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Abstract

The single drop impingement processes upon steady and wavy liquid surface films of finite
thickness and the spray impingement process onto rigid walls was studied both experimentally,
as well as computationally and analytically. The global aim of the present study was to develop
a mathematical model of the single drop and spray impingement process onto liquid wall films.
To achieve this aim, the focus was put in particular on the description of the hydrodynamics of
the wall surface film produced by spray impingement onto the wall, on a broader understanding
of the physics involved in modeling of spray impingement processes and on the formulation of
mathematical models based on experimental data and numerical simulations of the single drop
impingement.

Two separate approaches were applied to obtain the necessary experimental and numerical
results. The first approach focussed on the single drop impingement process upon steady and
wavy liquid films of finite thickness, to understand in detail the physics behind the splash
mechanism, the corona formation, the evolution of the cavity below the liquid surface and the
typical time and length scales of the impingement process. For the impingement onto steady
liquid films the influence of the thickness of the liquid wall film (0.5 < h/D,; < 2.5), the Weber
number of the impinging drop (130 < We < 600) and the liquid properties (surface tension
and viscosity) were studied, whereas besides these parameters also the phase of the wave at
impingement (0° < ¢ < 180°) and the amplification of the wave (velocity and amplitude) were
analysed for the impingement onto wavy liquid surface films. With the use of these parameters
mathematical models of the impingement processes could be developed and implemented into
the numerical codes for single drop and spray impingement.

The second approach was the direct measurement of the velocity distributions inside the wall
film, produced by the impingement of an ultrasonic spray onto this rigid wall. The investigated
variables on the velocity distributions were the impingement height of the spray, the volume
flow of the spray within the range of 50 mL/min < V' < 400 mL /min and the use of the carrier
gas. A new measurement technique was developed to obtain the distributions of the mean
and fluctuating three-dimensional film velocities under bad light conditions. By measuring
the wall film velocity distributions under realistic conditions, not only the unsteady wall film
flow, generated by the surrounding drop impingements, was taken into account, but also the
interactions of drops with other impinging drops, both in the spray and during the interaction
with the wall film.

It was observed that for the single drop impingement onto steady wall films the penetration
velocity of the cavity was constant and independent of all the investigated parameters, resulting
in a direct relation between the time at which the cavity reached the bottom of the liquid
film and the film thickness. A thicker film and/or a lower Weber number led to a lower radial
expansion of the cavity, due to the larger surface tension forces acting on the cavity, resulting in a
lower maximum diameter of the cavity. The time at which this maximum diameter was reached,
was independent of the film thickness, but increased for higher Weber numbers. A faster
receding and retraction of the cavity was observed for lower Weber numbers, but the time instant
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of retraction was independent of the film thickness. The minimum residual film thickness was
found to relate directly to the Reynolds number of the impinging drop (h}., ~ Re™% ®), where
it was observed that for very high Reynolds numbers the asymptotic value of the minimum
residual film thickness increased for increasing thickness of the initial surface film. Concerning
the numerical simulations, it was observed that the differences between the axi-symmetrical and
the fully three-dimensional simulations were only minor; a clear difference, however, was found
for the description of the receding phase of the cavity. For this part of the impingement process,
the fully three-dimensional simulations led to a better correlation between the experimental data
and the numerical simulations.

The study of the impingement of single drops onto solitary surface waves led to several
important outcomes for spray impingement. It was found that the inclination and propagation
of the surface film had a significant effect on the impingement outcomes, in particular on the
time evolution of the shape of the cavity. The solitary surface wave introduced a relative
velocity component upon impingement, which, together with the velocity distribution inside
the liquid film, resulted in a clear increasing inclination of the cavity with time. Depending on
the phase of the wave at impingement, a weak or strong interaction of one side of the expanding
rim with the wave surface was observed, leading to an asymmetrical expansion of the cavity.
The formation, strength and motion of the capillary waves changed magnificently for different
phases of the wave, where the presence or absence of the capillary waves at the left and/or
right side of the cavity, in combination with the unequal distribution of the surface tension
forces over the cavity surface, induced an asymmetrical receding and retraction of the cavity, as
well as an inclined Worthington jet. For higher Weber numbers a wider and deeper cavity was
observed, together with a sharp increase of the inclination of the cavity. The values and the
time instants of the maximum depth and diameter of the cavity were found to be independent
of the phase of the wave; the former one, however, increased quadratically and the latter one
linearly with higher Weber numbers. For large amplified waves, no correlation of the time and
length scales with the Reynolds number was found.

