8.4 Validation measurements
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Figure 8.23: In-plane mean velocity distributions at different heights between z = 1.05 mm and
2.10 mm inside the laminar flow

Table 8.4: Experimental and theoretical mean velocity values for the different investigated
layers inside the measurement volume

Physical Measured Theoretical Numerical Deviation
depth in mean velocity mean velocity mean velocity exp - theory
the film [mm] [mm /s] [mm/s] [mm/s] [%]
2.100 - 516.00 516.00 -
1.785 232.47 £ 9.11 438.50 438.65 47.0
1.355 232.39 £+ 9.13 333.00 332.90 30.2
1.195 275.57 £+ 2.12 294.00 293.60 6.3
1.100 204.88 + 1.94 270.50 270.27 24.3
0.995 170.16 + 2.32 244.50 244.49 30.4
0.805 136.25 £ 2.82 198.00 197.83 31.2
0.510 85.82 £ 3.08 125.50 125.36 31.6
0.175 39.14 + 1.82 43.00 43.02 9.0

0 - 0 0 -
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Figure 8.24: Comparison of measured in-plane mean velocity values with theoretical and nu-
merical velocity distributions at different heights between z = 0 mm and 2.10 mm inside the
laminar flow

at the two layers at mean depths of z = 0.175 mm and z = 1.195 mm.

The turbulence intensity fields for the different analyzed depths are shown in Figures 8.25
and 8.26 for, respectively, depths between z = 0 mm and 1.05 mm and between z = 1.05
mm and 2.10 mm. For most of the recorded flow field layers the turbulence intensity is below
20%, which is still quite high for a laminar flow, but can be explained by the rotating plex-
iglass disk, which rotated under a slight angle. This resulted in a vertical motion of 4+ 0.15
mm, which equals 14% of the total film depth. For both figures an area is found where high
turbulence intensity levels are measured. These high turbulence levels can only be explained
by large outliers in this area. The low laser intensity in the lower left corner of the recorded
tracer particle images results in a wrong combination of tracer particle pairs during the inverse
Fourier transformation, hence, in velocity outliers. To determine the mean velocity fields the
average correlation method, described by Meinhart et al. [96], is used with which these cal-
culated outliers are seen as noise and are therefore being canceled out. For the calculation of
the turbulence intensity, however, the instantaneous cross correlation fields are used, thereby
including the calculated outliers, which become visible by looking at the turbulence intensity
distributions.

8.5 Summary

In this chapter, a new volumetric measurement technique has been presented in detail. This
volumetric Particle Image Velocimetry technique is based on micro-PIV and makes use of a
single digital camera and two optical monochromatic aberrations, namely astigmatism and the
spherical lens aberration. In this way, the tracer particle positions in depth can be encoded
by using a combination of these two monochromatic aberrations. With the use of this tracer
particle depth-encoding the in-plane velocity fields at different layers in the investigated volume
can be determined simultaneously, as well as the three-dimensional velocity fields, by making
use of the particle-tracking method.
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Figure 8.25: In-plane turbulence intensity distributions at different heights between z = 0 mm
and 1.05 mm inside the laminar flow

The presentation of the measurement technique was split up into two main parts; the first
part focussed on the image data processing algorithm, used to determine the velocity fields at
different layers inside the investigated volume. The second part focussed on the mean velocity
distributions and velocity fluctuations at different layers inside a thin laminar flow, used as a
validation of the measurement technique.

The data processing algorithm consists of four main parts. The first part, the tracer particle
image reconstruction algorithm, is used to recognise the tracer particle images at each recording
and to determine their shapes and positions by making use of image intensity thresholds. After
for all recordings the shapes and two-dimensional position of all tracer particles are found, each
particle is assigned a three-dimensional position inside the investigated volume. This is done
by making use of the central moments ratio of the tracer intensity distribution of each particle
and comparing this value with the calibration curve. The tracer particle images are spread
over many pixels due to the astigmatic imaging, which makes them unsuited for analysing the
velocity. In order to decrease the size of a tracer particle image to an area of 9 x 9 pixels,
the spherical blending technique of Angarita-Jaimes et al 2] is applied. The last step in the
data processing algorithm focusses on obtaining the velocity fields at different slices inside the
volume by applying particle discrimination.
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Figure 8.26: In-plane turbulence intensity distributions at different heights between z = 1.05
mm and 2.10 mm inside the laminar flow

This means, that only the particles at a certain depth are used to calculate the velocity fields,
hereby discarding all other tracer particles.

