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Abstract. This contribution addresses the dynamic state and parameter estimation problem
which arises with more advanced wind turbine controllers. These control devices need precise
information about the system’s current state to outperform conventional industrial controllers
effectively. First, the necessity of a profound scientific treatment on nonlinear observers for wind
turbine application is highlighted. Secondly, the full estimation problem is introduced and the
variety of nonlinear filters is discussed. Finally, a tailored observer architecture is proposed and
estimation results of an illustrative application example from a complex simulation set-up are
presented.

1. Introduction

In recent decades the size of wind turbines has increased significantly in order to reach higher
nominal power outputs. At the same time the necessity for lowering the costs of energy has
promoted the design of more flexible light-weight wind turbines. This development has triggered
a lot of research for active vibration and individual pitch control (IPC) to reduce fatigue
loads on costly and valuable components [1]. However, more advanced control algorithms [2]
demand for more information about the inner state of the turbine which must be provided by
additional sensors and/or observers. Since load sensors like strain gauges are often expensive
and error-prone, this contribution focuses on observers as inexpensive and powerful alternative
to reconstruct unmeasured quantities. These are dynamic states, parameters and/or unknown
disturbance inputs.

Although the importance of state and parameter estimation rises with advanced multivariable
controllers [3, 4], no profound and complete treatment for wind turbine application has been
published yet. Such a complete discussion involves at first the definition of the full-scope
estimation problem (Sec. 2). This includes the identification and detailed analysis of all relevant
sub-problems. Secondly, the application-proven filter algorithms must be assessed with respect
to their underlying concepts and attributes (Sec. 3). Due to the system’s nonlinearity, the
investigation places the emphasis on available local and global nonlinear algorithms. Section 4
introduces a simplified nonlinear control-relevant wind turbine model and discusses the different
components of the observer. A tailored distributed observer architecture is proposed which
tackles the full-scope estimation problem completely and as well fulfils the requirements for
real-time application. Finally, exemplary results based on data from FASTv8 [5] simulations are
presented which include the sub-problems of state, parameter, disturbance and load estimation.
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2. The estimation problem for wind turbine control applications

To develop a tailored observer architecture one has first to formulate the estimation problem
for the considered system. Such an estimation problem may be static or dynamic, linear or
nonlinear, constrained or unconstrained (which depends on the specific application). In any
case the problem is related to a mathematical representation describing the system’s dynamics
adequately. The most general form is the following nonlinear state space model:

ẋ = f(x,u,θ, q) (1a)

y = h(x,u,θ, r) . (1b)

Therein, x ∈ R
nx is the dynamic state vector, u ∈ R

nu the control input vector, θ ∈ R
nθ

the parameter vector, q ∈ R
nq and r ∈ R

nr the process and measurement noise and y ∈ R
ny

the output vector. The model consists of the process equation (1a) defined by the arbitrary
vector function f : Rnx × R

nu × R
nθ × R

nq → R
nx and the measurement/output equation (1b)

defined by h : Rnx × R
nu × R

nθ × R
nr → R

ny . Such a model poses a constraint to the actual
estimation problem and permits simultaneously the explicit incorporation of a priori knowledge
about the system to improve the estimate’s quality. Generally speaking, solving an estimation
problem refers to the mission of extracting some kind of desired information from noisy and/or
indirect observations y provided by measurement instrumentation. The observation problem
often relates to reconstructing the (quickly time varying) dynamic state x of a system. Besides,
we are typically faced by unknown or uncertain parameters in real life which do not change at
all or vary on a much slower time scale. Likewise, unknown and disturbance inputs can also
be considered as (quickly varying) parameters. These quantities are collected in the parameter

vector θ. The task of estimating the most likely parameter set θ̂ is termed a parameter estimation
problem.

The generalization of the above elucidated tasks is the identification problem [6] which is
usually of nonlinear nature since states and parameters are often arbitrarily interrelated. This
is especially true in case of wind turbine applications and there are five core estimation sub-
problems which comprise

(i) the estimation of rotor effective wind speed and vertical/horizontal shear components,

(ii) the observation of hidden dynamic states and elimination of measurement noise,

(iii) the estimation of process/measurement noise covariances for a good filter parametrization,

(iv) online identification to cope with model mismatches due to deliberate simplifications and

(v) open-loop fatigue load estimation, monitoring of system health or predictive maintenance.