To study the velocity distributions inside the liquid wall film at spray impingement, a
new volumetric Particle Image Velocimetry technique was developed, based on micro-PIV and
making use of a single digital camera, astigmatism and the spherical lens aberration. With
this technique the tracer particle positions in depth could be encoded, after which the in-
plane velocity fields at different layers, as well as the three-dimensional velocity fields in the
investigated volume could be determined. With the use of this measurement technique it was
found that the swirling motion of the spray was transferred directly to the liquid film in the
form of large vortices inside the liquid film. The presence or absence of the carrier gas of the
spray had a direct influence on the swirling direction and thus on the rotation direction of
the vortices. An increase of the impingement height led to a decrease of the mean radial film
velocities, as a result of the lower mean vertical velocities of the spray due to air resistance. An
increase in the areas with relatively high mean radial film velocities, as well as an increase in
the values of the maximum absolute film velocities, was found for larger volume flows. Strong
film velocity fluctuations were found at the positions of saddle points and vortex cores.
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Zusammenfassung

Der Aufprall von Einzeltropfen auf diinne Fliissigkeitsfilme mit ruhender und welliger Ober-
fliche und der Sprayaufprall auf feste Winde sind sowohl experimentell, als auch numerisch
und analytisch untersucht worden. Das Hauptziel der vorliegenden Arbeit war die Entwicklung
eines mathematischen Modells des Einzeltropfen- und Sprayaufpralls auf Fliissigkeitsfilme. Um
dieses Ziel zu erreichen wurde der Schwerpunkt insbesondere auf die Beschreibung der Hy-
drodynamik von Oberflichenfilmen gelegt, die beim Sprayaufprall auf die Wand entstehen.
Die Hauptthemen waren ein breiteres Verstédndnis der Physik, die in der Modellierung der
Sprayaufprallprozesse involviert ist, und die Formulierung mathematischer Modelle, welche auf
den experimentellen Daten und numerischen Simulationen des Einzeltropfenaufpralls basieren.

Zwei separate Vorgehensweisen wurden fiir die Erzeugung der benétigten experimentellen
und numerischen Resultate verfolgt. Die erste Vorgehensweise konzentrierte sich auf den Auf-
prall von Einzeltropfen auf ruhige und wellige Fliissigkeitsfilme. Hiermit konnte ein detail-
liertes Verstdndnis der Physik des Splashmechanismus, der Entstehung der Krone, der Evo-
lution des Kraters unter der Filmoberfliche und der typischen Zeit- und Léngemafistabe des
Aufprallprozesses erzielt werden. Fiir den Aufprall auf ruhende Fliissigkeitsfilme wurden der
Einfluss der Wandfilmtiefe (0.5 < h/Dy < 2.5), die Weberzahl der aufprallenden Tropfen
(130 < We < 600) und die Fliissigkeitseigenschaften (Oberflichenspannung und Viskositét)
untersucht. Neben diesen Grofen wurden fiir den Aufprall auf wellige Fliissigkeitsoberfléchen
auch die Phase der Welle beim Aufprall (0° < ¢ < 180°) und die Verstarkung der Welle
(Geschwindigkeit und Amplitude) analysiert. Mit Hilfe dieser Grofen konnten mathematische
Modelle des Aufprallprozesses erstellt und in den numerischen Code fiir Einzeltropfen- und
Sprayaufprall implementiert werden.

Die zweite Vorgehensweise basierte auf der direkten Messung der Geschwindigkeitsverteilun-
gen in den Wandfilmen, welche sich beim Aufprall eines Ultraschallsprays auf eine feste Ober-
flache einstellten. Die untersuchten Variablen, welche einen Einfluss auf die Geschwindigkeits-
verteilung haben, waren die Aufprallhdhe des Sprays, der Volumenstrom des Sprays in einem
Bereich von 50 mL/min < V < 400 mL /min und die Verwendung des Trigergases. Eine neue
Messtechnik wurde entwickelt, um die Verteilung der mittleren Filmgeschwindigkeiten und
die Geschwindigkeitsschwankungen unter schwierigen Beleuchtungskonditionen zu bestimmen.
Durch die Messung der Geschwindigkeitsverteilung im Wandfilm unter realen Bedingungen
wurden zwei wichtige Parameter beriicksichtigt. Dies ist zum einen die instationdre Wandfilm-
stromung, die durch den Tropfenaufprall in der Umgebung des Messpunktes resultiert, zum
anderen die Interaktionen der Tropfen mit anderen aufprallenden Tropfen, sowohl im Spray als
auch wiahrend der Interaktion mit dem Wandfilm.

