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Abstract. One-photon and multi-photon absorption, spontaneous and stimulated photon
emission, resonance Raman scattering and electron transfer are important molecular
processes that commonly involve combined vibrational-electronic (vibronic) transitions. The
corresponding vibronic transition profiles in the energy domain are usually determined by
Franck–Condon factors (FCFs), the squared norm of overlap integrals between vibrational
wavefunctions of different electronic states. FC profiles are typically highly congested for large
molecular systems and the spectra usually become not well-resolvable at elevated temperatures.
The (theoretical) analyses of such spectra are even more difficult when vibrational mode mixing
(Duschinsky) effects are significant, because contributions from different modes are in general not
separable, even within the harmonic approximation. A few decades ago Doktorov, Malkin and
Man’ko [1979 J. Mol. Spectrosc. 77, 178] developed a coherent state-based generating function
approach and exploited the dynamical symmetry of vibrational Hamiltonians for the Duschinsky
relation to describe FC transitions at zero Kelvin. Recently, the present authors extended the
method to incorporate thermal, single vibronic level, non-Condon and multi-photon effects in
energy, time and probability density domains for the efficient calculation and interpretation
of vibronic spectra. Herein, recent developments and corresponding generating functions are
presented for single vibronic levels related to fluorescence, resonance Raman scattering and
anharmonic transition.

1. Introduction

One of the fundamental goals of molecular science is to design properties on the molecular level
and to obtain perfect control of molecular processes with the help of optical techniques. For this
purpose a detailed understanding of the dynamics of vibrational and electronic (vibronic) degrees
of freedom (DOF) is necessary, because the interplay of vibronic DOF plays a major role in many
molecular processes, which could be either radiative (e.g. one-photon absorption (OPA), one-
photon emission (OPE) and resonance Raman (rR) scattering) or non-radiative (e.g. electron
transfer (ET), internal conversion (IC), inter-system crossing (ISC) and conduction of molecular
junction).

Usually, polyatomic systems of interest are relatively large (more than 100 atoms, especially
for biomolecular applications) such that the corresponding description and analysis of the

1 This contribution to the proceedings contains (slightly modified) parts from the dissertation of J. Huh in 2010.
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dynamics are challenging. Molecular spectra, which carry important information about the
underlying microscopic processes, are typically highly congested, such that the dynamics of
the individual vibrational DOF can not directly be disentangled. Theoretical analysis tools
for complex molecular systems are required to study the individual mode contributions to a
given molecular process. Computational difficulties arise for complex systems in evaluating a
tremendously large number of multi-dimensional Franck–Condon (FC) integrals. The density of
states (DOS) or the number of FC integrals at a transition energy grows steeply with increasing
number of vibrational DOF, vibrational excitation energy and temperature [1].

Even in a harmonic approximation for the Born-Oppenheimer (BO) potential energy surface
(PES) the computation of FC integrals is still a challenging problem especially for large molecular
systems, due to the (partial) inseparability of multi-dimensional integrals caused by Duschinsky
mode mixing effects (Ref. [2] and Sec. 2.2). There have been attempts (see e.g. Refs. [3–9]
for some of the more recent work) to improve the computational efficiency of the FC integral
evaluation schemes including the Duschinsky mode mixing effects. Fast evaluation of the FC
integrals is essential for tackling large systems. We have suggested an iterative FC integral
evaluation scheme exploiting the Magnus expansion for multi-variate Hermite polynomials
(MHPs) [10]. The integral evaluation scheme in terms of the MHPs with the Magnus expansion
can be expressed as summations of one-dimensional Hermite polynomials, which appears in
a simpler form (smaller number of summations) than the existing summation scheme for the
multiple products of one-dimensional Hermite polynomials (see e.g. Refs. [8, 9]).

It was pointed out, however, that only a small portion of the Franck–Condon factors (FCFs)
contributes to the total FC profiles significantly (see e.g. Refs. [11–13]). The idea can be used
in an ad hoc way by limiting for instance the vibrational excitation in each mode by some
predefined numbers. Unfortunately, in this brute-force way the computational complexity still
increases drastically and becomes infeasible. Instead, if we can construct the most important
part of the FC intensity profiles, that accounts say for 99 % of the total integrated FC profile,
with a small fraction of FCFs, the computation of FC intensity profiles becomes feasible even
for complex systems. For this purpose we must tackle the problem of identifying those relevant
subsets of FCFs that contribute to the total FC intensity for about 99 % without having all
FCFs at hand. Jankowiak et al. [11] exploited this idea by modifying Doktorov et al.’s initial
idea of coherent state (CS)-based generating function (GF) [14]. Exploiting the modified GF
Jankowiak et al. developed an efficient coarse-grained integral prescreening strategy for FC
profiles at zero Kelvin.

Vibronic transition. Intramolecular (optical or radiationless) processes are often considered as
electronic transitions between two distinct BO PESs via Fermi’s golden rule (FGR) [15, 16]
resulting from time-dependent (TD) perturbation theory within the BO picture. This vibronic
transition model has been used to explain molecular transition processes for OPA (see e.g.

Refs. [11–14, 17–47]), OPE (see e.g. Refs. [48–52]), rR scattering (see e.g. Refs. [53–70]), ET
(see e.g. Refs. [71–83]), IC (see e.g. Refs. [84–89]) and ISC (see e.g. Ref. [90]). Also other
vibronic transitions like electronic circular dichroism (ECD) (see e.g. Ref. [91]) and two photon
absorption and emission (see e.g. Ref. [92]) are usually described via FGR [15,16].

We may approximate the spectral density function (SDF) within the harmonic oscillator
model, which is convoluted with the Lorentzian line shape function (L(ω)) with full width at
half maximum (FWHM) of Γ,

ρL(ω;T ) =
∑

v,v′

pv(T )|〈v′|µ̂(Q)|v〉|2L(ω, ω0 + ωv′,v; Γ),

L(ω, ω; Γ) =
1

π
· (~2Γ)

[~(ω − ω)]2 + (~2Γ)
2
, (1)
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where |v〉 and |v′〉 are N -dimensional harmonic oscillator eigenstates of the initial and final
electronic states, respectively, in the occupation number vector (ONV) representation. pv(T )
is the population of the initial vibronic state at temperature T and, here explicitly for electric
dipole transitions, µ̂(Q) is the electronic transition dipole moment (TDM) which depends on the
normal coordinates Q of the initial state. ω0 is the adiabatic vibronic transition frequency and
ωv′,v corresponds to the vibrational frequency difference of two harmonic eigenstates excluding
the harmonic zero-point frequency difference which has already been included in ω0.

Within the validity of the FC approximation (µ̂(Q) ≃ µ
0
) and the harmonic oscillator

approximation there still remains a challenging problem in evaluating Eq. (1) in the time-
independent (TI) manner for two multi-dimensional harmonic oscillators being not only displaced
and distorted but also rotated. When the molecule (multi-dimensional harmonic oscillators)
undergoes an electronic transition, it experiences in general an equilibrium structural change
(displacement), potential energy curvature change (distortion) and normal coordinate variation
(rotation). The two sets of normal coordinates are related (approximately) by a linear
transformation, the so-called Duschinsky transformation (Ref. [2] and see also Sec. 2.2 for
details). The Duschinsky effect is one of the main reasons for asymmetry between absorption
and emission spectra. It is responsible for the broadening of vibronic spectra with the effect
being typically enhanced (for specific vibrational modes) at elevated temperatures. Small [93]
pointed out that the Duschinsky effect is as important as vibronic coupling effects because the
mode mixing introduces a quadratic coupling between initial and final vibrational wavefunctions,
i.e. the Duschinsky effects must be considered for vibronic coupling problems. The importance
of Duschinsky mode mixing has been emphasised by many authors in various fields, such as
absorption processes (see e.g. Refs. [11–13, 40, 42, 94]), resonance Raman scattering (see e.g.

Refs. [49,54,57,59,60,65–67,69,95]), electron transfer processes (see e.g. Refs. [52,76,80,81,96]),
radiationless transitions (see e.g. Ref. [85,88]), in photoexcited state cooling processes (see e.g.

Ref. [36]), vibronic coupling of electronic transitions (see e.g. Refs. [74, 93]) and molecular
junction tunnelling (see e.g. Ref. [97]).

When the zeroth order term of the TDM (µ
0
) is not dominant, one has to consider

the coordinate dependence of the electronic TDM (µ̂(Q)), i.e. non-Condon effects. The
computational problem becomes even harder. FC-forbidden (|µ

0
| = 0) or weakly allowed FC

(|µ
0
| ≃ 0) transitions are usually described by a vibronic coupling intensity borrowing mechanism

of Herzberg and Teller (see e.g. Refs. [98–100]). The SDF that is necessary for describing non-
Condon effects can be formulated as follows (in a general form)

ρL(ω;T )
(f̂ ,ĝ) =

∑

v,v′

pv(T )〈v′|f̂ |v〉〈v′|ĝ|v〉∗L(ω, ω0 + ωv′,v; Γ), (2)

which includes general operators f̂(P̂ , Q̂) and ĝ(P̂ , Q̂), which are functions of momentum (P̂ )

and position (Q̂) operators. When f̂ = ĝ = µ
0
in Eq. (2) the FC SDF is recovered. Momentum

operators, coupling terms between momentum and position operators and nonlinear operators
could appear in the IC, ISC, anharmonic, rR and vibronic coupling problems. Therefore the
ability to access the non-Condon SDF (2) is essential in describing those kinds of molecular
transitions beyond the Condon approximation. The term ”non-Condon” is, in this article,
restricted to any transition problem involving polynomial expression of transition operators.
Here, transition operators could be momentum and position operators.

Herein, we extend and modify the CS-based GF idea [11, 14] for the various vibronic
transitions involving thermal excitation and non-Condon effects within the Duschinsky
approximation. The GF approaches for rR scattering and single vibronic level (SVL) transitions
are developed to include the thermal and non-Condon effects in the Duschinsky rotated harmonic
oscillator basis. The methods outlined herein are general and can be applied with slight
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modifications to various kinds of transition processes via FGR in frequency or time domains.
This article is organised as follows: The theoretical background related to the developments

of this article is briefly presented in section 2. The OPA and rR scattering are described from the
TI and TD perspectives. The basic properties of CSs and the Duschinsky relation are explained
therein for the GF development. Franck–Condon–Herzberg–Teller (FCHT) GF developed in
Refs. [101, 102] is introduced in this section. In section 3 we devise the coherent-Fock (cF),
which is the mixture of harmonic oscillator eigenstates and coherent states (Eq. (58)), GF via
the MHP technique for the GFs for rR, SVL and anharmonic transitions in the TI and the TD
pictures including non-Condon effects. Finally the conclusion follows in section 4.

2. Theoretical background

To describe the various vibronic transitions theoretically, we employ a computational framework
for the Franck–Condon (FC) and non-FC vibronic transitions within the (adiabatic) Born-
Oppenheimer (BO) approximation [98, 103]. The inclusion of Duschinsky vibrational mode
mixing [2] together with temperature and non-Condon effects renders the computational effort
for vibronic processes high. Herein we describe the molecular system in different electronic
states as N -dimensional harmonic oscillators. Accordingly, the (radiative) vibronic transition
is considered as a transition between multi-dimensional harmonic oscillators. But even in the
harmonic oscillator approximation, the computational description of the vibronic transitions is
still challenging.

The various representations of Fermi’s golden rule (FGR) in frequency, time and phase spaces
were exploited in Ref. [45,101,104] via the coherent state (CS)-based generating function (GF)
approach [11] to reduce the computational effort. Each representation has its own benefits
and shortcomings for the evaluation, such that they are typically complementary to each other
(see e.g. Ref. [105]). One of the main achievements of our developments is that the different
aspects of FGR can be combined in one GF based on CSs within the displaced-distorted-rotated
harmonic oscillator (Duschinsky) approximation.

In order to present the CS-based GF in some detail, we need to bear in mind the various
representations of FGR and the relations among them (Sec. 2.1). As specific examples, the
transformation between the time-independent (TI) and time-dependent expressions of the one-
photon absorption (OPA) and resonance Raman (rR) scattering cross sections are discussed.
With slight modifications also other vibronic transitions, such as one-photon emission (OPE),
electron transfer (ET), electronic circular dichroism (ECD), internal conversion (IC) and inter-
system crossing (ISC) can be described, so that they can be treated similarly to OPA and rR.
The Duschinsky linear approximation and the corresponding unitary transformation (Sec. 2.2)
as well as basic properties of CSs (Sec. 2.3), which are necessary for the non-Condon CS-based
GF method [11] (Sec. 2.4), are detailed in the corresponding sections.

2.1. One-photon absorption and resonance Raman scattering

In this section we transform the TI spectral density function (SDF) of the OPA and the rR
scattering cross section from frequency domain to time domain via the density matrix trace
formalism [106]. The SDF of OPA (Eq. (1)) in frequency domain reads (again) as,

ρL(ω;T ) =

∞∑

v,v′=0

pv(T )|〈v′|µ̂(Q)|v〉|2L(ω, ω0 + ωv′,v; Γ), (3)

where the vibrational transition (angular) frequency is defined by the corresponding energy levels
(ǫ and ǫ′) of an N -dimensional harmonic oscillator, i.e. (ωv′,v = (ǫ′ ·v′− ǫ ·v)/~). In practice, we
evaluate the intensity profiles according to the Dirac delta distribution (stick representation) and
convolute the profiles in stick representation with the Lorentzian line shape function. Prime ”′”
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is used, conventionally, for specifying variables belonging to the final electronic state. Raman
scattering is a two-photon process involving the incident (ω) and scattered light (ωS). From
second order time-dependent (TD) perturbation theory for the two-photon process, we can
obtain the matrix elements of the polarisability tensor as the (vibronic) Raman scattering [53]
amplitude in the frequency domain (see e.g. Refs. [66, 92, 107]).