To determine the mean velocity fields at a certain depth the average correlation method,
described by Meinhart et al. [96], is used. With the use of two synthetically generated flows,
i.e. a translational flow and a solid body rotational flow, this averaging method is validated. It
has been shown that the results, obtained by using this method, are very satisfactory, hence,
the average correlation method can be applied for analysing the measured flow fields.

To validate the volumetric measurement technique the three-dimensional flow field of a
laminar flow is recorded. The obtained velocity fields at eight successive horizontal layers
inside the recorded volume are compared with the theoretically calculated velocity values and
the numerically simulated ones. It is observed that, although the directions of the flow fields
at most investigated heights are correct and the values of the mean velocities are decreasing
for increasing depth, the measured mean velocity values deviate quite much from the theory.
This large difference is explained by the constant background intensity threshold over the whole
image used for the image pre-processing. Due to the uneven distribution of the background
noise over the recorded particle images, certain particles are given a higher central moments
ratio, a lower depth determination of these particles; hence, resulting in a lower local particle
displacement and flow velocity than the theoretical values.
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Chapter 9

Conclusions and outlooks

Splashing of drops on liquid layers and spray impingement occurs in many industrial applica-
tions involving multi-phase flow of liquid drops in a gas, such as inside internal combustion
engines with direct fuel injection and inside gas turbines, during spray drying, spray coating,
spray cooling, etc. Investigations of the drop impingement onto liquid films have also im-
portance in various agricultural and ecological fields, like the dispersion of anti-pesticides, the
watering of plants, thereby assuring an equal distribution of the water drops, and the dispersion
of seeds and microorganisms. It is encountered frequently in nature, leading to various phe-
nomena such as the electrification of waterfalls, thunderstorm electrification and the formation
of air bubbles during heavy rains, and can also be found in medical applications and forensic
investigations. In all of these areas the impingement process of sprays plays a highly significant
role. The impingement process itself, however, is until today not well understood and therefore
still a very hot topic in fundamental research.

The present work has dealt with the single drop impingement processes upon steady and
wavy liquid surface films of finite thickness, as well as the spray impingement onto rigid walls.
The global aim of the present study was to develop a mathematical model of the single drop
and spray impingement onto liquid films. To achieve this aim, the focus was put in particular
on the description of the hydrodynamics of the wall surface film produced by spray impinge-
ment onto the wall, on a broader understanding of the physics involved in modeling of spray
impingement processes and on the formulation of mathematical models based on experimental
data and numerical simulations of the single drop impingement.

Two separate approaches were applied to obtain the necessary experimental and numeri-
cal results. The first approach focussed on the single drop impingement process upon steady
and wavy liquid films of finite thickness, to understand in detail the physics behind the splash
mechanism, the corona formation, the evolution of the cavity below the liquid surface and the
typical time and length scales of the impingement process. With the use of these parameters
mathematical models of the impingement process could be developed and implemented into the
numerical codes for single drop and spray impingement. The second approach focussed on the
direct measurement of the velocity distributions inside the wall film, produced by the impinge-
ment of a spray onto this rigid wall. A new measurement technique was developed to obtain
the distributions of the mean and fluctuating film velocities under bad light conditions. By
measuring the wall film velocity distributions under realistic conditions, not only the unsteady
wall film flow, generated by the surrounding drop impingements, was taken into account, but
also the interactions of drops with other impinging drops, both in the spray and during the
interaction with the wall film.
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In this study it was proven that with both methods reliable results could be obtained,
which could be implemented into the already existing mathematical descriptions of the spray
impingement process. In the following sections the useful and interesting observations have
been summarised for both approaches.

Impingement of single drops onto steady liquid films of finite thickness

The analytical models, applied for the simulation of spray impingement processes, are mostly
based on the experimental results of single drop impingements onto steady liquid films. In the
best case, the experimental data of the inclined drop impingements are used. Sprays, how-
ever, are a collection of a large number of drops, where the outcome of each individual drop
impingement onto a liquid film is influenced by the unsteady wall film flow, as well as by the
interactions with other impinging drops, both in the spray and during the interaction with the
wall film, all of them having a significant effect on the spray impingement process.