Es wurde festgestellt, dass beim Einzeltropfenaufprall auf ruhende Wandfilme die Ein-
dringgeschwindigkeit des Kraters konstant und unabhéngig von allen untersuchten Parametern
war. Dieses resultierte in einem direkten Zusammenhang zwischen dem Zeitpunkt, an dem
der Krater den Boden des Fliissigkeitsfilms erreichte und der Tiefe des Films. Ein tieferer
Film und/oder eine niedrigere Weberzahl entsprach aufgrund des groferen Einflusses der Ober-
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flichenspannung auf den Krater einer niedrigeren Ausbreitung des Kraters und deswegen einem
niedrigeren Wert des maximalen Kraterdurchmessers. Der Zeitpunkt, an welchem der maximale
Kraterdurchmesser erreicht wurde, war unabhéngig von der Filmtiefe, aber vergrofierte sich bei
hohere Weberzahlen. Eine niedrigere Weberzahl resultierte in einem schnelleren Zuriickgehen
und Zuriickziehen des Kraters; der Zeitpunkt des Zuriickziehens des Kraters war jedoch un-
abhingig von der Filmtiefe. Es bestand ein direkter Zusammenhang zwischen der minimalen
Filmtiefe und der Reynoldszahl des Aufpralltropfens, h’, . ~ Re~2/5. Hierbei wurde festgestellt,
dass bei sehr hohen Reynoldszahlen der asymptotische Wert der minimalen residualen Filmtiefe
sich bei grofseren Tiefen des initialen Films erhohte. In Bezug auf die numerischen Simulationen
wurde festgestellt, dass die Unterschiede zwischen den rotationssymmetrischen und dreidimen-
sionalen Simulationen geringfiigig waren, lediglich bei der Zuriickbildung des Kraters wurde
eine deutliche Abweichung zwischen den beiden Simulationen beobachtet. Fiir diesen Teil des
Aufprallprozesses zeigte die dreidimensionale Simulation eine bessere Korrelation mit den ex-
perimentellen Daten.

Die Untersuchung des Einzeltropfenaufpralls auf einzelne Oberflichenwellen lieferten einige
wichtige Ergebnisse fiir den Sprayaufprall. So wurde gezeigt, dass die Neigung und Fortpflanzung
des Oberfliachenfilms eine erhebliche Auswirkung auf den Aufprallprozess hatten, insbesondere
auf die zeitliche Entwicklung der Kraterform. Die einzelne Oberflichenwelle bringt eine relative
Geschwindigkeitskomponente nach dem Aufprall ein, welche zusammen mit der Geschwindig-
keitsverteilung im Film in eine zeitlich erhohte Neigung des Kraters resultierte. Abhéngig von
der Phase der Welle beim Aufprall wurde eine schwache oder starke Interaktion einer Seite
des sich ausbreitenden Kraters mit der Wellenoberfliche festgestellt, was eine asymmetrische
Kraterausbreitung zur Folge hatte. Die Entstehung, Stérke und Bewegung der Kapillarwellen
dnderte sich deutlich mit der Anderung der Phase der Welle. Es wurde gezeigt, dass die An-
oder Abwesenheit der Kapillarwellen an der linken und/oder rechten Seite des Kraters, in Kom-
bination mit der ungleichméfigen Verteilung der Oberflichenkrifte, sowohl ein asymmetrisches
Zuriickgehen und Zuriickziehen des Kraters erzeugte, als auch einen geneigten Worthingtonjet.
Eine hohere Weberzahl hatte einen breiteren und tieferen Krater und eine stark erhohte Nei-
gung des Kraters zur Folge. Die Werte und die Zeitpunkte des maximalen Durchmessers und
der maximalen Tiefe des Kraters waren unabhéngig von der Phase der Welle; die Erstgenan-
nten stiegen quadratisch fiir hohere Weberzahlen an, die Zweitgenannten linear. Fiir stérkere
Wellen wurde keine Korrelation zwischen den Zeit- und Léangemafstaben auf einer Seite und
den Reynoldszahlen auf der anderen Seite gefunden.

