilled water
drop for three different Weber numbers. This behaviour is observed for all investigated liquids
and liquid film thicknesses (Figure 4.22), and is the result of the higher kinetic energy of the
impinging drop present upon impingement for higher Weber numbers. Due to more kinetic
energy, the surface tension forces, acting on the increasing surface of the growing cavity, can be
overcome by inertia for a longer time, resulting in a later receding of the cavity, hence, longer
times at which the cavity stays at its maximum depth, thus a later retraction of the cavity.

By changing the liquids, the influence of the liquid properties (viscosity and surface tension)
on the time evolution of the depth of the cavity can be investigated. The properties of each
of the liquids has been given in Table 3.1. The results for the evolution of the depth of the
cavity in time are shown in Figure B.4 for the lowest and medium Weber numbers investigated,
and in Figure 4.24 for the highest investigated Weber numbers. In each of these figures the
experimentally obtained results for all four investigated liquid film thicknesses, as well as the
results of the numerical simulations, are presented.
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(a) Isopropanol; LI: h* = 1.0, We = 192, Re = (b) Isopropanol; O0: h* = 2.0, We = 189, Re =
1,201; O: h* = 1.0, We = 384, Re = 1,701; </: 1,199; O: h* = 2.0, We = 392, Re = 1,733; :
h* = 1.0, We = 539, Re = 2,013 h* = 2.0, We = 527, Re = 1,982
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(c) Distilled water; O0: h* = 1.0, We = 105, Re = (d) Distilled water; O0: h* = 2.0, We = 113, Re =
4,744; O: h* = 1.0, We = 239, Re = 7,241; </: 4,948; O: h* = 2.0, We = 215, Re = 6,750; :
h* = 1.0, We = 328, Re — 8,342 h* = 2.0, We = 343, Re — 8,644
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(e) Glycerine/water; O0: h* = 1.0, We = 162, Re = (f) Glycerine/water; [: h* = 2.0, We = 157, Re =
341; O: h* = 1.0, We = 329, Re = 428; <7: h* = 320; O: h* = 2.0, We = 308, Re = 434; <7: h* =
1.0, We = 465, Re = 526 2.0, We = 505, Re = 561

Figure 4.23: Evolution of the depth of the cavity in time for the initial film thicknesses of
h* = 1.0 (left) and h* = 2.0 (right). Comparison of the experimental results ((J, O, v7) with
the numerical simulations (solid line) for (a)-(b) isopropanol, (¢)-(d) distilled water and (e)-(f)
glycerine /water. The impingement parameters for the experimental data and the inputs for
the analytical model are listed in Table 4.2
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(a) Isopropanol; [I: h* = 0.5, We = 541, Re = (b) Distilled water; O0: h* = 0.5, We = 332, Re =
2,007; O: h* = 1.0, We = 539, Re = 2,013; w: 8,392; (O: h* = 1.0, We = 328, Re = 8§,342; /:
h* = 1.5, We = 535, Re — 2,006, %: h* = 2.0, h* = 1.5, We = 341, Re = 8,587; %: h* = 2.0,
We = 527, Re = 1,982 We = 343, Re — 8,644
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(c) Glycerine/water; O: h* = 0.5, We = 472, Re =
539; O: h* = 1.0, We = 465, Re = 526; \7: h* =
1.5, We = 473, Re = 529; %: h* = 2.0, We = 505,
Re = 561

Figure 4.24: Evolution of the depth of the cavity in time for the largest drop Weber numbers and
four film thicknesses. Comparison of the experimental results (CJ, O), v/, %) with the numerical
simulations (solid line) for (a) isopropanol, (b) distilled water and (c¢) glycerine/water. The
impingement parameters for the experimental data and the inputs for the analytical model are
listed in Table 4.2