In order to show that not only the waviness of the liquid film, but also the velocity and
amplitude of the surface film, has a significant influence on the spray impingement outcomes,
measurements of the impingements of single drops onto steady liquid surface films of finite thick-
ness and onto solitary surface waves were made. For the analysis of these results, emphasis was
placed on the evolution of the cavity, appearing below the liquid surface upon impingement,
in time, in particular on the time evolution of the depth of the cavity and the diameter of the
cavity, measured at half its maximum depth.

For the initial phase of the impingement process onto steady liquid films a good corre-
lation could be seen between the experimental data of the depth evolution of the cavity in time
and the analytical approximation (y,, ~ t*2/°). For the same non-dimensional time instants it
was observed that the time evolution of the diameter correlated well with the remote asymp-
totic solution, derived by Yarin and Weiss [196] for single drop impingements onto deep pools
(Dz? ~ t*). For larger non-dimensional times a deviation was found between the experiments
and the theory for both length scales. For the depth evolution, this deviation resulted from
the vicinity of the cavity tip to the bottom of the film, and increased faster for lower values of
the initial surface film thickness. The deviation between the experiments and theory for the
time evolution of the diameter was caused by the fact that the theoretical description did not
account for the influence of the surface tension, gravity and the interaction of the expanding
cavity with the bottom of the liquid film.

Concerning the overall impingement process it was found that the velocity with which
the cavity penetrated into the liquid film was constant, U}, = 0.5, and independent of the
initial film thickness, Weber number of the impinging drop and liquid properties. The time
at which the cavity reached its maximum depth depended on the initial liquid film thickness,
being larger for larger initial film thicknesses, although this behaviour was not linear, due to the
larger expanded cavity and subsequent higher surface tension forces for thicker surface films.
The time at which the cavity started its retraction phase was independent of the surface film
thickness, but correlated linearly with the Weber number of the impinging drop and the sur-
face tension of the liquid. A higher Weber number led to a later retraction of the cavity, since
surface tension forces could be overcome for a longer time by inertia. The same behaviour was
found for a lower value of the surface tension, where the surface tension forces, responsible for
the retraction of the cavity, were lower.

The impingement upon a thicker surface film resulted in a lower expansion of the cavity,
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due to the larger surface tension forces and the effect of gravity that had to be overcome. The
same effect was seen for lower Weber numbers of the impinging drops, hence less available
inertia to overcome the surface tension forces, and for liquids with higher surface tensions, due
to which the surface tension forces, opposing the expansion of the cavity, were higher. The
non-dimensional time instant at which the maximum diameter of the cavity was reached, was
independent of the initial thickness of the liquid surface film, but depended linearly on the
Weber number of the impinging drop and on the surface tension of the liquid. For a higher
value of the Weber number and for a lower value of the surface tension, the maximum diameter
was reached later, since inertia could overcome the surface tension forces easier and for a longer
time. The corresponding value of the maximum diameter of the cavity was subsequently larger
for higher Weber numbers and lower values of the surface tension. The decrease of the cav-
ity diameter during the receding phase of the impingement process was not influenced by the
thickness of the initial surface film. A lower value of the surface tension of the liquid, however,
led to a longer period during which the receding took place, whereas a lower Weber number
resulted in a faster receding and retraction of the cavity. The analytical models, based on
the propagation of a kinematic discontinuity (Yarin and Weiss [196]) and describing the time
evolution of the cavity diameter, the maximum cavity diameter and the time this maximum
cavity diameter was reached, predicted the experimental data very accurately.

With the use of the results of the numerical simulations the time evolution of the residual
film thickness was analysed. The minimum residual film thickness was found to relate directly
to the Reynolds number of the impinging drop and could be described by h*,, ~ Re~%5. For
very high Reynolds numbers the asymptotic value of the minimum residual film thickness in-

creased for increasing thickness of the initial surface film.