Fiir die Untersuchung der Geschwindigkeitsverteilungen in dem Oberflachenfilm beim Spray-
aufprall wurde eine neue, auf Mikro-Partikel-Image-Velocimetry basierte, volumetrische PIV-
Technik entwickelt. Mit Hilfe dieser Technik konnte die Position der Tracerpartikel kodiert
werden, woraus sich danach die Geschwindigkeitsfelder auf verschiedenen Ebenen, als auch die
dreidimensionalen Geschwindigkeitsfelder berechnen lieffen. Unter Anwendung dieser Messtech-
nik wurde festgestellt, dass die rotierende Bewegung des Sprays direkt an den Fliissigkeitsfilm
iibertragen wurde in Form von grofsen Wirbeln im Oberfléchenfilm. Die An- oder Abwesenheit
von Druckluft in der Diise hatte einen direkten Einfluss auf die Rotationsrichtung des Sprays
und dadurch auch auf die Rotationsrichtung der Obeflichenwirbeln. Ein Anstieg der Aufprall-
hohe fiihrte zu einer Abnahme der mittleren radialen Filmgeschwindigkeiten. Dies ist in den
niedrigen mittleren vertikalen Geschwindigkeiten des Sprays aufgrund des Luftwiderstandes
begriindet. Sowohl ein Anstieg der Fléchen mit relativ hohen mittleren radialen Filmgeschwin-
digkeiten, als auch eine Erhchung der maximalen absoluten Filmgeschwindigkeiten, wurde fiir
hohere Volumenstréme festgestellt. Starke Schwankungen in den Filmgeschwindigkeiten wur-
den an den Positionen der Sattelpunkte und der Wirbelzentren gefunden.
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ity of sound.
Oh Ohnesorge number, ratio of viscous to surface
tension forces.
Re Reynolds number, ratio of inertial to viscous
forces.
We Weber number, ratio of kinetic energy to surface
tension forces.
Abbreviations
ccD Charge Coupled Device
DDPIV Defocusing Digital Particle Image Velocimetry
FOV Field Of View
rvmMm Finite Volume Method
HTA Hot Wire Anemometry
LDA Laser Doppler Anemometry
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PISO
PIV

PMMA
PTV
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TOMO
VOF

WIDIM

Open Field Operation and Manipulation
Phase-Doppler Anemometry
Pressure-Implicit with Splitting of Operators
Particle Image Velocimetry
Polymethylmethacrylat

Particle Tracking Velocimetry

Sauter Mean Diameter

Tomography

Volume-of-Fluid

Window Deformation and Iterative Multigrid
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Chapter 1

Introduction

1.1 Overview

Splashing of drops on liquid layers and spray impingement occurs in many industrial applica-
tions involving multi-phase flow of liquid drops in a gas, such as inside internal combustion
engines with direct fuel injection, where the fuel is sprayed into the engine cylinders in the
form of small drops that splash on the inner sides of the engine walls, inside gas turbines,
during spray drying, spray coating (including thermal plasma spraying, spray painting), spray
cooling, etc. Investigations of the drop impingement onto liquid films have also importance
in various agricultural and ecological fields, like the dispersion of anti-pesticides, the watering
of the plants, thereby assuring an equal distribution of the water drops, and the dispersion of
seeds and microorganisms. It is encountered frequently in nature, leading to various phenom-
ena such as the electrification of waterfalls (Lenard [80]), thunderstorm electrification (Levin
and Hobbs [83]) and the formation of air bubbles during heavy rains, and can also be found
in medical applications (cooling of the skin during transplantation) and forensic investigations.
Furthermore it is responsible for the corrosion of turbine blades.

Spray impingement on walls is either intentional and desirable, e.g. spray coating or cooling,
or unavoidable, like for example for internal combustion engines. The impingement of the spray
can intensify the spray heating and vaporization in a good way; on the other hand, however, the
liquid film produced on the wall by the spray may produce negative effects such as enhanced
soot formation and increased, unburnt hydrocarbons in internal combustion engines (Bai and
Gosman [5], Griebel [51]).

Since the phenomena involved in the impingement of isolated drops onto various surfaces
were the subject of many experimental, numerical and theoretical studies, of which a detailed
overview can be found in the work of Rein [126], the single drop impingement can be mod-
cled relatively well (Yarin and Weiss [196], Weiss and Yarin [185], Fukai et al. [46]). Spray
impingement, involving multiple drop impingements, is much more complicated than the pro-
cess of single drop impingement, because in spray impingement many interactions take place
at the same time, i.e. impinging drops may interact with neighbouring drops, as well as two-
sided interactions between impinging drops and the post-impingement products, like the corona
and pinched-off secondary droplets. The experimental and numerical studies involving spray
impingement have focussed mainly on the heat transfer between the heated surface and the
impinging spray that forms a thin liquid film on this surface (Hall and Mudawar [54], Tilton
et al. |[166], Mudawar [101|, Torres et al. [168]), as well as the identification of the different
processes happening and products appearing during and after the spray wall interaction (sec-
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ondary droplet diameters and velocities).

Most of the present models for spray impingement are based on the assumption that the
results obtained for isolated drop impingements can be extrapolated to the case of a spray by
using the superposition algorithm, where the same model for a single drop event is applied to
each drop of the spray. This superposition principle is presumably valid for very sparse sprays,
having a low drop density, but for most practical spray impingement applications this is not
a very good approximation (Roisman et al. [133], Tropea and Roisman [171], Roisman and
Tropea [134], Han et al. [55]).