In general it can be said that due to the high Reynolds numbers for all the investigated
impingement processes the influence of viscosity on the time evolution of the depth of the cavity
is expected to be negligible. This is confirmed when looking at the curves for the different
liquids. These curves clearly show that a change in the liquids properties has no influence
on the velocity with which the cavity penetrates into the liquid film after impingement. The
penetration velocity remains constant for all three investigated liquids and equals U},, = 0.5.
This clearly shows that for large Weber numbers, Reynolds numbers and Froude numbers the
effects of, respectively, surface tension, viscosity and gravity on the cavity penetration can be
neglected, hence, the cavity penetrates into the liquid film only due to inertia. Just like for the
change in Weber number of the impinging drop, a change in viscosity and/or surface tension has
little to no effect on the time evolution of the cavity depth during the penetration and receding
phases. The time at which the cavity reaches the bottom of the liquid film is independent of
the liquid properties, as can be seen in Figure 4.21.
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Chapter 4: Single drop impingement onto a liquid film of finite thickness

However, a change of the liquid properties has a clear effect on the time instant at which
the cavity starts to retract. A decrease in the surface tension results in a later retraction of
the cavity, as was observed in the Figures 4.7 and 4.8 where a comparison of the Shadowgraph
recordings was made for the three investigated liquids. This behaviour is observed for all
investigated Weber numbers and liquid film thicknesses (Figure 4.22). For a constant value of
the Weber number of the impinging drop, the surface tension forces, acting on the increasing
surface of the growing cavity, are weaker for isopropanol, due to the lower value of the surface
tension, and can be overcome by inertia for a longer time, resulting in a later receding of the
cavity and thus a later retraction of the cavity.

4.4 Fully three-dimensional simulation of drop impinge-
ment

Since the axi-symmetric simulations, presented above, are not capable of describing precisely
the three-dimensional nature of the flow of the corona, hence the rim instability and secondary
droplet pinch-off, a full three-dimensional computational model is used, taking into account
the physical perturbations leading to instability. A comparison between the evolution of the
shape of the cavity for the axi-symmetric numerical simulations and the fully three-dimensional
simulations is presented hereafter. Although the experiments are fully three-dimensional and
therefore small errors are to be expected between the experimental results and the numerical
simulations, it was seen in the discussion of the results above that the correlation between the
time evolution of the cavity depth and cavity diameter for the experiments and for the numeri-
cal simulations is surprisingly good. In this paragraph it will be shown that the influence of the
three-dimensional effects on the shape of the cavity are only minor, hence, the axi-symmetric
numerical results can be used for the detailed analysis of the change of the cavity in time.

To investigate the possible errors of the axi-symmetrical simulations on the cavity evolution,
a fully three-dimensional computational model is used, taking into account the physical per-
turbations leading to instability. In this paragraph a comparison between the evolution of the
shape of the cavity for the axi-symmetric numerical simulations and the fully three-dimensional
simulations will be made. It will be shown that the influence of the three-dimensional effects
on the shape of the cavity, which appear during the receding phase, are only minor, hence, the
axi-symmetric numerical results give a good analysis of the change of the cavity in time and
much computational time can be saved.

In figure 4.25 the time evolution of the cavity shape for the axi-symmetrical simulation
(thick lines) and the fully three-dimensional numerical simulation (thin lines) are presented.

The images show that until a non-dimensional time instant of t* = 22.9 no differences of the
cavity can be observed between the two different simulations. Concerning the rim, however, a
clear difference in shape is seen. The results of the axi-symmetrical simulation show a relatively
thick rim, whereas for the three-dimensional simulation the rim starts very thin (Figure 4.25(b)
and 4.25(c)) and becomes thicker for larger times after impingement. The curvature of the free
surface is also seen to be smaller for the three-dimensional case. These differences in the shape
of the rim can be explained by two parameters. First of all, the axi-symmetrical simulation can-
not resolve the three-dimensional flow of the rim, meaning that the rim will always be simulated
as a torus, having exactly the same circumferential shape at every azimuthal position. This
problem is avoided by a fully three-dimensional simulation, in which case the three dimensional
flow can be resolved in detail. Second, the grid for the fully three-dimensional simulation is
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(a) t* = —0.7 (b) t* = 3.8 (c) t* =77

(d) t* =114 (e) t* =15.3 (f) t* = 19.0

(g) t* =22.9 (h) t* = 26.7 (i) t* =304
() t* = 34.8 (k) t* =38.3 (1) t* =422

(m) t* = 46.1

Figure 4.25: Comparison of the cavity shape between the axi-symmetrical (thin solid lines) and
the fully three-dimensional (thick solid lines) numerical simulation of a single drop impingement
onto a liquid layer of non-dimensional thickness h* = 2, Fromm [44]. The evolution of the cavity
formed by an isopropanol drop (We = 527, Fr = 366, Re = 1,982) impingement at various
non-dimensional time instants
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quite coarse to avoid large computational times, but this has a clear effect on the resolution
with which the thin rim can be calculated and imaged.