The matrix element of the polarisability tensor α in the molecular vibronic wavefunction
basis with polarisation vectors eL and eS of incident and scattered photons, respectively, is the
vibrational Raman scattering amplitude and corresponds to the vibrational Raman excitation
profile (see e.g. [66]). At resonance (ω ≃ (ωv′,vi

+ ω0)) the vibrational rR scattering amplitude

(α
vi→vf
rR ) is expressed as follows

α
vi→vf
rR (ω) =

∞∑

v′=0

〈vf |µ̂S(Q)†|v′〉〈v′|µ̂L(Q)|vi〉
~(ω − (ωv′,vi

+ ω0) +
i
2Γ)

, (4)

where we have used µ̂L(Q) = µ̂(Q) · eL and µ̂S(Q) = µ̂(Q) · eS. In Eq. (4) |vi〉 and |vf 〉 are the
initial and the final vibrational states in the electronic ground state (|g〉), |v′〉 is the virtual (or
intermediate) vibrational state in the excited electronic state (|e〉), and Γvi,v

′ is the line width
of the transition between initial and virtual state. The vibrational transition frequency from
the initial state to the virtual vibrational state is given as ωv′,vi

= (ǫ′ · v′ − ǫ · vi)/~. In Eq. (4)
we have assumed a common homogeneous line broadening factor Γvi,v

′ = Γ for molecules in
condensed phases (see e.g. [58, 61, 63, 65, 66, 108]).

The SDF of rR scattering is given with the Lorentzian line shape function as in Eq. (3), i.e.

ρrR,L(ω, ωS) =

∞∑

vi,vf=0

pvi(T )|α
vi→vf
rR (ω)|2L(ω − ωS, ωvf ,vi ; ΓrR), (5)

where ωvf ,vi = (ǫ · vf − ǫ · vi)/~ is the rR Stokes scattering frequency.

Evaluation of equations (3) and (4) in the frequency domain (TI picture) is typically limited to
small molecular systems. For larger systems one would need efficient strategies that exploit sum
rules (see e.g. [11,109]). The complementary TD approach for theoretical molecular spectroscopy
has been used for several decades, in electron transfer theory [73, 75, 78, 80, 81], in Raman
scattering theory [49,54,57,59,60,65–67,69,95], in FC absorption processes [28,29,48,110,111],
in non-Condon processes [33,35,87–89] and in laser cooling theory [32,35,36,38,41]. The energy
eigenstate-free TD approach has long been appreciated for its computational efficiency and its
wavepacket interpretation of the transition process. It describes the transition process via the
time-propagation of initial wavepacket on the excited potential energy surface [57]. To express
the absorption cross section (Eq. (3)) and the rR scattering amplitude (Eq. (4)) in time domain,
one invokes the Fourier transformed representation of the Lorentzian line shape function in
Eq. (3) and the half-Fourier transformed (a special case of Laplace transform) representation of
the frequency dependent weight function, the denominator in Eq. (4). That is for the absorption
process [57, 66]

ρL(ω;T ) = ~
−1

∫ ∞

−∞
dt

∞∑

v,v′=0

pv(T )|〈v′|µ̂(Q)|v〉|2 exp[i(ω − (ωv′,v + ω0))t− Γ
2 |t|] , (6)

and for the scattering process [57, 66],

α
vi→vf
rR (ω) = − i

~

∫ ∞

0
dτ

∞∑

v′=0

〈vf |µ̂S(Q)†|v′〉〈v′|µ̂L(Q)|vi〉

exp[i(ω − (ωv′,vi
+ ω0))τ − Γ

2 τ ]. (7)
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Now, one can recover the vibrational Hamiltonians corresponding to the expressions (6) and (7)

from the vibrational frequencies, e.g. eiǫ·vt/~|v〉 = eiĤt/~|v〉. The SDF of OPA is rewritten as
follows (see e.g. Refs. [57, 66])

ρL(ω;T ) = ~
−1

∫ ∞

−∞
dt χ(t;β) exp[i(ω − ω0)t− Γ

2 |t|] . (8)

χ(t;T ) is the thermal time-correlation function (TCF) in a trace form as, i.e.

χ(t;T ) = Z−1
I Tr

(
µ̂(Q)† exp(−iĤ ′t/~)µ̂(Q) exp(iĤt/~) exp(−βĤ)

)
, (9)

where the vibrational partition function is ZI = Tr
(
exp(−βĤ)

)
and the Boltzmann factor

pv(T )|v〉 = Z−1
I exp(−β~ωv)|v〉 = Z−1

I exp(−βĤ)|v〉.
Similarly, the rR amplitude is expressed in TD language as

α
vi→vf
rR (ω) = − i

~

∫ ∞

0
dτ χα(τ ; vi, vf ) exp[i(ω − ω0)τ − Γ

2 τ ], (10)

where the rR amplitude TCF (χα) is defined with the vibrational transition operator |vi〉〈vf |,

χα(τ ; vi, vf ) = Tr
(
µ̂S(Q)† exp(−iĤ ′τ/~)µ̂L(Q) exp(iĤτ/~)|vi〉〈vf |

)
. (11)

where we have used the resolution of identity
∑∞

v′=0 |v′〉〈v′| = 1̂. The initial wavepacket

propagating on its ground potential energy surface (PES) is excited to the upper PES given
by the electronic transition dipole moment (TDM), and the resulting wavepacket propagates
subsequently on this excited PES. Then the wavepacket returns to the vibronic state on
the ground electronic state by the electronic TDM. The Fourier transform (FT) of the time
correlations corresponds to a spectrum in the frequency domain.

The rR SDF can be expressed from Eqs. (5) and (10) in incident and scattered photon
frequency domain with one Fourier [−∞,∞] transformation for the function L in Eq. (5) and
two half-Fourier [0,∞] transformations from Eq. (10), i.e.

ρrR,L(ω, ωS) =Z−1
I ~

−3
∞∑

vi,vf=0

∫ ∞

−∞
dt

∫ ∞

0
dτ

∫ ∞

0
dτ ′χα(τ

′; vi, vf )
∗χα(τ ; vi, vf )

exp[i(ω − ω0)(τ − τ ′)− Γ
2 (τ + τ ′)] exp[i(ω − ωS)t− ΓrR

2 |t|] (12)

=~
−3

∫ ∞

−∞
dt

∫ ∞

0
dτ

∫ ∞

0
dτ ′χrR(t, τ, τ

′;T )

exp[i(ω − ω0)(τ − τ ′)− Γ
2 (τ + τ ′)] exp[i(ω − ωS)t− ΓrR

2 |t|], (13)

where we define a 3-point (t, τ, τ ′) thermal TCF in a trace form for rR intensity,

χrR(t, τ, τ
′;T ) =Z−1

I Tr
(
exp(−iĤτ ′/~)µ̂L(Q)† exp(iĤ ′τ ′/~)µ̂S(Q) exp(−iĤt/~)

µ̂S(Q)† exp(−iĤ ′τ/~)µ̂L(Q) exp(iĤτ/~) exp(iĤt/~) exp(−βĤ)
)
. (14)

For the treatment of FC-forbidden or weakly FC-allowed transitions (|µ
0
| = 0 or |µ

0
| ≃ 0,

respectively), one must go beyond the FC approximation (i.e. beyond the assumption of
µ̂(Q) = µ

0
) and incorporate the dependence of µ̂ on the vibrational degrees of freedom (DOF).
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Conventionally this expansion is provided in terms of the initial state coordinates Q. In this
case the electronic TDM is expanded at least to the linear order, i.e. the Herzberg–Teller (HT)
expansion.

µ̂(Q) = µ
0
+
∑

k

µ′
k
Q̂k + · · · , (15)

where the zero-th order (µ
0
) and the first order (µ′) expansion vectors are determined by the

first order perturbation of electron and nuclear Coulombic interaction relative to the nuclear
coordinate change. The first order derivative of the electronic TDM with respect to the k-th
normal mode Qk at the equilibrium structure (Q = Q

0
) of the electronic ground state, i.e. µ′

k
can be calculated analytically either via the traditional perturbation theory formulation (see
e.g. Refs. [17, 38, 98, 112]) or the linear response approach (see e.g. Ref. [45]). Usually, the
gradient of the electronic TDM was evaluated numerically by shifting the molecular equilibrium
structure along the normal modes (see e.g. Refs. [31, 98]), which leads, however, to difficulties
due to the phase of the electronic TDM.

The time-independent representation for the absorption spectrum of Eq. (3), the SDF, can
then be decomposed into the FC and higher order non-Condon contributions, respectively. This
term-wise expansion yields

ρFC,L(ω;T ) = |µ
0
|2

∞∑

v,v′=0

pv(T )|〈v′|v〉|2L(ω, ω0 + ωv′,v; Γ) , (16)

for the FC contribution and

ρFC/HT,L(ω;T ) = 2
N∑

i=1

µ
0
· µ′

i

[ ∞∑

v,v′=0

pv(T )〈v′|Q̂i|v〉〈v|v′〉L(ω, ω0 + ωv′,v; Γ)
]
, (17)

ρHT,L(ω;T ) =

N∑

i,j=1

µ′
i
· µ′

j

[ ∞∑

v,v′=0

pv(T )〈v′|Q̂i|v〉〈v|Q̂j |v′〉L(ω, ω0 + ωv′,v; Γ)
]
, (18)

for the Franck–Condon/Herzberg–Teller interference (FC/HT) and HT contributions. The
FCHT term weighted density of states (FCHTW) is then defined as,

ρL(ω;T ) ≃ ρFCHTW,L(ω;T )

= ρFC,L(ω;T ) + ρFC/HT,L(ω;T ) + ρHT,L(ω;T ) . (19)

Those term-wise expressions and the corresponding TCFs are exploited for the HT GF
developments of the TI and TD approaches in Ref. [101]. The rR scattering SDF can also
be expressed in the term-wise fashion with the HT expansion. But the explicit expansions will
not be shown in this article. The HT expansion expression for rR can be found in many books
and articles (see e.g. Refs. [53, 107]).

For the evaluation of the SDFs and TCFs in two sets of harmonic oscillator basis, we need
to consider, in which coordinate system the two sets of harmonic oscillators are defined. The
matrix elements in the TI and TD approach are typically evaluated by integration in position
space. When the vibronic wavefunctions in the initial and final electronic states are expressed in
the corresponding normal coordinate systems, the relation between the two coordinate systems
has to be defined for the integral evaluation. This will be discussed in the following section.
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2.2. Duschinsky rotation

In evaluating overlap integrals and matrix elements in the vibrational wavefunction basis of two
electronic states within the BO approximation, the choice of the coordinate system (in which
the vibrational wavefunctions of two different BO surfaces are defined) is crucial.

If the two BO surfaces can be approximated as two harmonic potential surfaces, it appears
beneficial to approximate the vibrational wavefunctions with harmonic oscillators centred at
the corresponding equilibrium molecular structures instead of using one common set. One has
to evaluate, therefore in the most general case, inseparable multi-dimensional overlap integrals
for Franck–Condon factors (FCFs). When the vibrational wavefunctions of the two electronic
states were expressed in one centre basis set (e.g. harmonic oscillator basis set), it would be
trivial to evaluate the overlap integrals. However, at this point one would typically need a larger
basis set to describe the vibrational wavefunction properly for both electronic states (where the
local potential minima are shifted relative to each other) which increases the computational
complexity.

Herein the two reference point approach is adopted within the harmonic and Duschinsky
approximation. The corresponding matrix element of an operator f̂ in the Duschinsky rotated
harmonic oscillator basis set reads

〈v′|f̂ |v〉. (20)

When f̂ = 1̂, the matrix element simply becomes a FC integral, and when f̂ = Q̂i, the matrix
element becomes a linear (first order) HT integral of the i-th position operator of the initial
electronic state. The initial and final vibrational eigenstates are described in molecule fixed
axis systems attached to each equilibrium molecular structure. We choose particular molecule
fixed axis systems which minimise the coupling between rotational and vibrational DOF so that
we can use a separation approximation ansatz for rotational and vibrational wavefunctions.
This assumption could be supported by the Eckart conditions [113–115], which minimise, when
fulfilled, the rovibrational coupling in the molecular Hamiltonian (see e.g. Ref. [116]), for the
molecular system.

The coordinate space representations of the vibrational states can be obtained by projecting
onto the position operator eigenstates |Q〉 and |Q′〉, where Q and Q′ are the mass-weighted

normal coordinates, i.e. 〈Q|v〉 and 〈Q′|v′〉.
Even if we could successfully separate the vibrational motions from the other DOF by the

Eckart transformations [113–115] (which is, however, not possible), we would need to consider
the alignment between the two coordinate systems carefully, because sudden axis-switching [117]
can cause artifacts in the vibronic spectrum calculations. When the equilibrium structures of the
two electronic states are different, the axis systems (r and r′) from the Eckart conditions related
to the corresponding equilibrium structures are typically differently oriented. We determine the
alignment of the two axis systems by employing the Eckart condition again but with respect to
the initial equilibrium structure as reference structure. Then the two axis systems (r and r′)
are adjusted to the initial state molecule fixed axes. The Cartesian coordinates are related by a
rotation matrix depending on the normal coordinate (Q), i.e.

r′ = T(Q)r. (21)

The rotation matrix is called Eckart transformation matrix (axis-switching matrix) [34, 118]
and it is a unitary transformation matrix, i.e.