Currently, several models are based on experiments performed with the successive and/or
simultaneous impingement of two or more drops generated by monodispersed droplet streams,
where the influence of multiple drop impingement onto dry surfaces or liquid surface films of
known thickness on the interactions and impingement outcomes are investigated (Richter et
al. [128], Bai and Gosman [4], Stanton and Rutland [161], Barnes et al. [8]).

Models of varying degrees of complexity are thus formulated on the basis of available data
for the single drop impingement, in some cases with a complete neglect of the actual fluid
mechanics or with a disregard for some influencing parameters. Most models incorporate a
splash threshold condition, below which the impinging drop deposits completely and above
which secondary droplets are formed after impingement. Many different forms can be found for
this splash threshold, all validated by experimental data, but for different boundary conditions
(smooth /rough surface, thin film/deep pool, below/above Leidenfrost temperature, etc.). In
all of these models the interactions of impinging drops with neighbouring drops, as well as
two-sided interactions between impinging drops and the post-impingement products, like the
corona, and pinched-off secondary droplets, are not taken into account. Furthermore, the in-
fluence of the waviness of the liquid surface film, induced by the simultaneous or subsequent
impingements of neighbouring drops, on the spray impingement outcomes is being neglected.
All of these phenomena result in complicated interactions of drops before impingement, with
possible resulting satellite drops, as well as interactions of the coronas formed after impinge-
ment, which can lead to corona interactions and destructions and, depending on the inter-drop
spacing and phase, in larger reatomised droplets. Because most models make use of the super-
position principle these interactions are not taken into account, leading to increasing errors in
the impingement description and modeling for poly-dispersed sprays at higher flux densities.

A possible solution to overcome the difficulties in modeling the interactions taking place
during spray impingement is the direct numerical simulation of multiple drop impingement
(Bohm et al. [15] and Bohm [14]). In this case, the multiple drop impingement can be sim-
ulated directly, leading to the interactions described above and the creation of an oscillating
film. Polydisperse spray impingements, however, are characterized by different length and time
scales, leading to several large drawbacks of this technique. The characteristic length scale of
the film fluctuations may be much larger than the drop diameter and the characteristic time
of such fluctuations is much larger than the typical time of drop impingement. This means
that in order to describe the spray impingement numerically, a relatively large domain size is
required with a very fine mesh. Second, the time step must be small enough to describe each
drop impingement event. Moreover, a relatively large time duration must be simulated, such
that a large number of drops have impinged, in order to represent the real statistics of the spray.

All this indicates that the accurate modeling of the spray impingement onto a liquid film
is still far from optimum: the submodels presently used are based on too many assumptions,
thereby neglecting several important physical properties of the spray impingement and intro-
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ducing large errors. It can therefore be stated that the present experiments, based on single
drop impingement studies onto steady deep pools, are not adequate for developing the nec-
essary impingement submodels. It is therefore necessary to develop new submodels for spray
impingement, which accurately represent the physics of spray impingement and take into ac-
count all the possible three-sided interactions between the impinging drops, the wavy liquid
surface film and the post-impingement products. Additional experimental data are needed, in
order to understand all the different parts of the spray impingement process, required to obtain
and validate these new submodels for spray impingement.

First of all, the influence of the solid surface, at which the liquid surface film formed by the
impinging spray is present, on the cavity evolution has to be investigated into more detail. The
submodels, presently used for describing the evolution of the cavity shape in time, are mostly
based on the experimental data of the single drop impingement onto deep pools. This means
that the liquid film is much thicker than the diameter of the impinging drop, due to which no
interaction between the cavity and the solid bottom of the liquid surface film takes place. Much
research has been conducted in this area to understand the evolution of the maximum cavity
depth in relation to the corona formation, splashing, the central jet height and bubble entrain-
ment during impingement onto deep pools. For spray impingement, however, the thickness of
the liquid surface film is of the same order as the diameter of the impinging spray drops. This
results in clear interactions of the cavities, penetrating into the liquid film after impingement,
and the solid bottom of the liquid film (Harlow and Shannon |56], Macklin and Hobbs [89],
Shin and McMahon [153]). Not only do these interactions change the shape of the cavity, they
also strongly influence the corona, resulting in a clear difference in shape, maximum diameter
and maximum height for the corona, as well as the impingement products like the number and
sizes of the secondary droplets and the shape and maximum height of the central jet. The
physics behind these completely different outcomes for drop impingements onto liquid films of
finite thickness need to be understood in detail, in order to change the present submodels in
such a way to assure reliable and accurate predictions by the models in the near future.