Most of these sub-problems were so far investigated only in an isolated manner which is
reasonable since the goal of estimation might have only been focussed on a single task.

For instance, effective wind speed estimation and thus knowledge of the current operating
point of the wind turbine is required for gain-scheduling of controller parameters and safety
reasons. Since the effective wind speed cannot be measured directly and the wind anemometer
provides only insufficient information, various estimators for effective wind speed have been
applied and investigated to detect the unknown input to the system [7, 8, 9]. Furthermore,
dynamic wind models have been proposed to exploit the a priori knowledge about the stochastic
nature of wind systematically [10]. In summary, the estimation of effective wind speed has been
treated broadly in literature and is more or less established. Nevertheless, there is still potential
for research since dynamic inflow models [11] may provide improved wind estimates and the
adaptive design of wind estimators for effective wind, vertical and horizontal shear comes along
with benefits compared to static filters.

In contrast to the wind speed, the estimation of the complete wind turbine state incorporating
the relevant system dynamics has so far received only little attention in the research community
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[12, 13]. Relevant dynamics comprise the following mechanical degrees-of-freedom: the drive-
train dynamics, the nacelle fore-aft and side-side motion and the individual blade dynamics. Such
a design model for state estimation purposes must catch the relevant dynamics sufficiently but
must not be too detailed to keep the model order (number of states) low and thus computational
costs. Preliminary studies for wind turbine state estimation using nonlinear Kalman filters have
been presented in [14]. The need for accurate state estimation is also indicated by recent
publications based on Model Predictive Control (MPC) schemes [15, 16]. In a nutshell, the
significance of high quality state estimates is prominent for advanced wind turbine controllers
and a comprehensive treatment is therefore essential for successful application.

The knowledge of process and measurement noise covariances is vital for the performance of
estimators. Generally speaking, these covariances represent uncertainties in a priori knowledge
of the system. Typical uncertainties are random process noise, disturbances and inaccuracies
of measurement instrumentation as well as model mismatches. For instance, the stochastic
properties of the wind field entering the wind turbine alter with respect to mean wind speed,
wind site and weather conditions. Due to lack of direct access to process and measurement noise
covariances in real-world systems, the suitable (usually static) choice of these filter parameters
rests with the control designer. However, if the covariances change explicitly or implicitly as
function of time, the static choice may be improved by adaptive approaches. In such cases, an
adaptation rule (feedback law) is necessary to adjust the filter parameters and thus to guaranty
a reliable filter performance. For wind turbine application such approaches were mentioned in
[12] and discussed for wind speed estimation based on linear models in [17]. Adaptive filters are
one key element of the real-world estimator but the design is a lot more difficult because the
feedback character might lead to unwanted and unstable estimator behaviour.

The fourth sub-problem covers the online identification of the wind turbine system. System
identification techniques allow for mitigation of uncertainties resulting from model mismatches.
Therefore, the problem of finding the best set of system parameters minimizing the deviations
between design model and real-world system is addressed. There exist a variety of identification
techniques for the parameter identification problem. Typical time domain approaches are the
batch processing least-squares estimators (LSE) or recursive Kalman filters. Frequency domain
approaches are in general batch processing algorithms for instance applied to wind turbines in
[18, 19]. Generally, the task of online identification is essential for practical implementation
since larger model mismatches pose a risk for the guaranteed observer performance.

The last sub-problem embraces the ubiquitous wind turbine fatigue loads and the predictive
maintenance. As mechanical loads are crucial for design, operation and control of wind turbines
it is advantageous to be able to estimate and predict them online. As indicated in [20] this is
not a trivial task especially in real-world application. Still, we believe that this can be resolved
by a suitable observer architecture. The main requirement for a reliable load prediction poses
a nonlinear high-fidelity estimator for the wind speed and the states as well as an accurate and
yet simple load model.