T(Q)tT(Q) = I . (22)

Then we have a linear transformation between the two sets of normal coordinates by introducing
the coordinate expansion to the Eckart transformation matrices in Eq. (21) and neglecting
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nonlinear terms (see e.g. Refs. [34, 102, 118]). The Duschinsky linear transformation relation is
given as

Q′ = d+ SQ+O(Q2) , (23)

which is already a good approximation for vibronic spectra [119]. Here S is the Duschinsky mode
mixing matrix, which rotates the initial normal coordinates Q, and the displacement vector d is
associated to the molecular structural changes shifting the origin of the final harmonic oscillators
to that of the initial ones.

Ideally, for the N -dimensional harmonic oscillator (complete separation of the rotational
and translational motions from the vibrational modes), the Duschinsky rotation matrix S is an
orthogonal matrix and its determinant is unity. Then the Duschinsky relation (23) becomes
exactly a linear unitary transformation and the higher order nonlinear expansion terms vanish.
However, in polyatomic molecular systems this normal coordinate transformation is generally
nonlinear (see e.g. Refs. [34,96,114,117,120–123]). The Eckart transition matrix T(Q) depends
nonlinearly on the instantaneous displacements from the equilibrium structures.

To evaluate overlap integrals of CSs, FC integrals and non-Condon integrals exploiting
the coordinate space representations of CSs and harmonic oscillator eigenstates, we need to
transform one coordinate representation to the other according to the Duschinsky relation (23).
The Duschinsky linear equation (23) is translated into a unitary transformation operator for the
coordinate systems appearing in the overlap integration.

The N -dimensional harmonic oscillator Hamiltonian is defined as for the initial electronic
state

Ĥ =
1

2
P̂ · P̂ +

1

2
Q̂

t
Ω4Q̂− Ezp

=
~

2
â†tΩ2â, (24)

in terms of the annihilation ({âi}) and the creation ({â†i}) operators corresponding to the
harmonic oscillators with harmonic energies {ǫi}. The diagonal matrix of the (square root)
harmonic angular frequencies is defined and used,

Ω = ~
−1
2diag(ǫ)

1
2 , (25)

where ”diag” stands for diagonal and transforms a vector to a square matrix with the diagonal
elements being identical to the vector and the off-diagonal elements being zero. In addition,
the zero-point vibrational energy (Ezp = 1

2Tr(diag(ǫ))) is subtracted from the vibrational
Hamiltonian for convenience. The operators satisfy the following relations,

Q̂ =
√

~

2Ω
−1(â† + â), (26)

P̂ = i
√

~

2Ω(â† − â). (27)

The commutation relations of the annihilation and creation operators are

[âi, âj ] = 0, [â†i , â
†
j ] = 0, [âi, â

†
j ] = δij . (28)

The harmonic oscillator eigenfunctions in coordinate space contain products of one-dimensional
Hermite polynomials (Hv(x) = (−1)vex

2 dv

dxv e−x2
),

〈Q|v〉 =
N∏

i=1

1√
2vi vi!

(
ǫi
π~2

)1
4
e−

ǫiQ
2
i

2~2 Hvi

(√
ǫi
~2
Qi

)
, (29)
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where |v〉 is an N -dimensional occupation number vector (ONV) representation of the N -
dimensional harmonic oscillator eigenstates with corresponding vibrational energy Ev = v · ǫ.
The action of the annihilation and creation operators on the ONV follows

âi|v〉 =
√
vi|v1, . . . , vi − 1, . . . , vN 〉, â†i |v〉 =

√
vi + 1|v1, . . . , vi + 1, . . . , vN 〉. (30)

Similarly the N -dimensional harmonic oscillator Hamiltonian of the final electronic state is
given by

Ĥ ′ =
1

2
P̂

′ · P̂ ′
+

1

2
Q̂

′t
Ω

′4Q̂
′ − E′

zp

=
~

2
â
′†tΩ

′2â′, (31)

in terms of the annihilation ({â′i}) and the creation ({â′†
i }) operators corresponding to harmonic

oscillators of harmonic energies {ǫ′i}. The diagonal matrix of (square root) harmonic angular
frequencies is

Ω′ = ~
−1
2diag(ǫ′)

1
2 . (32)

Again, the zero-point vibrational energy (E′
zp = 1

2Tr(diag(ǫ
′))) is subtracted from the vibrational

Hamiltonian for convenience.
Doktorov et al. [20,22] defined a unitary operator (ÛDoktorov) which performs the Duschinsky

transformation. It is composed of a translation operator (Ûtranslation), two distortion operators

(Ûdistortion and Û ′
distortion) and a rotation operator (Ûrotation). The unitary operator of Doktorov

et al. [20, 22] is given as

ÛDoktorov = ÛtranslationÛ
′†
distortionÛdistortionÛrotation, (33)

where

Ûtranslation = e
1√
2~

dtΩ′(â†−â)
= e−

i
~
dtΩ′Ω−1P̂ , (34)

Û ′
distortion = e−

1
2 (â

†+â)t ln{Ω′}(â†−â)+
1
2Tr(lnΩ′) = e

i
~
Q̂

t
Ω ln{Ω′}Ω−1P̂+

1
2Tr(lnΩ′), (35)

Ûdistortion = e−
1
2 (â

†+â)t ln{Ω}(â†−â)+
1
2Tr(lnΩ) = e

i
~
Q̂

t
ln{Ω}P̂+

1
2Tr(lnΩ), (36)

Ûrotation = e
1
2 (â

†t ln{S}â−ât ln{S}â†) = e
i
2~ [ΩQ̂,ln{S}Ω−1P̂ ]. (37)

In this article, a unitary operator Û which also performs the Duschinsky transformation is
instead defined [102] in position space similarly to the squeezing operator (see e.g. Ref. [124]),
i.e.

Û =

∫
dQ|Q′〉〈Q|

= | det(S)|
1
2

∫
dQ|SQ+ d〉〈Q|, (38)

Û † = | det(S)|
1
2

∫
dQ|Q〉〈SQ+ d|, (39)
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or equivalently in momentum space as

Û =

(∫
dP̃ |P̃ 〉〈P̃ |

)
Û

(∫
dP |P 〉〈P |

)

= | det(S)|
1
2

∫
dP |P 〉〈StP | exp(−iP · d/~), (40)

Û † = | det(S)|
1
2

∫
dP |StP 〉〈P | exp(iP · d/~), (41)

where the prefactor | det(S)|
1
2 is introduced to restore unitarity Û †Û = 1̂. For the ideal

N -dimensional harmonic oscillators | det(S)| = 1 holds, but for polyatomic systems the quantity
typically slightly deviates from one as discussed. The unitary operator transforms the initial
state operators to the final ones and vice versa, i.e.

Q̂
′
= Û †Q̂Û = SQ̂+ d, (42)

P̂
′
= Û †P̂ Û = (S−1)tP̂ = SP̂ , (43)

in which SSt = I is assumed for the momentum operator transformation, which strictly holds
only for ideal N -dimensional harmonic oscillators (| det(S)| = 1) and approximately holds for
polyatomic molecules which have a quasi-unitary rotation matrix (| det(S)| ≃ 1). Accordingly
we can see the following relations for the position operator eigenstates,

Q̂|Q〉 = Q|Q〉, Q̂
′|Q′〉 = Q′|Q′〉,

Q̂
′|Q〉 = (SQ+ d)|Q〉, Q̂|Q′〉 = S−1(Q′ − d)|Q′〉, (44)

and for the momentum operator eigenstates,

P̂ |P 〉 = P |P 〉, P̂
′|P ′〉 = P ′|P ′〉,

P̂
′|P 〉 = (S−1)tP |P 〉, P̂ |P ′〉 = StP ′|P ′〉. (45)

The annihilation and creation operators in the initial and the final states are related by a
similar equation to the linear Duschinsky expression (23), i.e.

(
â′

â
′†

)
=

1

2

(
J+ (J−1)t J− (J−1)t

J− (J−1)t J+ (J−1)t

)(
â

â†

)
+
√
2

(
δ
δ

)
, (46)

where the N -dimensional square matrix J and the N -dimensional vector δ are defined as

J = Ω′SΩ−1, δ = ~
−1
2Ω′d. (47)

Accordingly the vibrational Hamiltonians are mutually convertible with the Duschinsky unitary
transformation, i.e.

Ĥ ′ = Û †ĤÛ . (48)

The primed and unprimed ONVs states (|v′〉 and |v〉, respectively) are the eigenstates of

primed and unprimed Hamiltonians (Ĥ ′ and Ĥ, respectively). Otherwise, the states will be
indicated by their corresponding Hamiltonians as subscripts, for example |v〉Ĥ′ is an eigenstate
of the primed Hamiltonian but with the unprimed ONV and |v′〉Ĥ is the opposite case. As
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a result of the Duschinsky unitary operator Û the harmonic eigenstates (ONV states) of each
Hamiltonian described in the respective coordinate systems are transformed into each other,

Ĥ
(
Û |v′〉

)
= Ĥ

(
|v′〉Ĥ

)
= Ev′

(
Û |v′〉

)
, (49)

Ĥ ′
(
Û †|v〉

)
= Ĥ ′ (|v〉Ĥ′

)
E′

v

(
Û †|v〉

)
, (50)

where the eigenvalues are given by ONVs belong to different electronic states, i.e. Ev′ = v′ · ǫ
and E′

v = v · ǫ′. Precisely the harmonic eigenstates of initial and final states in each phase space
are transformed to the other phase space by the unitary transformation, i.e.

Û |v′〉 = Û |v′〉Ĥ′ = |v′〉Ĥ , (51)

Û †|v〉 = Û †|v〉Ĥ = |v〉Ĥ′ . (52)

Then the FC integrals in different coordinate systems can be described in one coordinate system
via the Duschinsky unitary transformation operator,

〈v′|v〉 = Ĥ′〈v′|v〉Ĥ = Ĥ〈v′|Û |v〉Ĥ = Ĥ′〈v′|Û |v〉Ĥ . (53)

The CS overlap integral is exploited for the FC or non-Condon integrals because the CS is
the GF of harmonic eigenstates.

2.3. Basic properties of coherent states

Glauber’s coherent state [125] is a special type of quantum harmonic oscillator state which fulfils
the minimal uncertainty relation of position and momentum operators. The mean values of
position and momentum of a quantum mechanical Gaussian wavepacket [126], which is evolving
in time without spreading in the corresponding harmonic potential, follow the motion of a
classical harmonic oscillator in a given harmonic potential. The basic properties of CSs, which
are exploited throughout this article, are briefly reviewed in this section. The Duschinsky unitary
operator (39) is used for computing the CS overlap integral for Duschinsky related (Eq. (23))
CS. Most of the following relations of CSs can be found in Refs. [125, 127], and in many other
articles and books (see e.g. Ref. [92]).

The N -dimensional CS |α〉 is defined as an eigenstate of the annihilation operator â,

â|α〉 = α|α〉, (54)

where α ∈ C
N is a complex-valued N -dimensional vector. The CSs can be expanded in the basis

of harmonic oscillator eigenstates,

|α〉 = exp(−1
2α

†α) exp(αtâ†)|0〉 (55)

= exp(−1
2α

†α)
∞∑

v=0

∏̃−1
2

v

∏v

α
|v〉 , (56)

where we have defined and used the product notations for factorials and powers of vectors,

i.e.
∏̃n1,··· ,nN

x1,··· ,xN
= (
∏

k(x1,k!)
n1,k) · · · (∏k(xN,k!)

nN,k) and
∏n1,··· ,nN

x1,··· ,xN
=
(∏

k x
n1,k

1,k

)
· · ·
(∏

k x
nN,k

N,k

)

respectively. The N -dimensional CSs can be partitioned into subspaces X and Y of dimension
NX and N −NX respectively, i.e. |α〉 = |αX ;αY 〉,

|αX ;αY 〉 = exp(−1
2 |αX |2 − 1

2 |αY |2) exp(αt
Xa†X + αt

Y a
†
Y )|0X ; 0Y 〉. (57)
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Then the coherent-Fock state [124] |vX ;αY 〉 can be constructed by partial derivatives with
respect to {αX;i}, i.e.

|vX ;αY 〉 =
∏̃−1

2

vX
∂̂
vX
αX

(
exp(12 |αX |2)|αX ;αY 〉

)∣∣∣
αX=0

, (58)

where we have defined and used the multi-dimensional partial derivative notation, i.e.

∂̂
n1,··· ,nN
x1,··· ,xN

=

(
∂
∑

k n1,k
∏

k ∂x
n1,k
1,k

)
· · ·
(

∂
∑

k nN,k

∏
k ∂x

nN,k
N,k

)
.