Predicting the liquid film movement, like the waviness of the liquid film and the mean
and fluctuating velocity distributions, is of particular importance in spray impingement appli-
cations. The waviness of the liquid film is an indication of how strong the thickness of the liquid
film varies in time at a certain position or over a certain area. This is of great importance for
spray cooling, where a continuous heat flux is required for a uniformly cooling of the complete
surface of the object or keeping it at a constant temperature. A strong fluctuation in the thick-
ness of the liquid film will result in a non-uniform cooling, which could result in a deformation
of the surface during the cooling process. The velocity distributions inside the liquid surface
film are also of great importance for spray cooling. The directions and magnitudes of these
velocities give an indication in which direction and how fast the heat is being transported away
from the hot surface, which parts of the hot surface are being cooled less and how fast the
warm liquid is being refreshed by new cold liquid (Pautsch and Shedd [115], [116]).

In general, two methods exist for simulating the film dynamics. The first method applies
the conservation laws for mass, momentum and energy, by making use of a control volume bal-
ance (Stanton and Rutland [161]), or integrates the conservation equations along the coordinate
normal to the surface, after which a finite volume method is being used to solve these equations
(Bai and Gosman [5]). The second approach uses a particle-based formulation, by tracking
the film using Lagrangian numerical particles (O’'Rourke and Amsden [109] and O’Rourke and
Amsden [111]). In some of these studies, the authors assumed that the film inertia was negligi-
ble, but it was shown by Bai and Gosman [5] that this assumption is only valid under special
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conditions, meaning that the unsteady and convective terms should in general be included in
the models for the liquid film.

The experimental verification of these submodels that describe the film dynamics at spray
impingement, are very rare. Most of the experimentally conducted studies have focussed on
the spray shape on the surface after impingement, as well as on the fraction of liquid mass
deposited onto this surface (Ko and Arai 71}, [72], Saito et al. [143], Weiss [186]). To model
the spray impingement process onto a wavy liquid surface film of finite thickness, it is necessary
to gather first of all knowledge about the influence of the surface waves on the impingement
parameters, like the time evolution of the cavity, the behaviour of the corona and the central
jet. It is clear that such an investigation cannot take place by looking at the impingement of a
single drop during spray impingement, since in this case the influence of the surface waves on
the impingement outcome cannot be isolated during a certain time period. Isolated drop im-
pingements onto a surface wave, of which the physical parameters are known or can be obtained
experimentally in an easy way, need to be conducted as a first step. The results of the inclined
single drop impingement experiments onto steady liquid films show that the inclination of the
liquid surface film relative to the drop velocity vector has a clear effect on the shape of the
cavity after impingement (Zhbankova and Kolpakov [201], Leneweit et al. [81], Schotland [147],
Jayaratne and Mason [65]). In comparison to these experiments, however, the liquid surface
film for spray impingement is not steady and has a three-dimensional velocity, which is expected
to have a strong effect on the impingement process, in particular on the time evolution of the
cavity. It is therefore also of great importance to design a measurement technique, with which
these three-dimensional film velocity distributions can be measured with a highly temporal and
spatial resolution. The results may give an accurate indication of the order of magnitude of
the mean and fluctuations of the film velocities in all three directions, which can be used to set
correctly the boundary conditions for the liquid surface film in the numerical and theoretical
models.

The extreme complexity of the spray impingement process makes it difficult to extract
the desired information directly through experimental measurements. Moreover, it is difficult
and time-consuming to isolate a certain parameter to investigate the influence of this selected
parameter on the spray impingement outcomes, since all influencing key parameters (pressure,
drop velocities, drop sizes, volume flow, liquid properties, film thickness, etc.) are linked to-
gether in some complex way. A change in surface tension of the liquid, for example, also changes
indirectly the drop velocity and size distributions of the spray, as well as the waviness of the
liquid surface film.

These considerations have provided the motivation for the present study, which is aimed at
the development and assessment of the mathematical models of the physical processes involved
in the impingement of sprays, in particular the evolution of the cavity in time for impingement
onto steady and wavy liquid surface films of finite thickness and the three-dimensional structure
of the velocity fields inside the surface film.

