Supplementary Material

1 DERIVATIONS

1.1 Spherical coordinates

For points $P=[x, y, z]$ on the projective plane, we have

$$
z=-2 r .
$$

From $\tan \varphi=\frac{w}{z r}$ and $\cos \chi=\frac{x}{w}$ we obtain

$$
x=2 r \tan \varphi \cos \chi
$$

And, finally, from $\tan \chi=\frac{y}{x}$, we have

$$
y=x \tan \chi=2 r \tan \varphi \sin \chi
$$

For points $P^{\prime}=\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$ on the sphere, the equations are a little more complicated. First, we obtain the z coordinate via two identities that include $\cos \varphi$. We define a as the distance from the origin to the point on the sphere. Then, from $\cos \varphi=\frac{a}{-2 r}$ and $\cos \varphi=\frac{z}{a}$, we get

$$
z=-2 r \cos ^{2} \varphi
$$

The x^{\prime} and y^{\prime} coordinates can be obtained from the z^{\prime} coordinate as for the planar case:

$$
\begin{array}{r}
x^{\prime}=z^{\prime} \tan \varphi \cos ^{2} \varphi \cos \chi \\
y^{\prime}=x^{\prime} \tan \chi
\end{array}
$$

1.2 Homography

Assume that $q=\left(q_{1}, q_{2}, 1\right)^{T}$ is a point in homogeneous coordinates on the projective plane at the back of the model eye. Its 3D coordinates are given by $p=B q$. The 3×3 matrix B consists of two basis vectors and a point that define the plane. It relates 3D coordinates to points in the plane's coordinate system. For an image patch on the projective plane centered at a given point b_{0} (obtained from φ and χ via Equation (??)), the matrix is given by

$$
B=\left(\begin{array}{ccc}
1 & 0 & \vdots \tag{S1}\\
0 & 1 & p_{0} \\
0 & 0 & \vdots
\end{array}\right)
$$

A point p^{\prime} on a tangent plane to the sphere can be written in the same way as a matrix-vector product of a matrix A and its homogeneous coordinates $q^{\prime}=\left(q_{1}^{\prime}, q_{2}^{\prime}, 1\right)^{T}: p^{\prime}=B q^{\prime}$. Here, finding the basis vectors is a bit more difficult. As a point in the plane, we use the point p_{T}^{\prime} at which the plane is tangential to the sphere (i.e. a point on the sphere obtained from φ and χ via Equation (??)). From the definition of our
tangential plane in terms of p_{T}^{\prime} and a normal vector $\vec{n}=p_{T}^{\prime}-c$, we need to obtain vectors inside the plane. To this end, we find the points u_{1} and u_{2}, where a line from the origin to $b_{0}+(1,0,0)^{T}$ or $b_{0}+(0,1,0)^{T}$, respectively, cuts the tangent plane. This yields the basis vectors v_{1} and v_{2} of the tangent plane, resulting in

$$
A=\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \tag{S2}\\
v_{1} & v_{2} & p_{T}^{\prime} \\
\vdots & \vdots & \vdots
\end{array}\right) .
$$

Since the points p and p^{\prime} lie on the same ray from the origin, they are only different by a constant factor, i.e. $p^{\prime} \propto p$. By inserting the definitions of p and p^{\prime} in terms of their respective projection matrices, we obtain

$$
\begin{gather*}
q^{\prime} \propto A^{-1} B q \tag{S3}\\
q^{\prime}=H q, \tag{S4}
\end{gather*}
$$

with $H=\alpha A^{-1} B$ with an arbitrary scaling constant α.

This supplementary material is distributed under the terms of the Creative Commons Attribution License (CC BY).