The spatial representation of CSs is given in normalised form

〈Q|α〉 =
∏1

4

(π~2)−1ǫ
exp

[
−1

2
QtΩ2Q+

√
2αtΩQ− 1

2
αtα− 1

2
|α|2

]
. (59)

The conjugate momentum space representation reads

〈P |α〉 =
∏−1

4

πǫ
exp

[
−1

2
P tΩ−2P − i

√
2αtΩ−1P +

1

2
αtα− 1

2
|α|2

]
, (60)

which is in normalised form as well.
CSs can be defined with the help of a unitary operator, the CS displacement operator, which

is defined by

D̂(α) = exp(αtâ† − α†â)

= exp(−1
2

∑

k

[â†k,−âk]|αk|2) exp(αtâ†) exp(−α†â)

= exp(−1
2 |α|2) exp(αtâ†) exp(−α†â) . (61)

Under the action of D̂(α) CSs are created from the vibrational ground state |0〉 via

D̂(α)|0〉 = |α〉 . (62)

The CS displacement operator satisfies the following phase composition rules:

D̂†(α) = D̂−1(α) = D̂(−α), (63)

D̂(α)D̂(γ) = D̂(α+ γ) exp[12(γ
†α− γtα∗)] , (64)

[D̂(α), D̂(γ)] = D̂(α+ γ) 2i Im
(
exp[12(γ

†α− γtα∗)]
)
. (65)

The unitary operation on the annihilation and creation operators look like

D̂(γ)†âD̂(γ) = â+ γ,

D̂(γ)†â†D̂(γ) = â† + γ∗. (66)

Using the phase addition rule of Eq. (64), one finds

D̂(α)D̂(γ)|0〉 = D̂(α)|γ〉
= exp[12(γ

†α− γtα∗)] |α+ γ〉 , (67)

the phase composition state from the vacuum state.
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The operation of the harmonic vibrational Hamiltonian Ĥ (24) on a CS appears relatively
trivial. Unitary (Eq. (68)) and non-unitary (Eq. (69)) transformations of CSs can be shown
by applying the transforming operators to the occupation representation of the CSs, Eq. (56).
Under the exponential such operators simply shift the CS phase, e.g.

e−iĤt/2~|α〉 = |z(t)α〉, (68)

where z(t) = diag(e−iǫ1t/2~, . . . , e−iǫN t/2~). The unitary operation like above is called the
phase-shifting operation. For non-unitary transformations with a diagonal Hamiltonian in the
harmonic oscillator basis, such as for the thermal Boltzmann population of states, an additional
factor appears, i.e.

e−βĤ/2|α〉 = e−
1
2
α†(I−Γ†Γ)α|Γα〉 , (69)

where Γ = diag(e−βǫ1/2, . . . , e−βǫN/2) with the reciprocal temperature β = 1/(kBT ) where T is
the temperature and kB is the Boltzmann constant. Comparing to the unitary operation (68)
the CS phase factor is rescaled as well with the Boltzmann related factors (Γ) and the non-
unitary operation leaves a prefactor (the exponential factor in Eq. (69)) which is related to the
vibrational partition function.

Coherent states (CSs) are over-complete basis sets satisfying the following resolution of
identity [125],

1

πN

∫
d2α|α〉〈α| = 1̂. (70)

Two CSs are not orthogonal [125],

〈γ|α〉 = exp(−1
2 |α|2 − 1

2 |γ|2) exp(γ†α). (71)

The overlap integral of CSs |α〉 and |γ′〉, described by the corresponding normal coordinates

Q and Q′ respectively in the Duschinsky relation (Eq. (23)), can be given in the occupation
representation [23] exploiting the occupation representation of the coherent states (Eq. (56))
such that

〈γ′|α〉 = exp(−1
2α

†α− 1
2γ

′†γ
′

)

∞∑

v,v′=0

〈v′|v〉
∏̃−1

2 ,−
1
2

v,v′

∏v,v′

α,γ
′∗
, (72)

where |v〉 and |v′〉 are the harmonic oscillator eigenstates corresponding to the CSs |α〉 and |γ′〉
respectively. The occupation representation of the overlap integral of the CSs, Eq. (72) is the
GF of the FC integrals with the generating function parameters {αk} and {γ′k}. The CS overlap
integral in the Duschinsky relation is then given by

〈γ′|α〉 = 〈γ′;Q′, P ′|α;Q,P 〉 = 〈γ′;Q,P |Û |α;Q,P 〉

= | det(S)|
1
2

∫
dQ〈γ′|SQ+ d〉〈Q|α〉

= 〈0′|0〉 exp(−1
2ξ

†ξ)J
[
W, r; ξ

]
, (73)

where the collective CS phase vector is used

ξ =

(
α

γ
′∗

)
, (74)
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and the exponential function J is defined as J [A, b;x] = exp(−1
2x

tAx + btx). The overlap
integral of CSs that is represented by the Duschinsky rotated harmonic oscillators can be
integrated in closed form by exploiting the spatial representation of CSs, with the corresponding
spatial representation (or with the corresponding momentum space representation Eq. (60))
Eq. (59) being expressed by exponential functions. The Duschinsky relation, Eq. (23), is taken
into account with the help of Doktorov matrices and vectors [22] as parameters,

W =

(
I− 2Q −2R
−2Rt I− 2P

)
, r =

√
2

(
−Rδ

(I−P)δ

)
. (75)

W is a self-inverse 2N × 2N matrix [5] and the 2N -dimensional vector denoted by r should be
distinguished from the position vector r of section 2.2. The N -dimensional symmetric positive-
definite square matrices Q and P, and the N -dimensional vector δ are given as

Q = (I+ JtJ)−1 , P = JQJt , R = QJt . (76)

The Doktorov matrices are related to each other as [5]

RRt = Q−Q2, RtR = P−P2, (77)

RP−1Rt = Q, RtQ−1R = P, QR+RQ = R. (78)

The vibrational ground state overlap integral (〈0′|0〉) is expressed with the Doktorov matrices
and vector as well,

〈0′|0〉 = 2
N
2



∏1

ǫ′

∏1

ǫ




1
4

det(Q)
1
2 exp

(
−1

2
δt(I−P)δ

)
| det(S)|

1
2

= 2
N
2 | det(R)|

1
2 exp

(
−1

2
δt(I−P)δ

)
. (79)

Equating the occupation representation (72) of CS overlap integral and the expanded spatial
expression (73) with respect to the CS phase variables, and comparing CS phase variables to
collect same orders, we can find the FC integral evaluation scheme (see e.g. Refs. [11,22,31]). The
CS phase variables take a role as FC integral generating function parameters. Similar integral
evaluation scheme for matrix elements of non-Condon operators were developed in Ref. [102]
within the multi-variate Hermite polynomial (MHP) frame work.

2.4. Coherent state-based generating function

In the following subsections we present the generating functions (GFs) for the Franck–
Condon/Herzberg–Teller interference (FC/HT) and Herzberg–Teller (HT) contributions of
Eq. (17) and Eq. (18) respectively, via the incorporation of coherent state (CS) displacement
operators, which were developed for zero Kelvin [11], finite temperature [104] and HT
transition [101].

2.4.1. Generating function for one-photon process To determine the explicit functional forms
for the contributions corresponding to the Franck–Condon (FC), FC/HT and HT expressions

of Eqs. (16)–(18), we now introduce a Boltzmann weighted GF GK with the operators f̂(P̂ , Q̂)

and ĝ(P̂ , Q̂), that is

GK(Z;Λ)(f̂ ,ĝ) = N|〈0′|0〉|−2

∞∑

v,v′=0

〈v′|f̂ |v〉〈v′|(ĝ)|v〉∗
∏2v,2v′

z,z′
e−(vtBǫ+v′tB′ǫ′) , (80)
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in which a collective block diagonal matrix is introduced Z = bldiag(z, z′) where ”bldiag” denotes
a matrix in block diagonal form, where the GF parameters are on the unit circle in phase space
|zk| = 1, |z′k| = 1. The parameters corresponding to temperatures, βk = 1/(kBTk) (with
Boltzmann constant kB and temperature Tk), are combined in the matrix B = diag(β1, . . . , βk)
with analogous expressions holding for primed quantities. Assigning different temperature
parameters rather than a common value to each mode allows selecting specific modes.

After identification of f̂ and ĝ with products of CS displacement operators, we can obtain an
analytic expression for GK and subsequently specialise to the desired FC, FC/HT and HT GF
expressions (corresponding to Eqs. (16), (17) and (18) respectively) via partial derivatives with
respect to CS parameters.

We can evaluate the non-Condon GFGK , which is casted within the occupancy representation
in Eq. (80), analytically through an integral formulation arising from a CS representation [11]. If

we identify f̂ and ĝ with the CS displacement operators (Eq. (61)) within the overlap integrals,
the integral form of the GF becomes

GK(Z;Λ; η, η′) = π−2N |〈0′|0〉|−2

∫
d2αd2γ′K(Λ; ξ)〈z′∗γ′|D̂NC(η)|zα〉〈z′γ′|D̂NC(η

′)|z∗α〉∗ .
(81)

The integration variables are defined as

d2α =
N∏

k=1

d2αk , d2γ′ =
N∏

k=1

d2γ′k , (82)

where

d2αk = dRe(αk)dIm(αk) =
1
2~dPkdQk, (83)

d2γ′k = dRe(γ′k)dIm(γ′k) =
1
2~dP

′
kdQ

′
k, (84)

and with a thermal integral kernel K [104],

K(Λ; ξ) = N det(I+Λ) exp(−ξ†Λξ) . (85)

Here the parameter matrix Λ is assumed to be diagonal with real-valued entries λ = diag(λ)
and λ

′ = diag(λ′), so that Λ = bldiag(λ,λ′). This matrix will be associated with the Boltzmann
factors ((1 + λk)

−1 = exp(−βkǫk) and (1 + λ′
k)

−1 = exp(−β′
kǫ

′
k)). N is a normalisation factor

which turns out, later, to be a reciprocal vibrational partition function, such that

1 = NTr(exp(−β · ĥ) exp(−β′ · ĥ′)), (86)

where the vibrational Hamiltonians are in mode separated form Ĥ =
∑N

k ĥk and Ĥ ′ =
∑N

k ĥ′k
for the initial and final state, respectively. The non-Condon displacement operator is defined as
follows

D̂NC(η) = D̂−1((iηQ′)∗)D̂−1(ηP ′)D̂(ηP )D̂(iηQ), (87)

η̃P =

(
ηP
ηP ′

)
, η̃Q =

(
ηQ
ηQ′

)
, (88)

η = η̃P + iη̃Q . (89)
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This construction does include additional flexibility, such that restrictions can subsequently be
imposed on the resulting GF GK to treat specific cases of interest. Then Eq. (81) reduces to
the analytic form with Gaussian integrals

GK(Z;Λ; η, η′) =Ndet(I+ ZWTZ)
−1
2det(I− ZWTZ)

−1
2R(η, η′)

exp((b+)tZ(I+ ZWTZ)
−1Zb+) exp((b−)tZ(I− ZWTZ)

−1Zb−) . (90)

where the quantities WT = W(T ) and rT = r(T ) are now temperature dependent. Specifically,

WT = (I+Λ)−
1
2W(I+Λ)−

1
2 , rT = (I+Λ)−

1
2 r , (91)

and the temperature dependence enters via the association made above between λk, λ
′
k and the

Boltzmann factor. Here the quantities in Eq. (90) are defined as

R(η, η′) =exp(−1
2η

†η − 1
2η

′†η′) exp(−1
2η

tWη − 1
2η

′†Wη′∗ + rt(η + η′∗))

exp(−iη̃P
tη̃Q + iη̃′P

t
η̃′Q) , (92)

(b+)t(Λ; η, η′) = rtT − 1
2 [η

† + η′t + (ηt + η′†)W](I+Λ)−
1
2 , (93)

(b−)t(Λ; η, η′) = − i
2 [η

† − η′t + (ηt − η′†)W](I+Λ)−
1
2 . (94)

Direct substitution leads to GK(Z;Λ), which is simply a thermally-weighted Franck–Condon
factor (FCF) GF [11],

GK(Z;Λ) = GK(Z;Λ)(1̂,1̂)

= GK(Z;Λ; η, η′)
∣∣
η=0,η′=0

= N det(I+ ZWTZ)
−1
2 det(I− ZWTZ)

−1
2

exp(rtTZ(I+ ZWTZ)
−1ZrT ). (95)

After rearranging the non-Condon GF expression (90) and by specifying the auxiliary parameters
of position and momentum operators belonging to initial and final states, we can introduce
operators up to arbitrary orders with the help of multi-variate Hermite polynomials (MHPs)
(Eq. (104)). The non-Condon GF expression (90) is rewritten as

GK(Z;Λ; η, η′) = GK(Z;Λ)J
[
W̃NCF(Z;Λ), r̃NCF(Z;Λ); η̃

NCF

]
, (96)

with the 8N -dimensional collective auxiliary parameter vector (Eqs. (88) and (89)),

η̃
NCF

=




η̃P
η̃Q
η̃′P
η̃′Q


 . (97)

Note that non-Condon GF separates into a FCF GF part (GK(Z;Λ)) and a non-Condon
contribution (the exponential function, J ) in Eq. (96).
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The 8N -dimensional square matrix W̃NCF and vector r̃NCF are defined as

W̃NCF(Z;Λ) = (98)




(I+W)− 1
2(I+W)Ã−

T (I+W) i
2(I+W) + i

2(I+W)Ã−
T (I−W) −1

2(I+W)Ã+
T (I+W) − i

2(I+W)Ã+
T (I−W)

i
2(I+W) + i

2(I−W)Ã−
T (I+W) (I−W) + 1

2(I−W)Ã−
T (I−W) i

2(I−W)Ã+
T (I+W) −1

2(I−W)Ã+
T (I−W)

−1
2(I+W)Ã+

T (I+W) i
2(I+W)Ã+

T (I−W) (I+W)− 1
2(I+W)Ã−

T (I+W) − i
2(I+W)− i

2(I+W)Ã−
T (I−W)