Concluding, the full-scope estimation problem includes a broad range of sub-problems to
incorporate and handle with care. Treating them separately in the horizon of advanced
control schemes is not recommended due to increased complexity of the complete problem
and interactions between controller and observer. To benefit from additional information and
knowledge of the current system state and thus, to solve the estimation problem in advance,
suitable filter algorithms must be selected, designed and tested.

3. Investigation of nonlinear filter algorithms

A filter is a dynamic data processing algorithm employed to solve a given estimation problem
or one of its sub-problems. The choice of the right filters and its composition for the estimation
problem requires a detailed study of the available algorithms and their properties.
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3.1. Properties of estimators

The properties comprise the most relevant questions to be answered before specific application
in the field. For the eligible filter choice, these properties must be assessed for the available
algorithms. However, making universally valid statements is difficult since there are often several
modified versions of the same filter type available [21]. Nevertheless, some generalizations are
necessary to handle the great variety. Interesting criteria for filter selection include the following:

(i) the applicability/restriction to linear or nonlinear estimation problems,

(ii) the estimate’s accuracy (quality/performance) and the conditions on that,

(iii) computational costs, the curse of dimensionality and real-time capabilities,

(iv) adaptive or static (non-adaptive) filter and suitable adaptation rules,

(v) recursive or batch processing nature,

(vi) convergence issues and filter instability,

(vii) equality and inequality constraints handling,

(viii) a derivative-less approach or required assessment of Jacobians or Hessians,

(ix) requirements for the underlying noise processes (Gaussian/non-Gaussian),

(x) stochastic, deterministic and/or optimization based approach,

(xi) availability of numerically efficient and stable implementations,

(xii) ease of practical realization/numerical implementation and robustness to uncertainties.

The main differentiation has to be conducted between linear and nonlinear, stochastic and
deterministic, adaptive and non-adaptive as well as local and global estimators. Linear
estimators are e.g. the widely-used and well-known Kalman filter [22] as well as its deterministic
counterpart the Luenberger observer [23]. Since both presuppose linear system dynamics,
they are only in special cases applicable to wind turbine systems, thus focusing on nonlinear
approaches. Secondly, it is distinguished between stochastic estimators (filters), which explicitly
incorporate disturbances, and deterministic estimators (observers) which are disturbance-free.

The majority of estimators is assigned to the stochastic framework due to omnipresent
uncertainties in real-world systems. Apart from the latter ones, deterministic algorithms such as
nonlinear Luenberger observers, immergence and invariance-based observers and moving horizon
estimators exist which are excluded from the further discussions due to limited space.

3.2. Nonlinear filters for estimation purposes

The nonlinear stochastic estimators are distinguished between local and global filters. The first
rely on certain approximations like local linearization and/or the assumption of Gaussianity for
the random variables (RV). On the contrary, global filters allow for arbitrary probability density
functions (pdf) of the RV’s. The more important filter types are classified in three categories:

(i) Standard local filters

(a) the linearized Kalman filter (LKF)
(b) the extended Kalman filter (EKF) and its second-order versions
(c) the iterated extended Kalman filter (IEKF)

(ii) Derivative-less local filters or sigma-point/cubature point filters

(a) the unscented Kalman filter (UKF)
(b) the spherical simplex Kalman filter (SSKF)
(c) the central difference or divided difference Kalman filter (CDKF/DDKF)
(d) the Gauss-Hermite Kalman filter (GHKF)
(e) the cubature Kalman filter (CKF)
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(iii) Global filters

(a) the Gaussian sum filter (GSF)
(b) the point mass algorithm (PM)
(c) the particle filter (PF) or sequential Monte Carlo filters (SMCF)

First, the standard local filters are discussed. The LKF is the simplest nonlinear filter with
the least computational effort since it computes the necessary linearization of Eq. (1) only once
as initialization step. As a consequence, the accuracy reduces with increasing distance to the
linearization point. The EKF addresses this inaccuracy effectively by a recursive linearization
procedure. However, due to this feedback character the risk of filter instability and divergence
rises [24, 25]. The accuracy is improved by an iterative linearization procedure within each
recursion step of the original EKF [26]. Thereby, the IEKF attempts to minimize the difference
between a priori and a posteriori estimate iteratively though with an unreasonable increase in
computation time compared to EKF. In contrast, the second-order EKF allows for significantly
improved estimation quality which is dearly bought with the need for Jacobians as well as second-
order partial derivatives (Hessians). Concluding, all standard local filters use approximations of
the nonlinear model, even if the model is accurately known, which is an unattractive approach.
Fortunately, these types of local filters are obsolete due to today’s powerful alternatives.