1.2 Objectives and contributions of the present study

The global aim of the present study is to develop a model of spray impingement onto a rigid
wall. This study focusses in particular on the description of the hydrodynamics of the wall
surface film produced by spray impingement onto the wall, a broader understanding of the
physics involved in modeling of spray impingement processes and the formulation of mathe-
matical models based on experimental data and numerical simulations.
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First, an extensive and detailed literature study has been performed to gain insight into the
basic physics of single drop and spray impingement onto liquid surface film of finite thickness,
the flow of liquid surface films and the presently existing measurement techniques to obtain
three-dimensional and three-component velocity fields. With the help of this knowledge, exper-
iments have been conducted to observe the outcomes of single drop impingements onto steady
liquid surface films and onto a solitary surface wave, focussing in particular on the time evolu-
tion of the shape of the cavity inside the liquid surface film and the interactions of the cavity
with the rigid wall. The results of these experiments have been used to derive mathematical
models of these processes and to implement these into a numerical code. Finally, the drop
impingement simulations are assessed against the experimental data and the theoretical de-
scriptions.

Concerning the spray impingement processes and in particular the hydrodynamics of the
surface film, a new planar measurement technique has been designed and validated, with which
the mean and fluctuating planar velocity components inside the liquid surface film have been
obtained experimentally.

In this study the following specific contributions to spray/wall interaction modeling have
been:

e Development of a general mathematical model for the time evolution of the depth of the
cavity after impingement on the basis of the experimental findings. This model has been
developed accounting for the liquid inertia, viscosity, gravity and surface tension. It is
capable of predicting the penetration depth of the cavity during the initial time instants
after impingement onto steady liquid surface films of finite thickness.

e Development of a mathematical model for the time evolution of the diameter of the cavity
during the expansion and receding phases, based on the experimental findings and nu-
merical simulations of the impingement onto steady liquid surface films of finite thickness.
This model is based on the kinematic discontinuity approach. The mass and momentum
balance equations of the liquid layer are applied to account for the inertial effects, sur-
face tension and gravity. A remote asymptotic solution for the temporal evolution of the
cavity diameter is derived, with which also the maximum diameter of the cavity and the
time instant at which this maximum cavity diameter is reached, can be calculated. This
model takes into account the contributions of the impinging drop, like the Weber number
of the drop, the initial liquid surface film thickness and the liquid properties. With this
model the typical length scales and time scales, important for spray impingement, are
derived.

e Incorporation of an advanced free-surface capturing model for single drop impingement
onto liquid films of finite thickness into a numerical code. The model is based on a
two-fluid formulation of the classical volume-of-fluid model in the framework of the finite
volume numerical method. A modified pressure term is introduced into the momentum
equation, as well as an additional convective term into the transport equation for the phase
fraction, contributing to a sharper interface resolution, thereby introducing a relative
velocity between the gas phase and the liquid phase. This model is capable of predicting
in a three-dimensional space the time evolution of the cavity shape, the diameter and
the penetration depth for single drop impingements onto steady liquid surface films and
solitary surface waves.
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e Development of a general theoretical model to approximate the minimum residual thick-
ness of the surface film below the cavity after drop impingement based on the numerical
simulations. This model is capable of predicting the minimum thickness of the residual
surface film for impingements onto films of variable thickness.

e Determination of the shape and velocity components of the capillary waves, which indi-
rectly influence the minimum residual thickness of the surface film, by means of experi-
ments and numerical simulations.

e Determination of the time evolution of the depth and diameter of the cavity for the
expansion and receding phases after single drop impingement onto a solitary wave, by
means of experiments and numerical simulations. A large data library is obtained for
impingements onto solitary waves with small and large amplitudes, for different Weber
numbers of the impinging drops and different properties of the liquids.

e Development of a new three-dimensional, three-component planar measurement tech-
nique based on micro-Particle Image Velocimetry in combination with two aberrations.
With this measurement technique the three-dimensional velocity distributions at arbitrary
depths inside the measurement volume can be obtained.

e Determination of the radial mean and fluctuating velocity distributions of the liquid
surface film, produced by spray impingement, by means of the new three-dimensional,
three-component planar measurement technique. A large data library is obtained for
spray impingements onto a thin liquid surface film, for different Weber numbers of the
impinging drops of the spray, volume flows, nozzles and spray geometries.

1.3 Thesis outline

In Chapter 2 a review of the previous investigations on theoretical, experimental and numerical
studies of the single drop impingement characteristics, the multiple drop impingement, the dy-
namics of the liquid surface film formed by impinging sprays and the different multicomponent
planar particle velocimetry measurement techniques is given. First, the most important compo-
nents of single drop impingement on dry and wetted surfaces, the different impingement regimes
and associated impingement criteria are reviewed. Second, an overview of the experimental,
numerical and theoretical studies of the interaction and impingement of two successive drops
and of the spray impingement onto solid and wetted surfaces is presented. This is followed
by a survey of the aspects regarding liquid wall flows. Finally, a very broad overview of the
different multi-component planar particle velocimetry measurement techniques, making use of
planar light sheets or volume illumination, is given.