− i
2(I−W)Ã+

T (I+W) −1
2(I−W)Ã+

T (I−W) − i
2(I+W)− i

2(I−W)Ã−
T (I+W) (I−W) + 1

2(I−W)Ã−
T (I−W)


 ,

and

r̃NCF(Z;Λ) =




r − (I+W)(I+Λ)−
1
2A+rT

ir + i(I−W)(I+Λ)−
1
2A+rT

r − (I+W)(I+Λ)−
1
2A+rT

−ir − i(I−W)(I+Λ)−
1
2A+rT




, (99)

where

Ã±(Z;Λ) = A+(Z;Λ)±A−(Z;Λ), (100)

A±(Z;Λ) = Z(I± ZWTZ)
−1Z, (101)

Ã±
T (Z;Λ) = (I+Λ)−

1
2 Ã±(Z;Λ)(I+Λ)−

1
2 . (102)

We can express the non-Condon GF in terms of MHPs from Eq. (96),

GK(Z;Λ)(f̂ ,ĝ) =
2N∏

k=1

[
i
√

ǫ̃k
2

]l̃k[1
i

√
~2

2ǫ̃k

]m̃k
[
− i
√

ǫ̃k
2

]ñk
[
− 1

i

√
~2

2ǫ̃k

]õk

∂̂
l̃,m̃,ñ,õ
η̃P ,η̃Q,η̃′

P
,η̃′

Q

GK(Z;Λ; η, η′)
∣∣∣
η̃
NCF

=0

=
2N∏

k=1

[
i
√

ǫ̃k
2

]l̃k[1
i

√
~2

2ǫ̃k

]m̃k
[
− i
√

ǫ̃k
2

]ñk
[
− 1

i

√
~2

2ǫ̃k

]õk

Hẽl,m̃,ñ,õ(W̃
−1
NCFr̃NCF;W̃

−1
NCF) , (103)

where the operators (f̂ and ĝ) are identified as f̂ =
∏m′,l′,l,m

Q̂
′
,P̂

′
,P̂ ,Q̂

and ĝ =
∏o′,n′,n,o

Q̂
′
,P̂

′
,P̂ ,Q̂

, in which the

collective indices are used, i.e. l̃
t
= (lt, l

′t), m̃t = (mt,m
′t), ñt = (nt, n

′t) and õt = (ot, o
′t). The

prefactors are multiplied for the corresponding operators in Eq. (103), which can be identified
with the collective indices. The MHP, Heṽ, is for convenience defined (unlike the univariate
Hermite polynomials used in Eq. 29, which are employed in the conventional form used in
quantum mechanics) here as is customary in statistics applications, namely

Heṽ(x;Λc) = (−1)ṽexp(12x
tΛ−1

c x)∂̂ṽ
xexp(−1

2x
tΛ−1

c x), (104)

where ṽ =
∑

k ṽk and Λc is a complex symmetric matrix with a symmetric positive definite real
part.

By evaluating Eq. (103) the FC/HT GF is explicitly expressed as,

GK(Z;Λ)(Q̂i,1̂) =
√

~2

2ǫi
GK(Z;Λ)[r + (I−W)(I+Λ)−

1
2A+rT ]i , (105)
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and the HT GF is given explicitly by,

GK(Z;Λ)(Q̂i,Q̂j) = ~2

2

√
1

ǫiǫj
GK(Z;Λ)

[
[r + (I−W)(I+Λ)−

1
2A+rT ]i[r + (I−W)(I+Λ)−

1
2A+rT ]j

+ 1
2 [(I−W)Ã+

T (I−W)]ij

]
. (106)

One can also determine expressions for position operators of the final electronic state, {Q̂′
i}, by

using the (N + i)-th component, instead of i-th component, of vectors or matrices in Eqs. (105)
and (106) with the corresponding harmonic energy (ǫ′i).

2.4.2. Spectral density functions By using Eqs. (105) and (106) we can construct the
electronic transition dipole moment induced absorption intensity GF with FC, FC/HT and
HT contributions (Eq. (19)), i.e.

ρFCHTW(Z;Λ) =

|〈0′|0〉|2

|µ

0
|2GK(Z;Λ) + 2

∑

i

µ
0
· µ′

i
GK(Z;Λ)(Q̂i,1̂) +

∑

i,j

µ′
i
· µ′

j
GK(Z;Λ)(Q̂i,Q̂j)


 , (107)

associated with the FCHT spectral profile of Eq. (19). Immediately we can exploit these relations
within the thermal time-correlation function (TCF) formalism, where we obtain a simple analytic
form for the exact thermal FC TCF. Employing Lorentzian line shapes, L(t), one obtains the
absorption profile as a one-dimensional Fourier transform (FT),

ρFCHTW,L(ω) = ~
−1

∫ ∞

−∞
dt ρFCHTW(Z(t);Λ)L(t)ei(ω−ω0)t , (108)

where we choose Z(t) = bldiag(z(t), z′(t)) with

z(t) = diag(eiǫ1t/(2~), . . . , eiǫN t/(2~)), (109)

z′(t) = diag(e−iǫ′1t/(2~), . . . , e−iǫ′N t/(2~)) . (110)

It should be noted here that the current development of non-Condon TCF is not restricted to
linear HT expansion. The nonlinear non-Condon TCF can be evaluated by the complex MHPs
in Eq. (103). One can compute moments (see e.g. Refs. [102,128,129]) of the distribution with
the generating function

〈Ek
ǫ′,ǫ〉(T ) =

(
− ~

i

)k ∂k

∂tk
[ρFCHTW(Z(t);Λ)L(t)]

∣∣∣
t=0

, (111)

where 〈Ek
ǫ′,ǫ〉(T ) is the k-th moments at temperature T and the time derivatives can be obtained

analytically and numerically [130]. This time-independent cumulant expansion (CE) (cumulants
and moments are mutually convertable) method were exploited in Refs. [102, 128, 129] with
Edgeworth expanion (see e.g. Ref. [131]) for FC transitions to approximate the distribution
with the first few cumulants. The method was extended to incorporate non-Condon effects in
Ref. [130].

We should mention the work of Islampour and Miralinaghi [87] who devised recently
a TCF for internal conversion (IC) rate involving multi-promoting modes (which mediate
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the intramolecular transition) and vibrational mode mixing effects. These authors exploited
second order multi-variate normal moments for the momentum operator matrix elements of
the promoting modes to evaluate their trace. However this time-dependent (TD) method
is not as generally applicable to various transition problems and the method cannot directly
handle nonlinear coupling problems (cf. Eq. (103)). Peng et al. [88, 89] have reported a similar
development to that of Islampour and Miralinaghi [87].

In this section, the methods for inclusion of non-Condon effects were explained. We extended
the FC thermal GF to the non-Condon effects via the CS phase displacement operators [101,102],
which allows to use a similar mathematical frameworks as the FC prescreening strategy and FC
thermal TCF [104].

3. Single vibronic levels

So far we have assumed the initial states to be in a Boltzmann-distributed ensemble of vibrational
states at finite temperature or a vibrationless state at zero Kelvin for the one-photon absorption
(OPA) process. Those kinds of initial vibrational states for generating functions (GFs) can be
introduced by simple GF parameter assignments (e.g. z = 0 for the vibrational ground state).
The Boltzmann weighted coherent states (CSs) (Eq. (69)) are used in the case of a thermally
averaged ensemble of vibrational states. However, for optical processes such as the single vibronic
level (SVL) fluorescence (see e.g. Refs. [29,132,133]) and the resonance Raman (rR) scattering
we have to consider specific vibronic levels, which are expressed in the fixed quantum levels
during the optical processes.

In SVL fluorescence, a vibronic level which is not necessarily the vibrational ground state in
the excited electronic state is populated by tuning the corresponding laser wavelength [132,133].
The vibronic state on the excited electronic potential energy surface (PES) is called the SVL.
The spectral density function (SDF) of SVL fluorescence is identical to the OPA one in Eq. (3)
but with the reversed initial and final electronic states and a given fixed initial vibronic state
(SVL), which is not included in the summation over vibronic levels. The fluorescence from a
vibrationally excited vibronic state shows often vibrationally well-resolved spectra, unlike the
normal absorption or emission spectra at finite temperature [132,133]. The initial and the final
vibronic levels belonging to the ground electronic states for the rR amplitude (4) appear in rR
scattering process (see Sec. 2.1).

In Ref. [11] we employed the subspaces X and Y given in subsection 2.3 for rigorous
prescreening of Franck–Condon (FC) integrals. We considered therein only one-dimensional
fixed quantum number spaces X, which corresponds to an SVLs in terms of a fixed quantum
number in one vibrational mode, i.e. the single vibrational mode excitation (e.g. |v, 0, · · · , 0〉).
We have not used the spaceX for the SVL time-correlation function (TCF) in the complementary
time-dependent (TD) approach, although by virtue of the developments reported in the previous
sections such an application is straight forward. For coarse-grained integral prescreening in SVL
transition calculations we have to consider at least two-dimensional X spaces. Even for the usual
absorption and emission processes, if we want to have the fine-grained integral prescreening
strategy, we need to consider multi-dimensional X spaces. When non-Condon effects should
be considered, the problem becomes even more difficult. The purpose of this section is thus
to modify the GFs developed in the previous section 2.4.1. The possible modifications could
be applicable to the rR, SVL, fine-grained integral prescreening and anharmonic FC transitions
with the SVLs either in the time-independent (TI) integral prescreening or TD TCF approaches.

There were efforts (see e.g. Refs. [29, 58, 65, 67]) to generate SVLs particularly suited for
the rR excitation profile computation. But most of the applications are restricted to the
single vibrational mode excited states (e.g. |v, 0 · · · , 0〉), Condon approximation and limited
Duschinsky effects. Recently, Santoro et al. [109] developed a TI method based on convergence
criteria for rR scattering which includes Duschinsky and Herzberg–Teller (HT) effects. The
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method, however, is limited to TI and linear HT. We develop herein an arbitrary SVL transition
GFs with the help of multi-variate Hermite polynomials (MHPs) including the thermal and non-
Condon effects. This development is similar to the previous section developments in terms of
the non-Condon effects. The TCF for the thermally averaged rR intensity including arbitrary
order of non-Condon effects is developed in the form of the overlap integral of two rR amplitude
GFs in different time domains. The novelty of our GF approach is that it can provide both
TI and TD methods, including arbitrary order of non-Condon effects and arbitrary SVLs. We
can evaluate TCFs or sum rules for arbitrary SVLs and non-Condon operators with the help of
MHPs.

This section is organised as follows: In the methodology section 3.1, we develop a GF having
fixed quantum number occupation number vector (ONV) spaces. The analytic form of the GF
is derived via the coherent-Fock (cF) state (58) which is a mixture of harmonic eigenstates and
CSs. The development is formulated for the rR profile GFs in section 3.2, SVL transitions in
section 3.3 and anharmonic FC/non-Condon transitions in section 3.4.

3.1. Methodology

In this section, we introduce the arbitrary dimensions in X space by exploiting the MHP
technique to generate the arbitrary SVLs.

With this partitioning, the GF is decomposed into products of contributions in the orthogonal
subspaces X and Y . The subspaces X and Y have dimensions NX and NY = 2N − NX

respectively. The subspaceX corresponds to the vibrational modes with fixed quantum numbers.
The vibrational modes in subspace Y can be excited infinitely and stay in the CS phase integral
space as a result. Integration over one phase variable belonging to one vibrational mode
corresponds to complete summation of the individual vibrational mode contributions to the
total intensity. The corresponding orthogonal projection operators π̂X and π̂Y satisfy the usual
conditions for projection operators. Applying the projection operators to matrices and vectors
indicates the corresponding projection labels, e.g.

π̂Xξ = ξ
X
, π̂Y ξ = ξ

Y
,

π̂XAπ̂X = AXX , π̂XAπ̂Y = AXY , π̂Y Aπ̂X = AY X , π̂Y Aπ̂Y = AY Y . (112)

The GF that we want to have for an arbitrary number of fixed quantum numbers both in
the initial and the final vibronic states would be in the following occupation representation (cf.
Eq. (80) for empty X space GF) with thermally weighted Y space (KY Y = K(ΛY Y ; ξY ), see

Eq. (85)), namely

GKY Y

cF (Z̃cF,ZY Y ;ΛY Y ; ṽKB, ṽBK)
(f̂ ,ĝ)

= NY Y |〈0′|0〉|−2
∞∑

vY ,v′Y =0

〈vBX
; vY |(ĝ)∗|vK′

X
; v′Y 〉〈vB′

X
; v′Y |f̂ |vKX

; vY 〉

∏2vY ,2v′Y

zY ,z′
Y

e−(vtY BY Y ǫY +v′tY B′
Y Y ǫ′Y )

∏vKX
,vBX

,vB
′
X
,vK

′
X

zKX
,zBX

,zB′
X
,zK′

X

, (113)

where vBX
and vKX

are NX -dimensional ONVs and vB
′
X

and vK
′
X

are N ′
X -dimensional ONVs

where B and K stand for ”Bra” and ”Ket” respectively. NY Y = 1/Tr(−β
Y
· ĥY ) is a normalising

factor corresponding to the thermal integral kernel KY Y . The collective ONVs are additionally
defined,

ṽKB =

(
vKX

vB
′

X

)
, ṽBK =

(
vBX

vK
′

X

)
, (114)
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and the block-diagonal GF parameter matrix is given by

Z̃cF = bldiag(zK, z
′
B, zB, z

′
K), (115)

with the matrices zK = diag(zK), z′B = diag(zB
′), zB = diag(zB) and z′K = diag(zK

′)
corresponding to the ONVs vKX

, vB
′
X
, vBX

and vK
′
X
, respectively. In the OPA SDF (3) we

have vBX
= vKX

and vB
′
X

= vK
′
X
, but for the generality of the development and for the rR GFs

we make these vibrational ONVs independent of each other. In section 3.3 the constraints are
recovered for the SVL transition to the GF (113).