Concerning the numerical simulations it has been shown that the differences between the
axi-symmetrical simulations and the fully three-dimensional simulations were only minor and
focussed mainly on the receding phase of the cavity. Due to the three-dimensional simulation of
the impingement process, the flow of the rim was solved in a three-dimensional way, resulting in
a lower curvature of the capillary wave during the receding phase. This led to a lower pressure
difference between the leading and the trailing edge of the capillary wave and thus a lower
vertical wave velocity. The subsequent receding of the cavity took longer and the retraction of
the cavity was later, which led to a better correlation between the experimental data and the
numerical simulations.

Single drop impingement onto wavy liquid films

The analytical models, based on the experimental data obtained for single drop impinge-
ments upon steady liquid surface films, are commonly used for the modeling of spray impinge-
ment processes, by applying the superposition principle. This means that the impingement of
each drop inside the spray is modeled individually, by assuming that no other drops are present
within a certain boundary around the impingement area, hence the impingement of each single
drop of the spray is not influenced by other surrounding drop impingements. Sprays, how-
ever, are a collection of a large number of drops, where the outcome of each individual drop
impingement onto a liquid film is influenced by the unsteady wall film flow, generated by the
surrounding impingements, as well as by the interactions with other impinging drops, both in
the spray and during the interaction with the wall film. All of these factors have a signifi-
cant effect on the spray impingement process, thereby drastically changing the mathematical
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description of the spray impingement. In this work it has been shown that the impingement
process is highly influenced by the topology of the liquid surface film. The impingement upon
two different classes of surface waves, the standing waves and the solitary surface waves, have
been investigated. For the first class of waves the influence of the inclination of the surface on
the impingement outcomes was studied, whereas for the solitary surface waves also the velocity
distribution inside the liquid film was taken into account, which is a significant parameter for
spray impingement.

For the impingement process upon standing waves, it was found that the penetration of
the cavity in depth direction was independent of the inclination angle of the liquid surface and
the Weber number, whereas a clear influence of the inclination was observed for the radial
expansion. Because of the declining surface film and the constant penetration of the cavity
in depth, a larger surface of the cavity was present at the left side of the cavity, resulting in
larger values of the surface tension forces and therefore a faster conversion of the kinetic en-
ergy. Although the time evolution of the total diameter of the cavity was not influenced by the
inclination angle, the inclination of the standing wave led to lower values of the cavity diameter
at the left side of the cavity. This difference between the diameters of the cavity at both sides
increased more for lower Weber numbers.

Due to the lower rim at the left side of the cavity and the subsequent earlier merging of
the rim with the liquid surface, the capillary wave was formed earlier at this side, thereby in-
troducing several clear differences between the cavities formed after impingement upon steady
liquid films and standing waves: a lower value of the maximum diameter of the cavity, an
asymmetrical downward motion of the capillary waves and receding of the cavity, leading to
large differences between the values of the local diameters at both sides of the cavity, an asym-
metrical merging of the capillary waves and an off-axis Worthington jet of which its inclination
and curvature increased with increasing Weber number.

The propagation of the liquid surface film, as was the case for the solitary surface wave, had
a distinct influence on the outcome of the impingement process and on the time evolution of the
cavity shape. The solitary wave induced a relative velocity component onto impingement, due
to which the shape and inclination of the corona were changed. Additionally, as a result of the
decreasing horizontal velocity component inside the liquid film with increasing depth, the cavity
inclined in the direction of the wave propagation, resulting in an asymmetrical expansion of the
cavity during the first stages after impingement. The presence or absence of the capillary waves
at the left and/or right side of the cavity, in combination with the unequal distribution of the
surface tension forces over the cavity surface induced an asymmetrical receding and retraction
of the cavity, as well as an inclined Worthington jet.

By varying the phase of the solitary surface wave at impingement between 0° < p < 180°, a
clear difference in the prompt splash mechanism and the formation of the corona was present.
Depending on the wave-phase strong interactions of the expanding corona with the leading or
trailing edge of the solitary wave were the result. For relatively low phase angles large cavities
with a sharp inclination in the direction of the wave propagation were formed, whereas for rel-
atively high phases the expansion phase of the cavity was influenced only in a minor way. The
formation, strength and movement of the capillary waves changed magnificently for different
phases. For small phases a single strong capillary wave was formed at the left side of the cavity,
for intermediate phases at the right side and for large phases at both sides of the cavity, but
lagged in time between the left and right side of the cavity. These differences led to completely
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different recedings and retractions of the cavities and subsequent different Worthington jets.