For non-dimensional times ¢* > 26.7 it can be observed that the capillary wave has a higher
vertical velocity in case of the axi-symmetrical simulation. This is the result of a stronger
curvature of the capillary wave for the axi-symmetrical case, leading to a higher pressure dif-
ference between the trailing and the leading edge of the capillary wave. This higher pressure
difference results in a higher velocity and higher acceleration with which the capillary wave
is sucked downwards into the liquid film. Due to the higher vertical velocity of the capillary
wave, the receding phase of the cavity takes place faster, since the capillary wave reaches the
bottom of the liquid film at a non-dimensional time instant of t* = 38.3 for the axi-symmetrical
simulation and at t* = 42.2 for the three-dimensional simulation. At t* = 42.2 a thin liquid film
is still present for the three-dimensional case, whereas for the axi-symmetrical simulation the
cavity is retracting and the central jet is being formed. It can be seen in Figure 4.25(m) that
for the three-dimensional simulation a small air bubble has pinched off from the cavity during
the receding phase, whereas for the axi-symmetrical case no such bubble pinch-off appears.

The comparison of the time evolution of the depth and the diameter of the cavity between the
experimental results, the theoretical prediction and the axi-symmetrical and three-dimensional
simulations is shown in Figure 4.26. In this figure, the symbols correspond to the experimental
data, the dashed-dotted line to the theoretical predictions and the solid line and dashed line
to, respectively, the axi-symmetrical and three-dimensional simulations.

cav

10 20 30 40 50
t *

(a) Time evolution of cavity depth (b) Time evolution of cavity diameter

Figure 4.26: Evolution of the depth (a) and the diameter (b) of the cavity in time. Comparison
of the experimental results (()) with the theoretical approximation (—-) and the numerical
simulations (solid line: axi-symmetrical; dashed line: three-dimensional) for isopropanol (h* =
2.0, We = 527, Re = 1,982)

By comparing the results for the time evolution of the depth and the diameter of the cavity
of both simulations it is seen that for the three-dimensional simulation the correlation with
the experimental data is much better. For non-dimensional time instants t* < 30 only minor
differences are seen to occur between the results of the two numerical simulations for the time
evolution of the cavity depth. The oscillations in the cavity depth, present at t* > 30 for the
axi-symmetrical simulation, disappear for the three-dimensional case, but these differences have
no influence on the minimum residual film thickness, as will be shown in §(4.5).

Since the curvature of the capillary waves and the subsequent pressure difference and ver-
tical velocity of the capillary wave are higher in the axi-symmetrical simulation, the receding
phase of the cavity starts in this case sooner and spans a shorter time (Figure 4.25), leading
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to large differences for the cavity diameter between the axi-symmetrical simulation and the
experimental data. For the three-dimensional simulation Figure 4.26(b) shows a much better
correlation with the experiments; the time at which the cavity starts to recede is captured very
well, as well as the times at which the cavity starts its retraction and at which the central jet
is being formed (Figure 4.26(a)).

In general, these results show that for the expansion phase of the cavity the axi-symmetrical
results are reliable and can be used without any doubt. Since, however, the fully three-
dimensional simulation can resolve in detail the three-dimensional flow of the rim, this results
in a different shape of the rim for both simulations. The capillary wave, formed upon impinge-
ment of the rim onto the liquid film, will therefore be formed in a different way, leading to a
receding of the cavity which is slower for the fully three-dimensional simulation. In this way
the time at which the cavity starts to recede, the diameter evolution of the receding cavity
and the time of cavity retraction are captured better by the fully three-dimensional numerical
simulation.