We express the functional form of the GF (113) by exploiting the cF state (58), which can
be generated by taking partial derivatives of the CSs, i.e.

GKY Y

cF (Z̃cF,ZY Y ;ΛY Y ; ṽKB, ṽBK)
(f̂ ,ĝ)

=
2N∏

k=1

[
i
√

ǫ̃k
2

]l̃k[1
i

√
~2

2ǫ̃k

]m̃k
[
− i
√

ǫ̃k
2

]ñk
[
− 1

i

√
~2

2ǫ̃k

]õk

(
∂̂
l̃,m̃,ñ,õ
η̃P ,η̃Q,η̃′

P
,η̃′

Q

)
∏̃

−1
2 ,−

1
2

vBX
,vKX

∂̂
vBX

,vKX

αB
∗
X
,αKX




∏̃

−1
2 ,−

1
2

vB′
X
,vK′

X

∂̂
vB

′
X
,vK

′
X

γK
′

X
,γB

′∗
X




GKY Y

cF (Z̃cF,ZY Y ;ΛY Y ; ξ̃BK
, ξ̃

KB
; η, η′)

∣∣∣
ξ̃
KB

,ξ̃
BK

,η̃
NCF

=0
, (116)

where

ξ̃
KB

=

(
αKX

γB
′∗
X

)
, ξ̃

BK
=

(
αBX

γK
′∗
X

)
. (117)

In Eq. (116) we have inserted the CS displacement operators (D̂NC, Eq. (87)) to produce
non-Condon operators with the corresponding partial derivatives. The collective vectors are

used additionally l̃
t
= (lt, l

′t), m̃t = (mt,m
′t), ñt = (nt, n

′t) and õt = (ot, o
′t). The integral form

of the CS-based GF, GKY Y

cF (ZXX ,ZY Y ;ΛY Y ; ξ̃KB
, ξ̃

BK
; η, η′) is, then, given as

GKY Y

cF (Z̃cF,ZXX ,ZY Y ;ΛY Y ; ξ̃KB
, ξ̃

BK
; η, η′)

= π−(NY +N ′
Y )|〈0′|0〉|−2 exp(12 |ξ̃KB

|2 + 1
2 |ξ̃BK

|2)
∫

d2αY d
2γ′

Y
K(ΛY Y ; ξY )

〈z′∗
BγB

′
X
; z

′∗
Y Y γ

′
Y
|D̂NC(η)|zKαKX

; zY Y αY 〉〈z′KγK′
X
; z′Y Y γ

′
Y
|D̂NC(η

′)|z∗BαBX
; z∗Y Y αY 〉∗ . (118)

Then the resulting expression after integration is obtained in separated form with the FC
contribution, the non-Condon part and the SVL and non-Condon contribution, of the vibrational
modes belonging to the space Y , Y and X, respectively,

GKY Y

cF (Z̃cF,ZY Y ;ΛY Y ; ξ̃KB
, ξ̃

BK
; η, η′) =

GKY Y (ZY Y ;ΛY Y )J [W̃NCF;Y Y (ZY Y ;ΛY Y ), r̃NCF;Y (ZY Y ;ΛY Y ); η̃NCF;Y
]

J [Z̃cFW̃cF(ZY Y ;ΛY Y )Z̃cF, Z̃cFb̃cF(ZY Y ;ΛY Y ; η, η
′); ξ̃

cF
], (119)

with the collective vectors and matrices,

ξ̃
cF

=

(
ξ
KB
ξ∗
BK

)
, (120)
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W̃cF(ZY Y ;ΛY Y ) =
1

2

(
(W̃+

T ;XX + W̃−
T ;XX) (W̃+

T ;XX − W̃−
T ;XX)

(W̃+
T ;XX − W̃−

T ;XX) (W̃+
T ;XX + W̃−

T ;XX)

)
, (121)

b̃cF(ZY Y ;ΛY Y ; η, η
′) =

(
b̃
+
X − ib̃

−
X

b̃
+
X + ib̃

−
X

)
, (122)

where the components of W̃cF and b̃cF are defined as follows [11, 102,104]

W̃±
T ;XX(ZY Y ) = WT ;XX ∓WT ;XY ZY Y ((I± ZWTZ)Y Y )

−1ZY Y WT ;Y X , (123)

r̃+T ;X(ZY Y ) = rT ;X −WT ;XY ZY Y ((I+ ZWTZ)Y Y )
−1ZY Y rT ;Y . (124)

We can evaluate the cF GF with Eq. (116). If we can rearrange Eq. (119) to be expressed in
terms of MHPs, it will be easy to automatise the calculation. The arrangement is straightforward
but lengthy. Herein we present thus only explicitly the FC cF GF, in a simple form, as a special
case ignoring the non-Condon operators, i.e.

GKY Y

cF (Z̃cF,ZY Y ;ΛY Y ; ξ̃KB
, ξ̃

BK
; η, η′)

∣∣∣
η,η′=0

= GKY Y

cF (Z̃cF,ZY Y ;ΛY Y ; ξ̃KB
, ξ̃

BK
)

= GKY Y (ZY Y ;ΛY Y )J [Z̃cFW̃cF(ZY Y ;ΛY Y )Z̃cF, Z̃cFr̃cF(ZY Y ;ΛY Y ); ξ̃cF], (125)

where

r̃cF(ZY Y ;ΛY Y ) =

(
r̃+T ;X

r̃+T ;X

)
, (126)

and the vector component is defined in Eq. (124). Eq. (125) can be rearranged to give the FC
cF GF in MHPs, i.e.

GKY Y

cF (Z̃cF,ZY Y ;ΛY Y ; ṽKB, ṽBK)

=


∏̃

−1
2 ,−

1
2

vBX
,vKX

∂̂
vBX

,vKX

αB
∗
X
,αKX




∏̃

−1
2 ,−

1
2

vB′
X
,vK′

X

∂̂
vB

′
X
,vK

′
X

γK
′

X
,γB

′∗
X




GKY Y

cF (Z̃cF,ZY Y ;ΛY Y ; ξ̃BK
, ξ̃

KB
)
∣∣∣
ξ̃
KB

,ξ̃
BK

=0

=


∏̃

−1
2 ,−

1
2

vBX
,vKX




∏̃

−1
2 ,−

1
2

vB′
X
,vK′

X




GKY Y (ZY Y ;ΛY Y )HeṽKB,ṽBK
(
(
Z̃cFW̃cFZ̃cF

)−1
r̃cF;

(
Z̃cFW̃cFZ̃cF

)−1
), (127)

which can be evaluated recursively or iteratively. We can introduce an arbitrary number of
fixed quantum numbers in the GFs as in Eq. (113) exploiting the equations (119) and (125)
for non-Condon and Condon processes respectively in combination with the partial derivatives
Eq. (116). With the cF GF (119) we try to obtain GFs for the rR (Sec. 3.2), the SVL transition
(Sec. 3.3) and the anharmonic OPA transition (Sec. 3.4) in the following sections.

Symmetries in Science XV IOP Publishing
Journal of Physics: Conference Series 380 (2012) 012019 doi:10.1088/1742-6596/380/1/012019

23



3.2. Application to resonance Raman scattering

We can express the rR amplitude TCF (χα) of Eq. (11) in harmonic approximation with the
cF GF Eq. (119). In the TCF for the rR excitation profile we have no fixed quantum numbers
in the excited electronic state and all vibrational quantum numbers in the ground electronic
state are fixed, i.e. (NX = N,NY = 0) and (N ′

X = 0, N ′
Y = N) such that X represents ground

electronic states and Y represents excited electronic states in this section. We can express in the
TCF the scalar products of transition dipole moment (TDM) and polarisation vectors (µS(Q)

and µL(Q) in Eq. (4)) similarly to the linear HT approximation reported in Eq. (15). Then we
obtain

χα(τ ; vi, vf ) ≃ |〈0′|0〉|2
(
(µS

0)
†µL

0G
KY Y

cF (̃IcF, z
′(τ);ΛY Y ; ṽKB, ṽBK)

+
∑

i

(µ
′S
i )†µL

0G
KY Y

cF (̃IcF, z
′(τ);ΛY Y ; ṽKB, ṽBK)

(Q̂i,1̂)

+
∑

i

(µS
0)

†µ
′L
i GKY Y

cF (̃IcF, z
′(τ);ΛY Y ; ṽKB, ṽBK)

(1̂,Q̂i)

+
∑

i,j

(µ
′S
i )†µ

′L
j GKY Y

cF (̃IcF, z
′(τ);ΛY Y ; ṽKB, ṽBK)

(Q̂i,Q̂j)
)
, (128)

with proper set up for GF parameters ZY Y (τ) = z′(τ) as in Eq. (110) for the TCF of the

vibronic absorption profiles and ĨcF = bldiag(IXX , IXX). There were other GF approaches (see
e.g. Refs. [65] and [67]) including the Duschinsky effects proposed that are similar to the current
developments, but the approaches have limitations for the dimension of X and for including
thermal effects in a closed formula within the Condon approximation. The current approach
can handle arbitrary SVLs and non-Condon (linear and nonlinear HT terms in rR scattering
cross section) effects. We can obtain a closed form, with the help of the CS formalism, for the
rR intensity TCF (14), namely the 3-point-TCF, i.e.

GK
rR(Z̃cF(t),ZY Y (τ),ZY Y (τ

′);ΛY Y , Λ̃cF; η1, η1
′, η2, η2

′)

= π−2N

∫
d2αKd

2αBK(Λ̃cF; ξ̃cF) exp(−|ξ̃
cF
|2)

GKY Y

cF (Z̃cF(t),ZY Y (τ);ΛY Y ; ξ̃KB
, ξ̃

BK
; η1, η1

′)

GKY Y

cF (Z̃∗
cF(t),ZY Y (τ

′);ΛY Y ; ξ̃KB
, ξ̃

BK
; η2, η2

′)∗, (129)

which is in the form of an overlap between two rR amplitude GFs, in different time domains (τ

and τ ′), where the thermal parameter matrix Λ̃cF = bldiag(ΛXX ,ΛXX)
1
2 is used. It is worth to

note here in passing that we suggest a closed integral form of the rR cross section in harmonic
approximation including Duschinsky and thermal effects in a functional analogy to the Förster-
type energy transfer processes (see e.g. Ref. [134]) which is in a form of a convolution between the
absorption and the emission spectra. We can transform the integration into a 2N -dimensional
Gaussian integral

I2N [A, b] = det(A)−
1
2 exp(btA−1b) (130)
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and obtain the Gaussian integral

GK
rR(Z̃cF(t),ZY Y (τ),ZY Y (τ

′);ΛY Y , Λ̃cF; η1, η1
′, η2, η2

′)

= GKY Y (ZY Y (τ);ΛY Y )G
KY Y (ZY Y (τ

′);ΛY Y )
∗

J [W̃NCF;Y Y (ZY Y (τ);ΛY Y ), r̃NCF;Y (ZY Y (τ);ΛY Y ); η̃1NCF;Y
]

J [W̃NCF;Y Y (ZY Y (τ
′);ΛY Y ), r̃NCF;Y (ZY Y (τ

′);ΛY Y ); η̃2NCF;Y
]∗

NcFI2N [I− Z̃rR(t)W̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF)Z̃rR(t)

, 12 Z̃rR(t)b̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y ,ΛcF)], (131)

where the 4N -dimensional square matrix and vector are defined as

W̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF) =

1

2

((
W̃cF;T (ZY Y (τ);ΛY Y ) + W̃cF;T (ZY Y (τ ′);ΛY Y )∗

)
i
(
W̃cF;T (ZY Y (τ);ΛY Y ) − W̃cF;T (ZY Y (τ ′);ΛY Y )∗

)

i
(
W̃cF;T (ZY Y (τ);ΛY Y ) − W̃cF;T (ZY Y (τ ′);ΛY Y )∗

)
−
(
W̃cF;T (ZY Y (τ);ΛY Y ) + W̃cF;T (ZY Y (τ ′);ΛY Y )∗

)
)
, (132)

b̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF; η1, η1

′, η2, η2
′)

=

(
b̃cF;T (ZY Y (τ);ΛY Y ; η1, η1

′) + b̃cF;T (ZY Y (τ
′);ΛY Y ; η2, η2

′)∗

i
(
b̃cF;T (ZY Y (τ);ΛY Y ; η1, η1

′)− b̃cF;T (ZY Y (τ
′);ΛY Y ; η2, η2

′)∗
)
)
, (133)

and

Z̃rR = bldiag(Z̃cF, Z̃cF)
1
2 . (134)

The thermally weighted quantities used are

W̃cF;T = (I+ΛcF)
−1
2W̃cF(I+ΛcF)

−1
2 , (135)

b̃cF;T = (I+ΛcF)
−1
2 b̃cF. (136)

NcF = 1/Tr(exp(−β · ĥ)) is a normalising factor for the thermal integral kernel, with the N -

dimensional vibrational Hamiltonian (Ĥ =
∑N

i ĥi).
In the Condon approximation, the expression (Eq. (113)) is simplified as

GK
rR(Z̃cF(t),ZY Y (τ),ZY Y (τ

′);ΛY Y , Λ̃cF)

= GKY Y (ZY Y (τ);ΛY Y )G
KY Y (ZY Y (τ

′);ΛY Y )
∗

NcFI2N [I− Z̃rR(t)W̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF)Z̃rR(t)

, 12 Z̃rR(t)r̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y ,ΛcF)], (137)

where

b̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF; η1, η1

′, η2, η2
′)
∣∣∣
η1,η1′,η2,η2′=0

= r̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF)

=

(
r̃cF;T (ZY Y (τ);ΛY Y ) + r̃cF;T (ZY Y (τ

′);ΛY Y )

i
(
r̃cF;T (ZY Y (τ);ΛY Y )− r̃cF;T (ZY Y (τ

′);ΛY Y )
)
)
. (138)

Symmetries in Science XV IOP Publishing
Journal of Physics: Conference Series 380 (2012) 012019 doi:10.1088/1742-6596/380/1/012019

25



GK
rR(t, τ, τ

′) is a 3-point-TCF in an analytic closed form for the rR intensity including
Duschinsky, thermal and non-Condon effects (Albrecht B and C terms [53]). The evaluation
is straightforward with the help of MHP technique for non-Condon operators. GK

rR provides
not only the TCFs but also the sum rule for the Raman intensity [62] by setting ZrR(t) to the
identity matrix which can lead to possible prescreening strategies for the rR intensity profile.
In the rR calculation the peaks are identified by computing the individual scattering amplitude
from the amplitude TCF in Eq. (128). If we know the individual contributions from the sum
rule, we can avoid the efforts to compute many scattering amplitudes that have negligible impact
on the profile.