The newer types of derivative-less local filters eliminate the necessity to evaluate partial
derivatives completely [27, 28]. Instead they employ so-called sigma-points (or cubature points
for the GHKF and CKF) which are deterministically chosen representative vector points for
the assumed Gaussian multivariate density distributions. They are summarized in the class of
sigma-point Kalman filters (SPKF) [25, 29]. Their development started in 1997 with the UKF
introducing a new approach to Kalman filtering [27]. It uses a set of 2nx+1 sigma-points to
approximate the complete multivariate probability density of the nx random variables. This set
is propagated through the nonlinear model and then the new statistics of the propagated points
are computed which is known as Unscented Transform (UT). The SSKF is quite similar to the
UKF since both employ the UT but with a reduced number nx+2 of sigma-points for the SSKF
and thus lower computational effort [30]. The CDKF is very similar to the UKF as it is derivative-
less but interestingly also related to the second-order EKF since it approximates the nonlinear
model by a second-order Stirling polynomial interpolation. Therefore, no analytical derivatives
are required like with the EKF. Instead it uses just a finite number of functional evaluations of
the nonlinear function and remains thus derivative-less. The GHKF uses orthogonal Hermite
polynomials to approximate the multi-dimensional distribution [29]. Unfortunately, this comes
along with 3nx cubature points as samples and thus the GHKF suffers from the curse of
dimensionality [21] (and is yet only feasible for nx < 6). The CKF being the latest derivative-less
local filters has been developed just a few years ago [31]. Contrary to the GHKF, the CKF is
proposed to be well-suited for higher order systems and to be even superior to the UKF [28].
It requires computation of only 2nx cubature points to support the random variable’s statistic
properties. Hence, computational costs are comparable to the UKF and CDKF. In summary,
the framework of SPKF offers several advantages compared to standard local filters and for most
of them filters exist already numerically efficient square-root algorithms.

The third category of global filters tackles the assumption of Gaussianity which is inevitable
for all local filters. The price to be paid is a comparable vast increase in computational effort
for high-dimensional systems. A detailed treatment of these global filters is excluded from this
paper because derivative-less local filters are often sufficient for nonlinear Gaussian problems.

4. Nonlinear observer architecture and design

The prerequisites for a successful application of nonlinear filters to the wind turbine estimation
problem comprise

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 052029 doi:10.1088/1742-6596/753/5/052029

5



(i) the nonlinear high-fidelity model of the wind turbine with different granularities,

(ii) the local/global observability and identifiability given a measurement configuration,

(iii) the suitable choice of nonlinear filters and its architecture, as well as the estimator design
including adaptation rules for filter parameters.

The nonlinear model used in this paper was properly introduced and analysed in [32, 4] following
a white-box modeling approach. It incorporates the nacelle motion as well as the drive-train
dynamics which yields the state vector

x =
[

ẋT ẏT ϕ̇g ∆ϕ̇ xT yT ϕg ∆ϕ
]T

(2)

with eight mechanical states (Tab. 1 provides a list of all variables and parameters). Hence, the
dynamics of onshore horizontal axis wind turbines with b=3 individual blades are governed by
the following set of nonlinear second-order differential equations:

mTẍT + bxẋT + kxxT =
ρ

2

πR2

3

3
∑

b=1

(

1 + ζrn cosψb

)

CT(λb, βb)v
2
b , (3a)

−mTÿT − byẏT − kyyT =
ρ

2

πR3

3 rt

3
∑

b=1

cosψbCM(λb, βb)v
2
b + ζigbMg , (3b)

Θr(ϕ̈g +∆ϕ̈) + Θgϕ̈g =
ρ

2

πR3

3

3
∑

b=1

CM(λb, βb)v
2
b − igbMg , (3c)