However, the small errors, appearing in the receding phase for the axi-symmetrical simu-
lation, can be taken into account when looking at the computational time, which is about an
order of magnitude six smaller.

4.5 Minimum residual film depth

Spray cooling is a very efficient way of (rapidly) cooling down a surface or keeping a cold sur-
face at a constant temperature. The spray constantly refreshes the liquid surface film, which is
heated up by the hot surface, with new cold liquid and removes efficiently the heat from the hot
surface. In order to understand the physics behind the spray cooling process, it is important
to know the specific characterisations of the spray (drop velocity and diameter distributions,
volume fluxes) and the surface film fluctuations and to understand the velocity fields inside
the surface film, which give an indication in which direction and how fast the heat is being
transported away from the hot surface, which parts of the hot surface are being cooled less and
how fast the warm liquid is being refreshed by new cold liquid.

However, at the same time it is necessary to understand perfectly the single drop impinge-
ment process, in order to theoretically describe the heat flow from the hot surface to the cold
liquid surface film during impingement. One of the key parameters in describing the heat fluxes
is the value of the residual liquid film £,  that is still present below the cavity at its maximum
depth. This residual film thickness is a measure of how much cold liquid is still present on the
hot surface during impingement, whether film break-up appears - as a result of which no more
heat conduction can take place between the hot surface and the liquid film - and how much
heat can be transported away from the hot surface inside a certain time period.

4.5.1 Theoretical analysis of the minimum residual film thickness

When the cavity approaches the bottom of the liquid film, the penetration velocity decreases
due to the wall effects. When the inertia of the liquid flow is strong enough, the thickness of
the film below the cavity follows the remote asymptotic solution given by Yarin and Weiss [196]
and decreases with t~2. At some time instant after impingement the thickness of the liquid film
still present below the cavity becomes comparable with the thickness of the viscous boundary
layer. The flow in this thin liquid layer is damped by viscosity. The remaining thin liquid film
thickness h is much smaller than the initial thickness of the liquid layer h*, see Figure 4.11.
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This phase corresponds to the "plateau"-region, where the depth of the cavity is no function
of time anymore.

The value of the residual film thickness is rather important for the modeling of heat transfer
associated with drop or spray impingement and prediction of the film breakup. Unfortunately,
since the residual film thickness is much smaller than the initial drop diameter and the initial
surface film thickness, its experimental evaluation is not an easy task. For the impingement
processes presented hereafter, this value is determined from the numerical simulations. The
predicted values of the residual film thickness h¥,, = h,.s/Dg are given in the paragraph here-

res
after for various impingement parameters and liquids.

The thickness of the boundary layer at the dimensionless time ¢; at which the cavity almost
reaches the bottom can be approximated by:

hy ~ 1/t;/Re (4.19)

When the cavity approaches the bottom, the film thickness below the cavity follows the remote
asymptotic solution (Yarin and Weiss [196]). At larger times after impingement, this film
thickness and the velocity with which the surface of the cavity expands can be written in the
simplified forms:

h:av = h* - y:av ~ t*_2 (420)
dh;

Ul =—2 ~ 73 4.21

cav dt ( )

Therefore, the time instant at which the boundary layer reaches the free surface of the cavity
is 17 ~ Re'/® and the cavity velocity at this time instant is U*, ~ Re~%/°. The film thickness
h; corresponding to the time instant ¢ can be easily estimated from eq. (4.20) as h; ~ Re™2/>.

The residual film thickness is smaller than Aj, since the inertia of the fluid at the time
instant t* = ¢} is still significant. The value of the residual film thickness is estimated assuming

the creeping flow in the film (Bakshi et al. [7]) in the following form:
_ o 1 i 14ReUz,, o
b h 15

With the scaling analysis for h},, and U, as function of the Reynolds number, this equation
leads to the following relation between the residual film thickness and the Reynolds number:

*
h'res

(4.22)

hi,. = ARe™%/® (4.23)
The coefficient A depends on the non-dimensional initial film thickness h*, as well as on the
Weber number and Froude number. However, the dependency on We and F'r is weak if these

numbers are much larger than unity.