The explicit expressions for the rR amplitude and intensity in Condon approximation are
given in the Appendix where only the vibrational modes in initial state are allowed to be
thermally excited at finite temperature.

3.3. Application to single vibronic level transitions

It is straightforward to derive the GF of the SVL transition from the cF GF in Eq. (116). Herein
we introduce constraints vBX

= vKX
and vB

′
X

= vK
′
X

which will reduce the dimension of the
corresponding MHPs to half, i.e.

GKY Y

SVL (ZXX ,ZY Y ;ΛY Y ; ξX ; η, η′) = GKY Y (ZY Y ;ΛY Y )

J [W̃NCF;Y Y (ZY Y ;ΛY Y ), r̃NCF;Y ; η̃NCF;Y
]

J [2ZXXW̃+
T ;XX(ZY Y ;ΛY Y )ZXX , 2ZXX(b̃

+
X)t(ZY Y ;ΛY Y ; η, η

′); ξ
X
], (139)

where we have assumed that the generating variables are real numbers, i.e.

αKX
= αB

∗
X

= αX ∈ R, (140)

γB
′∗
X

= γK
′
X

= γ′
X

∈ R. (141)

In the SVL transition the ONV of the initial vibronic state is in the fixed quantum number
space X, but also some of the final vibrational modes have fixed quantum numbers for possible
prescreening applications, i.e. NX = N , NY = 0, 0 ≤ N ′

X ≤ N and N ′
Y = N −N ′

X . In Condon
approximation the expression is further simplified as

GKY Y

SVL (ZXX ,ZY Y ;ΛY Y ; ξX) = GKY Y (ZY Y ;ΛY Y )

J [2ZXXW̃+
T ;XX(ZY Y ;ΛY Y )ZXX , 2ZXX(r̃+T ;X)t(ZY Y ;ΛY Y ); ξX ]. (142)

We can also have a similar MHP expression in Eq. (127) for the FC SVL GF

GKY Y

SVL (ZXX ,ZY Y ;ΛY Y ; ṽX)

=


∏̃

−1
2

ṽX


GKY Y (ZY Y ;ΛY Y )

HeṽX

(
(2ZXXW̃+

T ;XXZXX)−1r̃+T ;X ; (2ZXXW̃+
T ;XXZXX)−1

)
. (143)

We can obtain the SVL transition TCF from the GF (143) with the TD GF parameter
ZY Y = z′(t) in Eq. (110). The resulting expression is not given in a closed form, but we
can evaluate the TCF with the MHPs carrying complex numbers from the TD GF parameters.
Additionally we can also apply the SVL transition GF to fine-grained integral prescreening
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strategies directly with the integral space partitioned expressions (139) and (142) for multi-
dimensional X spaces.

The explicit expression for the SVL transition in Condon approximation is given in Appendix,
where only the vibrational modes in initial state are allowed to be thermally excited at finite
temperature.

3.4. Application to transition between anharmonic oscillators

FC or non-FC transition moments computed for the approximated harmonic PESs are in general
not sufficient to describe transitions between states in which for instance large amplitude motions
are relevant (see e.g. Ref. [123]). In this case one would have to start from the full rovibrational
Hamiltonian such as the Watson [135] or Meyer-Günthard [136] molecular Hamiltonian, which
include terms coupling momentum and position operators as well as anharmonic potential energy
terms.

Numerous approaches for propagating wavepackets on general potential energy surfaces
in time domain have been proposed to compute vibronic spectra, for instance the Gaussian
wavepacket approach [110, 137], the multi-configurational time dependent Hartree (MCTDH)
method [138,139] and the coupled CS method [140]. In these approaches, the initial wavepacket
evolves on the final PES which provides the time correlation functions. The corresponding
Fourier transform (FT) gives the vibronic spectrum in frequency domain. One of the major
demands for computational approaches, however, is the peak assignment and identification of
(exact) excitation energy levels, which can not be given directly by the TD approaches.

In TI approaches one typically obtains the vibrational anharmonic eigenfunctions from the
molecular Hamiltonian by perturbation methods (see e.g. Refs. [31,141–146]) or by diagonalising
it in a given finite basis set representation for instance in harmonic oscillator states and
(complex) Gaussian functions. The anharmonic transition amplitudes can then be calculated
by perturbation methods and basis set expansion approaches, respectively.

In all these approaches the TI method for FC transitions between anharmonic vibrational
states is computationally expensive because of the multitude of overlap integrals to be evaluated.
The situation is even worse, if we need to consider the Duschinsky mode mixing effects (Sec. 2.2).
There were some approaches proposed (see e.g. Refs. [18, 147–151]) to avoid the mode mixing
problem by expanding the wavefunctions with a one-centre basis set. However, the one-centre
basis set expansion of the anharmonic vibrational wavefunctions usually requires a larger number
of basis functions than the two-reference point expansion approach inducing the Duschinsky
rotation between the two basis sets.

The vibrational self-consistent field (VSCF) and vibrational configuration interaction (VCI),
which are related to the Hartree–Fock and configuration interaction (CI) methods, respectively,
in electronic structure theory, are widely used to describe the anharmonic vibrational
wavefunctions with harmonic oscillator eigenfunctions [152–155]. VSCF and VCI wavefunctions,
expanded via the harmonic oscillator eigenfunctions, were used to compute the anharmonic
Franck–Condon factors (FCFs) of three atomic systems [46, 151, 155]. In the work of Huh
et al. [46], we computed the potodetachment-photoelectron spectra of HS−2 and DS−2 to their
neutral electronic ground and first electronically excited states by calculating the FC profiles
based on VCI wavefunctions from the Watson molecular Hamiltonian [135] expanded in terms of
displaced Gaussian functions [156]. In this method we only need to compute numerous Gaussian
overlap integrals (of the type 〈0′|0〉, Eq. (79)) including the Duschinsky rotations. One simple
prescreening strategy was to discard overlap integrals according to the displacements of the two
displaced Gaussian functions, and then to store all important Gaussian overlap integrals at least
for the three atomic systems to speed up the calculations. Luis and coworkers [157–160] have set
up linear equations, for anharmonic FC integrals and matrix elements of the potential energy
difference operator, which lower the computational cost by introducing the Duschinsky relation
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in the potential energy operator not in the wavefunctions, but these authors considered only a
simple diagonal kinetic energy operator.

Lucas [121] proposed a method for evaluation of FCFs also for a nonlinear Duschinsky
relation (Sec. 2.2). Nonlinear Duschinsky effects were treated perturbatively by Lucas for the
(momentum-position coupled) non-Condon operators. We can easily handle this perturbation
approach with the non-Condon integral evaluation scheme developed in Ref. [102].

Luckhaus [123] developed an approach which treats reaction path problems with large
curvature. Therein the author solved the vibrational eigenfunction problem for a two-
dimensional model system by diagonalising the Hamiltonian in non-orthogonal harmonic
oscillator basis sets along the grid points on the reaction path. In this approach one has to
compute the non-Condon integrals for matrix elements of the Hamiltonian as well as the FC
integrals for the overlap integrals for the non-orthogonal harmonic basis set in the Duschinsky
relation. If the reaction path and non-orthogonal basis set approach should be extended to
larger systems, the developments of this article appears highly beneficial for this method.

Perhaps the simplest approach would be to introduce the anharmonicity in the potential
energy surfaces only for a few vibrational modes neglecting the kinetic energy rovibrational part.
Even for the simplest model Hamiltonians it is a computationally difficult task to compute the
FCFs including the mode mixing effects due to the extremely large number of integrals to be
evaluated. We present herein the simple anharmonic-harmonic block approach to treat systems
that have many harmonic degrees of freedom (DOF) but a small number of anharmonic DOF
which are still much more computationally expensive than the harmonic transitions. We further
assume that the anharmonic and harmonic DOF are separable but the normal coordinates of two
electronic states are related by the Duschinsky equation (Sec. 2.2). The anharmonic partition
of the vibrational wavefunctions are expanded by a finite number of the harmonic oscillator
eigenstates as a basis set and the harmonic basis sets of two electronic states are related in the
Duschinsky relation. The important contribution of our development in this section is that it
can provide the possible prescreening strategies and TCFs with the the non-Condon effects for
anharmonic transitions. The GF developed in this section is in the form of linear combination
of the cF GFs in section 3.1.

The anharmonic DOF are denoted as X and the harmonic ones as Y . The n-th vibrationally
excited anharmonic wavefunction of the initial electronic state, with the associated harmonic
eigenstate |vY 〉, |Ψn;vY 〉 is defined as,

|Ψn;vY 〉 =
∑

{vKX
}
cvKX

;n|vKX
〉 ⊗ |vY 〉

=
∑

{vKX
}
cvKX

;n|vKX
; vY 〉, (144)

where the finite number of NA
X anharmonic expansion coefficients for finite basis set ({vKX

})
satisfy the normalisation condition,

∑

{vKX
}
|cvKX

;n|2 = 1, (145)

and the final state is expressed in the same manner,

|Ψ′
m;v′

Y
〉 =

∑

{vK′
X
}
c′vK′

X
;m|vK′

X
; v′Y 〉, (146)

∑

{vK′
X
}
|c′vK′

X
;m|2 = 1. (147)
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The FCFs of the vibronic transition from the n-th vibrationally excited wavefunction is
summed to unity in any complete basis set expansion but it should be close to unity in a proper
finite basis set expansion, i.e.

1 = 〈Ψn;vY |Ψn;vY 〉

≃
∑

{vKX
},{vBX

},{vK′
X
},{vB′

X
}

(NA
X)′−1∑

m=0

c′vK′
X
;mc

′∗
vB′

X
;mc∗vBX

;ncvKX
;n

×
∞∑

v′Y =0

〈vBX
; vY |vK′

X
; v′Y 〉〈vB′

X
; v′Y |vKX

; vY 〉, (148)

where (NA
X)′ is the finite number of final vibronic levels, which equals the number of harmonic

basis functions.
From Eq. (148) and (113) we have the anharmonic transition GF GA which contains the

anharmonic transition information associated with the GF parameters,

GA(Z̃cF,ZY Y ; cn, cm
′; ξ̃

KB
, ξ̃

BK
; η, η′)

=
∑

{vKX
},{vBX

},{vK′
X
},{vB′

X
}
c′vK′

X
;mc

′∗
vB′

X
;mc∗vBX

;ncvKX
;nG

KY Y

cF (Z̃cF,ZY Y ;0Y Y ; ξ̃KB
, ξ̃

BK
; η, η′),

(149)

where the cF GF in Eq. (119) is used for the possible non-Condon transition. The anharmonic
transition GF is evaluated to have specific SVLs and non-Condon operators with Eq. (116), i.e.

GA(Z̃cF,ZY Y ; cn, cm
′; ṽKB, ṽBK)

(f̂ ,ĝ)

=
∑

{vKX
},{vBX

},{vK′
X
},{vB′

X
}
c′vK′

X
;mc

′∗
vB′

X
;mc∗vBX

;ncvKX
;n


∏̃

−1
2 ,−

1
2

vBX
,vKX

∂̂
vBX

,vKX

αB
∗
X
,αKX




∏̃

−1
2 ,−

1
2

vB′
X
,vK′

X

∂̂
vB

′
X
,vK

′
X

γK
′

X
,γB

′∗
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2N∏

k=1

[
i
√

ǫ̃k
2

]l̃k[1
i

√
~2

2ǫ̃k

]m̃k
[
− i
√

ǫ̃k
2

]ñk
[
− 1

i

√
~2

2ǫ̃k

]õk (
∂̂
l̃,m̃,ñ,õ
η̃P ,η̃Q,η̃′

P
,η̃′

Q

)

GKY Y

cF (Z̃cF,ZY Y ;0Y Y ; ξ̃BK
, ξ̃

KB
; η, η′)

∣∣∣
ξ̃
KB

,ξ̃
BK

,η̃
NCF

=0
. (150)

We can devise prescreening strategies [11, 101, 102, 104] for an anharmonic transition from n-
th vibrationally excited initial state to the m-th vibrationally excited final state with the GF
including non-Condon effects. The TCF can also be evaluated by the GF with the TD GF
parameters ZY Y (t) in Eqs. (109) and (110). In this development we assume a transition from a
single vibronic initial state to a manifold of final vibronic states, but it can easily be generalised
to account for thermally averaged initial vibronic states.