Θr(ϕ̈g +∆ϕ̈) + bϕ∆ϕ̇+ kϕ∆ϕ =
ρ

2

πR3

3

3
∑

b=1

CM(λb, βb)v
2
b . (3d)

The standard measurement instrumentation of such turbines provides the output vector

y=
[

ẍT ÿT ng ϕ
]T

. Moreover, the turbine’s controller accesses today with u=
[

Mg β1 β2 β3
]T

at least four independent inputs to Eq. (3). The uncontrollable and yet desired wind input vw
has a direct impact on the blade effective wind speed vb and the tip speed ratio λb defined by

vb =
(

1 +H−1R∗ cosψb

)ν

vw −

(

1 + ζR∗ cosψb

)

ẋT , (4a)

λb =
(

ϕ̇g +∆ϕ̇
)

Rv−1
b = ΩRv−1

b . (4b)

which both together with the blade pitch angles βb determine the aerodynamic forces acting on
the wind turbine. The azimuth angle for the blades b = 1, 2, 3 denotes:

ψb = ϕg +∆ϕ+ 2π/3 (b− 1) . (5)

The above model has been successfully validated against the high-fidelity aeroelastic simulator
FASTv8 [5]. Since some inputs and parameters are unknown or uncertain, they are gathered in

the parameter vector which for instance denotes θ=
[

vw kx R
∗ ζ

]T
.

4.1. Observer architecture and design

Prior to estimation, the observability check of the design model is crucial but practically often
unmindfully neglected. Since global observability is often hard to prove, preliminary studies
focussed on local observability which has been successfully verified based on a complete set of
linearized models. Therefore, the state vector x is observable given the measurements y and the
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Table 1. Nomenclature

x dynamic state vector R blade tip radius H hub height
u control input vector R∗ power-effective radius ζ Beam coupling coefficient
y system output vector rn effect. normal radius ρ air mass density
θ parameter vector rt effect. tangential radius kx equivalent fore-aft stiffness
q process noise vector ẍT nacelle fore-aft acc. ky equivalent side-side stiffness
r observation noise vector ÿT nacelle side-side acc. bx equiv. fore-aft damping coeff.
Mg generator torque ẋT nacelle fore-aft velocity by equiv. side-side damping coeff.
βb blade pitch angle ẏT nacelle side-side velocity mT equiv. tower top mass
λb blade tip speed ratio xT nacelle fore-aft position igb drive-train gear-box ratio
vw hub-height wind speed yT nacelle side-side position ng measured generator speed
vb blade effect. wind speed ϕ̇g generator angular speed Θr combined rotor and blade inertia
ν vertical shear exponent ∆ϕ̇ drive-train angular speed Θg generator low-speed inertia
ψb blade azimuth angle ϕg generator azimuth angle MBy blade-root out-of-plane moment
CT thrust coefficient ∆ϕ drive-train torsion MTx tower base roll moment
CM torque coefficient Ω rotor angular speed MTy tower base pitch moment

control inputs u. Further investigations showed that the parameter vector θ is well identifiable
provided a sufficient system’s excitation. Hence, the second prerequisite for observer application
is assumed to be fulfilled. Thus, only a suitable architecture and the filter design are missing.

The simplest approach to conduct the estimates x̂ and θ̂ is to employ a monolithic estimator
with an augmented state vector xT

a =
[

xT θT
]

. Therefore, the sub-problems of state/parameter
estimation as well as the unknown wind estimation are covered in a joint estimation approach.
This works fine as long as the augmented system’s dimension remains small and the investigation
is conducted only within numerical simulation. Considering the real-time applicability as one
key requirement, it must be the goal to focus on efficient, robust and elegant implementation
strategies. Moreover, it makes sense to develop a distributed architecture because

(i) the system’s nonlinearity is predominantly related to the unknown wind speed input vw,

(ii) the elastodynamics are purely linear which can be exploited systematically,

(iii) global filters (for higher estimation quality) are only applicable to low-order sub-problems
since high dimensions pose unreasonable computational costs and

(iv) slowly-varying parameters need no update on the same time scale as the states.