Concerning the typical length and time scales of the drop impingement process, it was
found that for the small amplified surface wave the maximum depths and absolute diameters
of the cavities, as well as the non-dimensional time instants at which these length scales were
reached, were constant and independent of the phases of the wave at impingement and the
liquid properties. For the values of the maximum absolute diameter, a weak dependency on
the viscosity of the liquids was found, where it was observed that a higher viscosity resulted
in a slightly higher value of the absolute maximum depth. For the large amplified wave the
values of the maximum depths and absolute diameters of the cavities showed no dependency
on the phases of the wave at impingement and the liquid properties, whereas for the values of
the non-dimensional time instants a linear increase with increasing wave-phases was observed.
The dependency of the values of the maximum absolute diameter on the viscosity of the liquids,
found for the impingement upon small solitary waves, had disappeared for the large amplified
wave.

A higher Weber number of the impinging drop led to a pronounced prompt splash, a higher,
larger and unstable corona and a cavity with a larger maximum diameter and depth. An inclina-
tion of the cavity was observed for all Weber numbers, where the angle of inclination increased
sharply for larger Weber numbers. For lower Weber numbers an earlier receding and retraction
occurred; the receding itself, however, was for all Weber numbers highly asymmetrical, due to
the presence of a strong capillary wave at the right side and the absence or presence of a weak
capillary wave at the left side of the cavity.

For the small amplified wave both typical length scales showed a linear increasing behaviour
with the mean Weber number. The time at which the maximum depth was reached increased
quadratically with an increase of the mean Weber number, whereas an increasing linear be-
haviour was found between the mean Weber number and the time of maximum absolute diam-
eter. For these typical length and time scales it was found that for the same Weber number the
values were larger for the liquid with the higher viscosity, due to the lower maximum amplitude
and velocity of the surface wave. For the large amplified wave larger values of the maximum
depths, but approximately constant values of the maximum absolute diameter, were found.
The time at which the maximum depth was reached, increased quadratically with an increase
of the mean Weber number, whereas a linear behaviour was found between the mean Weber
number and the time of maximum absolute diameter. The values of both length and time scales
did not depend on the liquid properties, meaning that for large amplified waves, hence with a
large propagation velocity and maximum amplitude, the viscosity did not play a role anymore
in the impingement process.

A comparison of the results between both solitary surface waves led to the conclusion that
due to the higher propagation velocity and higher amplitude of the larger surface wave a very
significant difference between the relative diameters of both sides of the cavity occurred, to-
gether with a stronger interaction of the expanding rim with the leading or trailing edge of the
surface wave. This led to a cavity, having a smaller maximum depth and absolute diameter,
although the typical time scales remained approximately the same.

Direct measurement of film velocity at spray impingement

Sprays are a collection of a large number of drops, where the outcome of each individual
drop impingement onto a liquid film is influenced by the unsteady wall film flow and by the
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interactions with other impinging drops. In order to mathematically describe the spray im-
pingement process, it is necessary to be able to predict the three-dimensional distributions of
the velocity inside the liquid wall film. Because of the highly fluctuating character of this wall
film and the presence of many small and large droplets close to this film, most of the stan-
dard measurement techniques are not adequate enough. To overcome these problems, a new
volumetric measurement technique has been presented in this thesis. This volumetric Particle
Image Velocimetry technique is based on micro-PIV and makes use of a single digital camera
and two optical monochromatic aberrations, namely astigmatism and the spherical lens aberra-
tion. In this way, the tracer particle positions in depth can be encoded by using a combination
of these two monochromatic aberrations. With the use of this tracer particle depth-encoding
the in-plane velocity fields at different layers in the investigated volume can be determined
simultaneously, as well as the three-dimensional velocity fields, by making use of the particle-
tracking method.