The explicit expression for the anharmonic transition in Condon approximation is given in
the Appendix where only the vibrational modes in initial state are allowed to be thermally
excited at finite temperature.
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4. Conclusion and outlook

Herein, we reviewed our coherent state (CS)-based generating function (GF) method [11, 101,
102, 104] and presented the extensions for the resonance Raman (rR) scattering and intensity
profile (Sec. 3.2), the single vibronic level (SVL) transition (Sec. 3.3) and the anharmonic
Franck–Condon (FC)/non-Condon transition (Sec. 3.4). Those GFs are built upon the coherent-
Fock (cF) GF, see section 3.1. These can introduce arbitrary SVLs via the corresponding partial
derivatives.

The rR developments in section 3.2 differ from other works [49,54,57,59,60,65–67,69,95]. The
difference appears in the time-correlation functions (TCFs) from the GFs. We can introduce
non-Condon and thermal effects to our CS GF approach within the Duschinsky linear transform
approximation. We emphasise herein that we can relatively easily include the non-Condon
effects and the arbitrary SVLs at the same time by the multi-variate Hermite polynomial (MHP)
technique. We have derived the analytic expression for the 3-point TCF for the rR intensity
profile within the Duschinsky approximation including the non-Condon and thermal effects.

The SVL transition GF is shown to be only a special case of the cF GF in section 3.1.
It has constraints on identical vibrational occupation number vectors (ONVs) in the ket and
bra vibronic states. As a result, the SVL transition GF is simplified to a reduced dimensional
form. From this development, we can obtain the SVL transition TCF, the integral prescreening
strategy for the SVL transition, and the fine-grained FC/non-Condon prescreening strategies
of multi-dimensional fixed quantum number space X. As a last development, in section 3.4,
we have applied the cF GF of section 3.1 to one anharmonic transition problem that can be
approximated with a few anharmonic degrees of freedom (DOF), whereas the remaining DOF
are treated harmonically. With the developments we can construct the FC/non-Condon TCFs
and integral prescreening conditions [11,101,102,104] from the anharmonic GF. We have made
the GF with a separation ansatz of anharmonic and harmonic DOF, and the benefit of the GF
decreases as the number of anharmonic DOF grows.

In diagram 1 we summarise the developments we have made starting from the work of
Doktorov et al. [14] and show the relations between the developments described herein. Based
on the fundamental developments (the round boxes at the bottom of the diagram) the GF
approaches have been extended (following the arrows in the diagram) to account for thermal
effects, non-Condon effects and SVL transitions. An invariant quantity for a quantummechanical
problem is a powerful tool to understand the system (see e.g. Refs. [14, 20–24, 161]). The
invariant constraints the system dynamics. We can extract useful data about the quantum
mechanical processes from the invariant functional, i.e. herein the GF which is characterised
by its GF parameters (see Ref. [11]), with proper modifications or mathematical manipulations
to the functional (see the bottom of Fig. 1). The GF appears to be an analogous tool like

the partition function (Tr(exp(−βĤ))), which is invariant and from which we can obtain
thermodynamic quantities. Analogously the GF can provide the quantity of interest, when
(proper) operations are applied on it, e.g. partial derivatives are taken with respect to the GF
parameters to obtain various intensity sum rules.

The special contributions of our present developments are the combination of a TCF approach
and a GF approach [11], extended by non-Condon effects, in a unified framework. The former can
simply be adopted to the CS-based GFs by assigning the time-dependent (TD) GF parameters.
We have taken the non-Condon effects into account with the CS displacement operator. With
the help of the phase displacement operator we have used the same mathematical machinery of
the Franck–Condon factor (FCF) GF for the non-Condon GF. The phase displacement operator
introduces auxiliary phase parameters for momentum and position operators to be used for non-
Condon operators extracted by partial derivatives with respect to the auxiliary parameters.

The theoretical description of most of the molecular vibronic transitions involving the
Duschinsky rotated harmonic oscillators boils down to a common mathematical problem, i.e. the
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Figure 1. Summary of the CS-based GF developments for various molecular vibronic
transitions. The round boxes refer to fundamental quantities. The dotted box represents work
that was not part of this article. The solid square boxes indicate the developments within the
article. The arrows indicate the functional transformations. The properties of the GF are shown
in a box that are inherited from the previous (lower) boxes, otherwise details are mentioned on
the arrows. The single solid lines without arrows imply only one of several possible usages for
the corresponding functions. (a) It is straightforward to obtain the mean value including the
non-Condon effects but for the higher order statistical quantities a numerical algorithm has to
be developed.
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Figure 2. Most of the working equations in this article are translated into the MHP evaluation
problem. The functions in dashed-ellipse are cast into MHPs and the corresponding output can
be obtained after the MHP evaluation.

MHPs evaluation (see diagram 2). The calculation of the MHPs appears as a computationally
hard problem (see e.g. Refs. [11, 102]). Nevertheless, translation of the molecular transition
problem in harmonic approximation to an equivalent MHP evaluation problem enables us to
analyse various transition processes by the same mathematical tool. We have exploited the MHP
technique to modify the FCF GF and the non-Condon GF for SVLs. From this development,
we can now have GFs including thermal effects, arbitrary non-Condon effects and arbitrary
SVLs in the Duschinsky oscillator basis. As special applications to the cF GF, SVL transition,
rR scattering and anharmonic transitions are introduced. But the GF approach can possibly
contribute to the vibronic coupling, multi-photon transition, general anharmonic problems which
could have intrinsic harmonic structures. The application is shown to be not only restricted
to molecular transitions but it could be any quantum mechanical process involving harmonic
oscillators.

The developments in this article are generally applicable to transition problems in the
harmonic approximation (see Fig. 2). With slight modifications the same approach can be
exploited for other problems arising in various flavours of mass spectrometry (see e.g. Ref. [162]),
non-equilibrium FC processes in molecular junction (see e.g. Ref. [163]) and the Förster-type
energy transfer processes (see e.g. Ref. [134]). The internal conversion (IC) process requires
the matrix elements of momentum operators which can easily be handled by the non-Condon
developments (Sec. 2.4). The non-Condon developments can be applied to vibronic coupling
effects (see e.g. Refs. [43,74,82,90]) including for instance spin-orbit coupling (see e.g. Ref. [90]),
Jahn-Teller effects (see e.g. Ref [98]), nonadiabatic electron transfer (see e.g. Ref. [164]) and
dissipation due to environmental effects (see e.g. Ref. [134]). The rR developments in this
article could be extended for the surface enhancement effects, i.e. the surface enhanced Raman
scattering (SERS) (see e.g. Refs. [165–168]) and the surface enhanced Raman optical activity
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(SEROA) (see e.g. Ref. [169]) with the non-Condon effects and the finite temperature effects
if we can make a proper description on the metal surfaces with for example jellium model (see
e.g. Ref. [170]). Quantum tomography could be an application of the current method as well
because the Duschinsky operation can be generalized to allow the mixing between position and
momentum operators. In Ref. [171], for example, the resulting multivariate (four dimensional)
Hermite polynomials were exploited for the photon-number tomogram of stimulated Raman
scattering (see also Refs. [172, 173]). An extension to general anharmonic problems, however,
will be crucial, because the harmonic approximation is too crude in many cases. As mentioned
in the section on anharmonic effects (Sec. 3.4), the non-Condon development and the matrix
element evaluation procedure are suitable to address anharmonic problems possibly within the
reaction path approach [123] of Luckhaus. Our CS-based TCF could be used for propagating
wavepackets in time domain on general anharmonic surfaces (see e.g. Refs. [110, 137–140]) via
the complex MHP evaluation.

To this end, we remark that a unified description of vibronic transitions in frequency and time
domains, presented in this article, can facilitate the detailed analysis of experimental spectra
and paves the way for a wealth of theoretical applications for large molecular systems.

The CS-based GF approach leaves room for future developments, e.g. nonadiabatic coupling,
fully anharmonic, dissipative systems and non-equilibrium problems to name but a few, which
are not treated herein.
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Appendix

General remarks

In this appendix we present explicit expressions for the developments of section 3, as for a special
case of thermally averaged initial state because the expressions in Sec. 3 are general expressions
allowing for individual temperatures for each mode. Herein, only the initial state is thermally
excited and all vibrational modes are at a finite temperature T and non-Condon effects are
ignored. The N -dimensional space X belongs to the initial state and the N -dimensional space
Y does to the final state in this appendix.

Resonance Raman scattering

• Amplitude
The first (Condon) term of resonance Raman (rR) amplitude in Eq. (128) is given as follows,

GKY Y

cF (̃IcF, z
′(τ);ΛY Y ; ṽKB, ṽBK) = GKY Y

cF (I, z′(τ);0; ṽKB, ṽBK), (151)

where we do not have thermal excitation (ΛY Y = 0, an N -dimensional square zero matrix)
for single vibronic levels (ṽKB, ṽBK). z′(τ) is given in Eq. (110). The explicit expression
reads then as

GKY Y

cF (I, z′(τ);0; ṽKB, ṽBK)

=


∏̃

−1
2 ,−

1
2

vBX
,vKX




∏̃

−1
2 ,−

1
2

vB′
X
,vK′

X


GY (z

′(τ))HeṽKB,ṽBK
(W̃−1

cF r̃cF;W̃
−1
cF ). (152)
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The first part is expressed with determinant and exponential functions

GY (z
′(τ)) = det(I+ z′(τ)WY Y z

′(τ))−1/2 det(I− z′(τ)WY Y z
′(τ))−1/2

exp(rtY z
′(τ)(I+ z′(τ)WY Y z

′(τ))−1z′(τ)rY ) , (153)

with the Doktorov matrices and vectors in Eq. (75),

WY Y = I− 2P, rY =
√
2(I−P)δ . (154)

For the multi-variate Hermite polynomial (MHP) part, the parameters are given as follows,

W̃cF(z
′(τ);0) =

1

2

(
(W̃+

XX + W̃−
XX)(z′(τ)) (W̃+

XX − W̃−
XX)(z′(τ))

(W̃+
XX − W̃−

XX)(z′(τ)) (W̃+
XX + W̃−

XX)(z′(τ))

)
, (155)

r̃cF(z
′(τ);0Y Y ) =

(
r̃+X(z′(τ))
r̃+X(z′(τ))

)
, (156)

with the quantities

W̃±
XX(ZY Y ) = WXX ∓WXY ZY Y ((I± ZWZ)Y Y )

−1ZY Y WY X , (157)

r̃+X(ZY Y ) = rX −WXY ZY Y ((I+ ZWZ)Y Y )
−1ZY Y rY , (158)

in which

WXX = I− 2Q, WXY = −2R, WY X = −2Rt, (159)

rX = −
√
2Rδ, (160)

are used.

• Intensity
The explicit rR intensity time-correlation function (TCF) expression of Eq. (137) in Condon
approximation is given for the thermally averaged initial state, i.e.

GK
rR(bldiag(z(t), z(t)), z

′(τ), z′(τ ′);0, bldiag(λ,λ)
1
2 )

=
1

Tr(exp(−βĤ))
GY (z

′(τ))GY (z
′(τ))∗

I2N
[
I− bldiag

(
z(t), z(t), z(t), z(t)

)
W̃rR

(
z′(τ), z′(τ ′);0, bldiag(λ,λ)

1
2

)
bldiag

(
z(t), z(t), z(t), z(t)

)

, 12bldiag
(
z(t), z(t), z(t), z(t)

)
r̃rR

(
z′(τ), z′(τ ′);0, bldiag(λ,λ)

1
2

)]
, (161)

where I2N is the Gaussian integral defined in Eq. (130), and W̃rR(z
′(τ), z′(τ ′);0, bldiag(λ,λ)

1
2 )

and r̃rR(z
′(τ), z′(τ ′);0, bldiag(λ,λ)

1
2 ) can be found in Eq. (132) and Eq. (138), respectively.

Single vibronic level transitions

In this section we present the explicit expression for Eq. (143) of non-thermally excited final
state, i.e.

GKY Y

SVL (z, z′;0; ṽX)

=


∏̃

−1
2

ṽX


GY (z

′)HeṽX

(
(2zW̃+

XXz)−1r̃+X ; (2zW̃+
XXz)−1

)
, (162)

where the quantities (W̃+
XX , r̃+X) defined in Eqs. (157) and (158) are used with Eqs. (159)

and (160).
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Transitions between anharmonic oscillators

Eq. (150) can be evaluated with Eq. (152) in Condon approximation, i.e.

GA(I, z
′; cn, cm

′; ṽKB, ṽBK)

=
∑

{vKX
},{vBX

},{vK′
X
},{vB′

X
}
c′vK′

X
;mc

′∗
vB′

X
;mc∗vBX

;ncvKX
;n


∏̃

−1
2 ,−

1
2

vBX
,vKX




∏̃

−1
2 ,−

1
2

vB′
X
,vK′

X


GY (z

′)HeṽKB,ṽBK
(W̃−1

cF r̃cF;W̃
−1
cF ). (163)
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