Thus, it is highly recommended to use a well-composed distributed observer architecture (DOA)
rather than a monolithic structure as indicated in Fig. 1. Within this architecture, all relevant
estimation sub-problems from Sec. 2 are included and in the following these are discussed and
matched to the specific properties of the filter algorithms previously discussed in Sec. 3.2.

The wind estimator (WE) in Fig. 1 tackles the first (nonlinear) sub-problem of estimating
the unknown rotor effective wind speed. A reduced second-order nonlinear model is sufficient for
this purpose. If the nacelle fore-aft velocity remains small in relation to the wind speed (which
applies most of the times for non-floating wind turbines) there is no need for direct coupling
to the state estimator (SE). Hence, the WE design is conducted independently which makes
it more robust. Typical sample times for wind turbine control systems go from 20 to 100ms.
The low-order model allows for testing of arbitrary nonlinear filters. Derivative-less local filters
are in general a good choice when starting from scratch and assuming Gaussian pdf’s. Global
filters like PF show only substantial benefits in estimation accuracy for non-Gaussian distributed
noise. Finally, a square-root CDKF was chosen as wind estimator as the best trade-off between
accuracy and computation time.

The state estimator (SE) fulfils the main task to provide high quality estimates of the wind
turbine state using the model from Eq. (3). Due to the aerodynamic forces interacting with the
rotor and tower, the filter usually needs to be nonlinear. However, there is a more elegant way

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 052029 doi:10.1088/1742-6596/753/5/052029

7



Wind
Estimation

(WE)

State
Estimation

(SE)

Parameter
Estimation

(PE)

Load
Estimation

(LE)

FA

FA

FA

u

u

u

u

y

y

y

y

v̂w

x̂

θ̂

x̂

θ̂

x̂

ũ
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Figure 1. Structural sketch of the proposed observer architecture

to resolve this sub-problem by exploiting the mainly linear mechanical dynamics. Considering
all nonlinear influences as fictitious (linear) inputs ũ = ũ(u, x̂) to the system, the estimation
sub-problem reduces to a purely linear one. Hence, a simple discrete-time Kalman filter is used
involving a tremendously reduced computational effort. The single drawback to this approach
is the need for the current state vector x̂ to compute ũ. The simple and yet practical solution
is to use the previous estimate (which makes no significant difference for fast sample rates).

The parameter estimator (PE) in Fig. 1 focuses as third observer component on model
mismatches. It must address the accuracy of the internal models of the WE, SE and LE.
Required intervals for parameter updates are in contrast to the latter rather slow and go from 2
to 10 s. Therefore, the real-time feasibility is not critical and either batch processing algorithm
like MHE (which can easily incorporate parameter constraints) or simple recursive local filter
types are sufficient. The structural decoupling allows for much lower sample times and reduced
computational cost. Moreover, the separate PE can simply be by-passed in case of low parameter
identifiability in certain situations.

Finally, the load estimator (LE) employs all the information provided by the other observer
components to predict mechanical turbine loads online. Since the majority of operating wind
turbines is not equipped with load sensors, turbine loads are not considered directly measurable
and the LE is implemented as a trivial open-loop observer (simulator). Yet, a high-fidelity model
is crucial for this type of online load assessment which the PE must assure.

The filter adaptation (FA) plays a major roll from a practical point of view. In this
contribution the estimator’s use only static filter parameter configurations to obtain the desired
quantities. Due to its complexity the adaptive design will be discussed in a separate paper.

4.2. Simulation results and evaluation of observer performance

The above DOA has been implemented and tested with realistic simulation data obtained
from FASTv8 [5] and the well-known 5-MW reference wind turbine [33]. The performance is
compared to a monolithic observer architecture (MOA) using square-root CDKF. The illustrative
estimation results are shown in Fig. 2. These imply a reasonable performance of the nonlinear
observer compositions. Despite the corrupted noisy measurements and model errors, the
distributed filter architecture provides high-fidelity estimates for the hidden dynamic states.
The effective wind speed is accurately reconstructed even without incorporation of the nacelle
wind anemometer measurement. In addition, the online estimation of relevant wind turbine
loads as tower-base bending roll and pitch moments MTx and MTy shows reliable results.