For most of the conducted numerical simulations, oscillations in the film thickness below
the cavity after impingement can be observed at time instants at which the minimum residual
film thickness is neared. These oscillations are the result of the combination of two phenomena
occurring simultaneously: the downward motion of the capillary waves and the contraction of
the cavity in radial direction. In most of the simulations these oscillations appear after the
residual film thickness has reached its minimum value, due to which a "plateau" in the evo-
lution of the residual film thickness is observed, out of which the absolute minimum residual
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film thickness can be determined easily. For some simulations, however, the oscillations in the
film thickness appear already before the minimum residual film thickness is reached, making it
difficult to assign an absolute minimum for the residual film thickness.

In order to obtain the residual film thickness from the simulations in case of residual film

oscillations, an algebraic model, based on a curve fitting tool, is used, which is described by
the following expression:

C1
h = —F=+c 4.24
res,appror (t* + 62)2 3 ( )
Here ¢1, ¢o and c3 are constants, which depend on the Reynolds number and on the initial
film thickness h*. Since the approximation and the film thickness obtained by the numerical

simulations converge asymptotically towards the residual film thickness, the absolute minimum
residual film thickness can be obtained by eq. (4.24) as h’

res,approz Cs3.
The optimum time range relevant for the approximation of the absolute minimum residual

film thickness is shown in Figure 4.27. The time range for the approximation starts at about
t* = 2, since this model cannot reproduce the drop impingement phase correctly, and finishes
at the time instant at which the capillary waves arrive at the center of the cavity leading to
the closure of the cavity.

2

Numerical simulation
Approximation eq. (4.24)

h*
v -

/
!f"
05 | \ /

Figure 4.27: Boundary conditions for the approximation model of the minimum residual film
thickness A’

TEs,approx

4.5.2 Comparison between the numerical and theoretical residual film
thickness

In §(4.5.1) a theoretical model has been derived for the minimum value of the residual film
thickness during single drop impingement onto a steady liquid surface film. The general ex-
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pression of this minimum residual film thickness is given by eq. (4.23), in which the value of
the residual film thickness is a function of the Reynolds number only. In this paragraph the
theoretical approximation will be compared with the numerical results, in order to validate the
analytical model. Due to the limited spatial resolution of the camera with which the shadow-
graph images were made (18.9 um/piz) and the presence of the cavity reflections on the bottom
of the plexiglass container, it is not possible to define the height of the minimum residual liquid
film experimentally. Therefore the numerical results will be used as a comparison with the
theoretical model.

Figure 4.28 shows the results of the numerical simulation of the single drop impingement
for isopropanol onto two different initial surface film thicknesses h* = 1.0 (left) and h* = 2.0
(right) at different time instants. For both impingements the Weber and Reynolds number are
kept the same. In these images blue corresponds to the gas phase (7 = 0) and red to the liquid
phase (y = 1).

Until a non-dimensional time ¢* = 2.0 no difference can be observed between the shapes of
the two cavities. For an initial film thickness of h* = 1.0 a thin liquid film is formed at the
bottom of the plexiglass for ¢* > 2, of which its thickness goes asymptotically to a value larger
than zero. At t* = 12 the capillary wave, traveling downwards along the surface of the cavity,
reaches the bottom of the liquid film and starts moving along the bottom of the liquid film
towards the center of the cavity. From this time instant on the cavity recedes until the capil-
lary wave has reached the center at t* = 18.5. The evolution of the cavity for the impingement
onto a liquid film of A* = 2.0, however, shows a completely different behaviour. The receding
phase, starting with the downward movement of the capillary wave, already begins during the
time the cavity is still expanding in depth, see Figure 4.28(f) and 4.28(h). The capillary wave
reaches the center of the cavity at the same time instant at which it also reaches the bottom
of the liquid film, at about t* = 18.5. For both impingements a central jet is seen to appear at
t* = 21, however, being much higher in the case of h* = 2.0.

Although the influence of the bottom of the liquid film on the drop impingement pro-
cess is only minor, the evolution of the cavity in time is completely different between both
liquid films. The time evolution of the thickness of the liquid film, as well as the asymptotic
minimum residual film thickness, can be approximated quite casily. Figure 4.29(a) and 4.29(b)
show the evolution of the thickness of the liquid film in time after impingement for A* = 1.0
and h* = 2.0 respectively.