The discussion of the experimental arrangements and the obtained results has been split
up into three main parts. The first part (Chapter 3 to Chapter 5) focusses on the single drop
impingement process onto steady and wavy liquid films. The spray impingement process is
discussed in the second part of this thesis (Chapter 6 and Chapter 7), whereas in the third part
the newly developed volumetric particle image velocimetry technique is presented (Chapter 8).

Chapter 3 presents the different experimental arrangements designed to investigate the sin-
gle drop impingement processes. Two different experimental arrangements are presented: for
drop impingement studies onto a steady surface film and onto a solitary surface wave. This is
followed by an overview of the values of the investigated parameters. This chapter finishes with
a description of the shadowgraphy measurement technique that is used for the acquisition of the
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desired measurement data, together with the adaptation of the technique to the experimental
arrangement and the associated data analysis and post-processing.

In Chapter 4 the results of the single drop impingement processes onto steady liquid films of
finite thickness and are presented. The influences of the initial liquid film height, the terminal
velocity of the drop before impingement and the properties of the liquids on the outcomes of
the impingement process are first investigated by means of the observations made by the shad-
owgraph images. This is followed by a detailed analysis of the experimental, analytical and
numerical results of the diameter and depth of the cavity, appearing below the liquid film upon
single drop impingement onto a steady liquid surface film of finite thickness. A mathematical
derivation of the model for the time evolution of the diameter of the cavity during the expansion
and receding phases is presented. A remote asymptotic solution for the temporal evolution of
the cavity diameter is derived, with which the value and the time instant of the maximum cav-
ity diameter can be calculated. This model is compared with the experimental and numerical
results for the change of the diameter of the cavity during the initial phase of the complete
impingement process. This is followed by a detailed analysis of the results of the time evolution
of the diameter and depth of the cavity for the complete impingement process. The differences
in the cavity evolution for a change in the initial liquid surface film thickness, in Weber number
of the impinging drop and in the liquid properties are described and analysed. The final part
of this chapter focusses on the derivation of a scaling analysis of the minimum residual film
thickness on the wall and the comparison of this model with the numerical simulations.

In Chapter 5 a detailed analysis of the results of the single drop impingement measurements
onto a solitary surface wave, in particular the depth and diameter evolution of the cavity in
time, is given. First, the observations of the single drop impingement processes onto solitary
surface waves are presented. These results are compared with the observations of the impinge-
ment onto steady liquid films, in order to investigate the influence of the waviness, velocity and
amplitude of the surface film upon impingement. For this comparison the terminal velocity of
the drop before impingement, the phase of the wave at impingement, the amplitude and veloc-
ity of the wave and the properties of the liquids are changed. This is followed by the outcomes
of the single drop impingements onto standing waves, where the inclination of the surface wave
and velocity of the drop upon impingement play a central role. In the next part of this chapter
the differences in the cavity evolution for a change in the inclination of the liquid surface upon
impingement, hence the phases of the wave, in Weber number of the impinging drop, in the
amplification of the solitary surface wave (velocity and amplitude) and in the liquid properties
are described and analysed. Here the emphasis is put on the time evolution of the diameter
and depth of the cavity appearing below the liquid upon drop impingement.

Chapter 6 presents the experimental arrangement designed to investigate the spray impinge-
ment process. The experimental arrangement is discussed, followed by an overview of the values
of the investigated parameters. This chapter finishes with a description of the different mea-
surement techniques that are used for the acquisition of the desired measurement data. These
are the Phase-Doppler Anemometry technique and the Particle Image Velocimetry technique.
For both techniques the adaptation to the experimental arrangements is explained, together
with the associated data analysis and post-processing.

Chapter 7 is concerned with the results of the spray impingement measurements. The first
part focusses on the characterisation of the spray by means of the Phase-Doppler Anemometry
technique, resulting in the distribution of the drop diameters, drop mean vertical velocities,
mass distribution and kinetic energy distribution of the impinging sprays. The second part
discusses the results of the mean radial velocity distributions and velocity fluctuations inside
the surface film for spray impingement.
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In Chapter 8 the so-called volumetric Particle Image Velocimetry technique is presented.
First of all a detailed overview of the different possible monochromatic and chromatic aber-
rations is given, followed by an explanation of the resulting optical imaging and the applied
calibration method, as well as a discussion of the different steps of the image processing and
post-processing. The final part of this chapter focusses on the validation of the measurement
technique by using a thin laminar flow.

Finally, in Chapter 9, the main achievements of this thesis are summarised, and suggestions
for future work are given.