The validation of this measurement technique, with the use of a laminar flow, showed that,
although the directions of the flow fields at most investigated heights were correct and the
values of the mean velocities were decreasing for increasing depth, the measured mean velocity
values deviated quite much from the theory. This large difference was the result of the constant
background intensity threshold setting over the whole image, which was, however, incorrect
due to the uneven distribution of the background noise over the recorded particle images. This
resulted in certain particles that were given a higher central moments ratio, resulting in a lower
depth determination of these particles and therefore a lower local particle displacement and
flow velocity than the theoretical values.

With the use of this measurement technique the radial mean velocities of the wall film
and their fluctuations have been investigated under the variation of different impinging param-
eters of the sprays, produced by ultrasonic nozzles. It was found that the swirling motion of the
spray came clearly forward in the large vortices present in the surface films at both investigated
impingement heights for both nozzles. The centers of these large vortices corresponded to the
centers of the impinging sprays. The carrier gas changed the swirl direction of the spray in such
a way that sprays, obtained for both nozzles using the carrier gas, as well as the correspond-
ing vortices inside the surface films were rotating in clockwise direction for both impingement
heights, whereas the surface film vortices for impinging sprays without carrier gas were rotating
in an anticlockwise sense.

For increasing impingement heights a clear decrease of the mean radial film velocities was
found, as a result of the decrease of the mean vertical velocity of the sprays and the subsequent
decrease of the kinetic energy. This resulted in a decrease of the radial film velocities induced
by the cavities, appearing in the surface film at drop impingement.

For larger volume flows the areas with relatively high mean radial film velocities, as well as
the values of the maximum absolute radial film velocities, were increasing, because an increase
in volume flow was directly linked to an increase in the kinetic energy of the drops of the spray.
However, no clear dependency of an increase in volume flow on the surface film mean radial
velocity directions was found, nor a dependency of the impingement height on the directions of
the streamlines or on the size and strength of the surface film vortices.

At radial positions of the surface film, where relatively high mean radial film velocities were
observed, low values of the velocity fluctuations were found. Regions in the surface film, where
the flow was mainly in one of both directions, the velocity fluctuations in this particular direc-
tion were higher, whereas at the positions of saddle points and vortex cores the fluctuations in
both directions were strong.
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Suggestions for future research on single drop and spray impingement

Attention should be paid for further improvement of the experimental and numerical library
of the single drop and spray impingement outcomes, as well as in the modeling of single drop
impingements onto traveling surface waves and the velocity distributions inside the wall film
during spray impingement.

Before we proceed with the recommendations for future work, the important role of the
measurements of single drops impingements onto traveling surface waves in spray modeling
and validation has to be emphasised. Sprays are a collection of a large number of drops, where
the outcome of each individual drop impingement onto a liquid film is influenced by the un-
steady wall film flow, generated by the surrounding impingements, as well as by the interactions
with other impinging drops, both in the spray and during the interaction with the wall film. All
of these factors have a significant effect on the spray impingement process, thereby drastically
changing the mathematical description of the spray impingement. However, before one can
model spray impingement in detail, the physics behind the impingement of single drops onto
wavy liquid films has to understood. In this thesis it has been shown that the waviness, hence
inclination, of the surface film, as well as the velocity and amplitude of the surface waves, have
a highly significant influence on the single drop impingement results, in particular on the splash
mechanism, the corona formation, the evolution of the cavity below the liquid surface and the
typical time and length scales of the impingement process. This means that the existing the-
oretical models, used for the modeling of spray impingement, should definitely be changed by
taking into account the significant influences of the film topology on the impingement processes.

The topology of the liquid film, used for the numerical simulations of the impingements
of single drops onto a wavy liquid surface, has been set to the standing wave without contin-
uous added energy. This means that at the start of the simulation a surface wave is initiated,
which levels off in time due to the influence of surface tension and gravity into a steady liquid
film of thickness h. The use of this special standing wave can be justified by the fact that this
leveling process takes much longer than the drop impingement process itself, due to which the
wavy liquid surface still influences the cavity below the liquid surface at the end of the im-
pingement process. Physically, however, two important factors have to be taken into account.
First of all, the waves present at the surface of the wall film for spray impingement, are no
standing waves, but traveling waves. This means that also the distribution of the film velocity
plays a significant role in the impingement process, as has been shown in this thesis with the
use of experimental data. Second, the continuous impingement of drops of the spray assure
a continuous local supply of kinetic energy to the liquid film, due to which no leveling of the
surface film will take place during the impingement process. These two factors should be taken
into account for future simulations, because the experimental data can then be used as a direct
validation of the obtained numerical results.