Looking at the evolution of the residual film thickness for h* = 2.0 (Figure 4.29(b)) it is
seen that until t* = 17 the film thickness decreases steadily. For ¢* > 17 the residual liquid film
thickness increases again, leading to a very distinct minimum value of the residual liquid film
thickness, usually found for drop impingement onto deep pools.

The curve of time evolution of the film thickness for h* = 1.0 (Figure 4.29(a)) shows a steady
decreasing motion until about ¢* = 17. Between t* = 17 and t* = 19 an oscillation of the liquid
film thickness is observed, which is growing in amplitude with time. These oscillations are the
result of the combination of the downward motion of the capillary waves and the contraction
of the cavity in radial direction, as has been explained above.

In §(4.5.1) a theoretical model has been derived with which the evolution of the film thick-
ness in time during the expansion phase of the cavity can be approximated. With the use of
eq. (4.24) the evolution of the thin residual liquid film below the cavity can be extrapolated
at those time instants, at which the oscillations of the residual film thickness make it difficult
to determine the absolute minimum residual liquid film thickness or at which the cavity has
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(a) t* =0 (b) t* =0

(c) t* = 2.0 (d) #* = 2.0

() t* = 7.0 (f) #* =7.0

(g) t* = 12.0 (h) ¢* =12.0

(i) t* =185 () t* =185

(k) t* = 21.0 (1) t* =210

Figure 4.28: Numerical simulations of the single drop impingement onto a liquid layer of non-
dimensional thickness: (left) h* = 1.0, (right) h* = 2.0. The evolution of the cavity formed by
an isopropanol drop (left: We = 192, Fr = 131, Re = 1,201; right: We = 189, Fr = 127,
Re = 1,199) impingement at various non-dimensional time instants
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Figure 4.29: Evolution of the film thickness present below the cavity for h* = 1.0 and h* = 2.0.
Comparison of the numerical results for the impingement of an isopropanol drop (a): We = 192,
Fr =131, Re = 1,201; (b): We =189, Fr =127, Re = 1,199

already started its retraction phase before the capillary waves have reached the center of the
cavity. Since the approximation and the film thickness obtained by the numerical simulations
converge asymptotically towards the residual film thickness, the absolute minimum residual
film thickness can be obtained by Ay, ,prer = €3 in eq. (4.24).

A comparison between the evolution of the film thickness based on the numerical simu-
lations and those approximated by eq. (4.24) is shown in Figure 4.30 for several impingement
cases. The curves are for different liquids, different Weber numbers and different initial film
thicknesses, where it can be seen that the approximation for each of the simulated cases is
very good. This means that the asymptotically obtained approximated values for the minimum
residual liquid film thickness, obtained by hyeg spror = €3 in eq. (4.24), are reliable. With the
use of this approximation, the minimum residual liquid film thicknesses for all the simulated
single drop impingements are obtained and listed in Table 4.3.

Table 4.3: Overview of the non-dimensional minimum residual liquid film thickness

h*
Liquid Wemean Rémean 0.2 0.5 1.0 1.5 2.0
Glycerine/water 479 539  0.064 0.071 0.084 0.099 0.105
Isopropanol 192 1,204 0.043 0.046 0.052 0.066 0.184
Isopropanol 536 2,002  0.039 0.040 0.048 0.058 0.088

Distilled water 110 4,670  0.029 0.030 0.029 0.062 0.253
Distilled water 337 8,491 0.021 0.023 0.021 0.034 0.076

In §(4.5) an analytical approximation has been derived to predict the minimum residual lig-
uid film thickness, eq. (4.23), based on the remote asymptotic solution by Yarin and Weiss [196].
It has theoretically been shown that the residual film thickness correlates with Re=%/5. The
values of the minimum residual liquid film thickness, together with the analytical approxima-
tion are presented in the Figures 4.31(a) and 4.31(b). In the left figure the dependency of
the minimum residual liquid film thickness on the Reynolds number of the impinging drop is
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