However, apart from the subjective impression, objective criteria are required to assess the
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ẏ
T
in

m
/s

-0.2

-0.1

0

0.1

0.2

True State
MOA Estimate
DOA Estimate

t in s
0 10 20 30 40 50 60 70

Ω
g
in

ra
d
/s

0.9

1.05

1.2

1.35

1.5

True State
MOA Estimate
DOA Estimate

t in s
0 10 20 30 40 50 60 70

x
T
in

m

-0.3

0

0.3

0.6

0.9

True State
MOA Estimate
DOA Estimate

t in s
0 10 20 30 40 50 60 70

y
T
in

m

-0.15

-0.1

-0.05

0

0.05

True State
MOA Estimate
DOA Estimate

t in s
0 10 20 30 40 50 60 70

∆
ϕ
in

ra
d

×10-3

2

3

4

5

6

True State
MOA Estimate
DOA Estimate

Figure 2. Illustrative estimation results with monolithic and distributed observer architecture
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estimation accuracy and thus observer performance on a quantitative basis. In order to develop
such measures, the Kalman filter’s update equation [26]

x̂+
k = x̂−

k +Kk(yk − ŷk) = x̂−

k +Kkvk (6)

is a good starting-point because it is identical for all linear and nonlinear discrete-time Kalman
filters. It comprises the posterior estimate x̂+

k , the a priori estimate x̂−

k , the Kalman gain Kk,
the predicted ŷk and measured output yk, as well as the innovation vk. The vector xk denotes
the true value and xk,i is its i-th element. The performance is then assessable by the following:

(i) the estimation error ek,i = xk,i−x̂
+
k,i which is though unknown in reality due to the unknown

true state xk,i. It is the main performance indicator but only applicable in simulation.

(ii) the relative estimation error x̃k,i = x̂+k,i− x̂
−

k,i between posterior and a priori estimate which

either indicates a high-fidelity of the model and/or a low confidence in the measurement.

(iii) the innovation vk,j = yk,j − ŷk,j of the j-th output which is a good measure for model
accuracy. It remains small if predicted and measured observation match each other.

(iv) the predicted P−

k and updated P+
k error covariances can be used for filter evaluation since

they provide confidence intervals for the estimates x̂−

k and x̂+
k .

(v) the analysis of the Kalman gain which indicates the filter’s confidence whether to trust the
model or the observation.

For sake of simplicity, the focus rests in this paper on the first two items. Thus, the following
measures are conducted and applied:

ēi =
1

N

N
∑

k=1

(

xk,i − x̂+k,i
)

=
1

N

N
∑

k=1

ek,i (7a)

MSE(ek,i) =
1

N

N
∑

k=1

(

xk,i − x̂+k,i
)2

=
[

RMSE(ek,i)
]2

(7b)

MSE(x̃k,i) =
1

N

N
∑

k=1

(

x̂+k,i − x̂−k,i
)2

=
[

RMSE(x̃k,i)
]2

(7c)

These include the mean estimation error, as well as the mean-squared (MSE)/root mean-squared
errors (RMSE). The criteria have been evaluated for both architectures (Tab. 2). Generally,
the estimates are very accurate. The RMSE(x̃k,i) is often strongly reduced in relation to the
RMSE(ek,i). Thus, the update step only applies minor corrections to the a priori estimates. The
RMSE(ek,i) indicates the high estimation quality since it is for many quantities xk,i much lower
than its min/max-range. Concluding, the estimation performance is similar for the investigated
observer compositions with greatly reduced computational effort (by one magnitude order) for
the DOA due to its tailored architecture. The PE and the filter adaptation have been identified
as a crucial components of the architecture especially for real-world wind turbine systems.