The presented experimental results of the single drop impingement process upon solitary
surface waves have focussed onto the differences between two liquids, namely distilled water
and a glycerine/water mixture with 30 Vol% glycerine. The influence of the viscosity on the
cavity evolution in time could therefore be shown for the small amplified waves, whereas for
the large amplified waves it was shown that the viscosity of the liquid does not play a role
anymore. The dependency of the typical length and time scales on the Weber number could
only be proven by the difference in terminal velocity of the impinging drop, because the surface
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tension of both liquids was in the same order of magnitude. It is therefore necessary to conduct
more impingement measurements with liquids having various surface tensions, to obtain a clear
relation between the time and length scales and the Weber number.

To simulate the topology of the wall surface film during spray impingement, a solitary
surface wave with various amplifications has been generated into a deep pool. The question,
however, rises to what extent these film topologies coincide. Further experimental research has
to be conducted, where also the single drop impingement onto continuously traveling surface
waves has to be taken into account. In this way, the fluctuations in the propagation direction of
the wave on the impingement process can be studied in more detail. Impinging sprays usually
generate a surface film with a thickness that is in the same order of magnitude as the drop
diameter. To investigate the influence of the bottom of the liquid film on the cavity evolution
in time for the impingement onto a wavy liquid film, the thickness of the surface film has to be
varied.

The velocity fluctuations inside the wall film for spray impingement are highly three-
dimensional. In order to obtain a qualitatively high reliable model for the wall film hydro-
dynamics, it is necessary to measure simultaneously these three-dimensional velocity distribu-
tions inside the liquid film. Furthermore, to link these three-dimensional velocity distributions
to the velocity and diameter distributions of the spray before impingement, three-dimensional
phase-Doppler measurements need to be done.

The validation measurements of the presented measurement technique show a relatively
large deviation of the measured mean velocity values from the theory. This large difference is
the result of the constant background intensity threshold over the whole image. Due to the
uneven distribution of the background noise over the recorded particle images, certain par-
ticles are given a higher central moments ratio, resulting in a lower depth determination of
these particles; hence, resulting in a lower local particle displacement and flow velocity than
the theoretical values. This problem can be overcome by assigning to each tracer particle in
the recordings its own local background threshold by optimizing its background intensity level,
which still has to be implemented into the image processing code.
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Appendix A

Comparison of the experimental data
with the analytical model of the cavity
diameter at the initial impingement stage

This appendix shows the comparison between the experimentally obtained results of the cavity
diameter squared, measured at y.,,/h* = 0.5, and the analytical solution given by eq. (4.3) at
the initial stage of the cavity expansion.
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Figure A.1: Comparison of the experimental results with the analytical solution (eq. (4.3)) of
the diameters of the cavity for isopropanol at the initial stage of the cavity expansion. The
square of the diameter D?, is shown as a function of the non-dimensional time ¢* for (a)

h* = 0.5, (b) h* = 1.0, (¢) h* = 1.5 and (d) h* = 2.0. The impingement parameters for the
experimental data are listed in Table 4.2
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Appendix A: Comparison of the experimental data with the analytical model of the cavity diameter
at the initial impingement stage
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Figure A.2: Comparison of the experimental results with the analytical solution (eq. (4.3))
of the diameters of the cavity for distilled water at the initial stage of the cavity expansion.
The square of the diameter D7, is shown as a function of the non-dimensional time ¢* for (a)
h* = 0.5, (b) h* = 1.0, (¢) h* = 1.5 and (d) h* = 2.0. The impingement parameters for the
experimental data are listed in Table 4.2
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Figure A.3: Comparison of the experimental results with the analytical solution (eq. (4.3))
of the diameters of the cavity for glycerine/water at the initial stage of the cavity expansion.
The square of the diameter D7, is shown as a function of the non-dimensional time ¢* for (a)
h* = 0.5, (b) h* = 1.0, (¢) h* = 1.5 and (d) h* = 2.0. The impingement parameters for the
experimental data are listed in Table 4.2
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