5. Conclusions and future work

This contribution has presented the full-scope estimation problem for wind turbine control
applications with its five sub-problems and discussed the relevant existing publications for each
of them. The variety of nonlinear filters to solve the specific sub-problems has been discussed
including a detailed treatment of their main attributes. With the fully defined estimation
problem and the overview of available algorithms in mind, a well-composed observer architecture
has been proposed to tackle all sub-problems at once. Therefore, the estimation of dynamic
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Table 2. Performance comparison of observer architectures

ẋT ẏT ϕ̇g ∆ϕ̇ xT yT ϕg ∆ϕ

in m/s in m/s in rad/s in rad/s in m in m in rad in rad

max(xk,i) 0.771 0.205 1.48 0.00513 0.769 0.0538 6.28 0.00577

mean(xk,i) -4.979e-04 3.285e-06 1.22 1.746e-06 0.295 -0.0475 3.14 0.00424

min(xk,i) -0.706 -0.207 0.897 -0.00427 -0.153 -0.146 0.00129 0.00191

MOA ēi -8.236e-04 9.445e-05 5.964e-05 6.311e-06 -0.0289 0.00598 -7.749e-04 -1.109e-05

DOA ēi -2.956e-04 2.914e-05 1.850e-05 -2.194e-04 -0.0277 0.006 -7.822e-04 -3.786e-06

MOA RMSE(ek,i) 0.0423 0.00763 0.0161 0.00157 0.0502 0.00792 0.0608 1.554e-04

DOA RMSE(ek,i) 0.0447 0.0108 0.0278 0.0213 0.0426 0.00867 0.0609 0.00189

MOA RMSE(x̃k,i) 0.011 8.223e-04 0.016 2.274e-04 0.00706 9.871e-04 0.0608 3.357e-05

DOA RMSE(x̃k,i) 0.00447 8.285e-05 0.0142 0.00382 0.00743 4.301e-04 0.0595 0.00128

vw MBy,1 MBy,2 MBy,3 MTx MTy kx ζ

in m/s in MNm in MNm in MNm in MNm in MNm in MN/m in 1/m

max(xk,i) 18.9 13.4 13 12.2 20.3 127 1.7 0.018

mean(xk,i) 12 6.26 6.22 6.23 4.6 47.9 1.51 0.0171

min(xk,i) 5.09 -0.891 -0.562 -1.06 -11.6 -27.1 1.49 0.0133

MOA ēi -0.178 -0.36 -0.324 -0.353 -1.3 -3.26 0.131 -7.191e-04

DOA ēi -0.166 -0.34 -0.31 -0.318 -1.3 -3.07 0.118 6.385e-04

MOA RMSE(ek,i) 0.944 0.986 0.957 1.18 1.57 7.36 0.0442 3.431e-04

DOA RMSE(ek,i) 0.897 0.914 0.923 0.901 1.67 6.05 0.0392 3.925e-04

MOA RMSE(x̃k,i) 0.159 0.986 0.957 1.18 1.57 7.36 0.00322 2.612e-05

DOA RMSE(x̃k,i) 0.143 0.914 0.923 0.901 1.67 6.05 0.00287 3.143e-05

states, of uncertain parameters and disturbance inputs, as well as the online estimation of
wind turbine fatigue loads were addressed. The simulation results confirm the validity of the
presented approach. The estimate’s accuracy for monolithic and distributed structure indicates
comparable results. The accurate reconstruction relies yet on a nonlinear high-fidelity model as
well as the suitable choice of filter algorithms and their systematic design. The presented DOA
reveals its main benefits insofar as real-time applicability as key requirement for higher order
estimation problems is concerned. Only by splitting-up the problem it is possible to employ a
nonlinear low-order filter for wind speed with high accuracy as well as a higher order linear filter
for the dynamic tower and drive-train states with the least computational effort.

Future work will focus on adaptation rules for the different observer components to manage
changing wind and site conditions by automated filter parameter update. Moreover, nonlinear
Moving Horizon estimators (NMHE) as optimization based batch processing algorithms will be
reviewed for wind turbine application for instance to tackle the parameter estimation problem.
Additionally, practical issues for design and implementation in real-world wind turbines like
robustness, numerical stability and constraints need to be addressed explicitly.

Concluding, the full-scope estimation problem includes a broad range of sub-problems to
handle with care. It is in general multiobjective and not trivial due to increased complexity
and interactions between controller and observer. Nevertheless, nonlinear observers for state
and parameter estimation offer substantial improvements for future wind turbine operation
and control. Yet, a thorough understanding of nonlinear filters and their specific properties is
essential to harvest this potential and to design improved closed-loop controllers.
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