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Abstract.
Low-lying collective excited states of 194Pt have been studied via the 12C(194Pt,194Pt∗)

projectile Coulomb excitation reaction at 85% of the Coulomb barrier (850 MeV) using the
Gammasphere Ge-detector array at Argonne National Laboratory. Absolute E2 transition
strengths have been obtained from the Coulex cross sections that were deduced from the relative
γ-ray yields. They are discussed with respect to the structure suggested by the O(6) symmetry
of the Interacting Boson Model.

In nuclear physics, the three dynamical symmetries [1; 2] of the Interacting Boson Model
(IBM), U(5) [3], SU(3) [4], and O(6) [5] provide valuable benchmarks for the description of
nuclear quadrupole collectivity at low and medium angular momenta. These three symmetries
correspond to analytically solvable cases of the Bohr Hamiltonian [6] – the harmonic vibrator,
the quadrupole-deformed axial rotor, and the γ-unstable rotor [7].

The O(6) symmetry of the sd-IBM-1 is based on the chain U(6) ⊂ O(6) ⊂ O(5) ⊂ O(3) of
nested sub-algebras with quantum numbers N , σ, τ , and L, respectively [1; 2]. The empirical
evidence for the existence of nuclei at the O(6) dynamical limit of the IBM is based on energy
level patterns, branching ratios and, more convincingly, on selection rules for E2 transitions.
Within the Consistent Q-Formalism (CQF) [8], they are such that E2 transitions are allowed
and collective only between states with ∆σ = 0 and ∆τ = ±1 [2]. It is the ∆σ = 0 selection
rule that is definitive of pure O(6) symmetry while the ∆τ = ±1 selection rule actually stems
from the O(5) symmetry and is therefore rather ubiquitous for all nuclei between U(5) and O(6)
dynamical symmetries. Observation of O(6) symmetry in nuclei has first been reported in the
case of 196Pt [9]. This claim was based on energy level patterns and E2 decay branching ratios
that closely follow the O(6) selection rules. It was, later on, supported by establishing a lower
limit for the lifetime of the 0+3 state, the lowest state of the σ = N − 2 representation [10]; the
resulting upper limits for the absolute B(E2) values were small, in agreement with the pure O(6)
dynamical symmetry [10]. Another, even more extensive region of O(6)-candidate nuclei was
found in the Xe-Ba-Ce region [11] around mass number A = 130. It has been shown that the low-
spin structures of the nuclei 128Xe [12], 126Xe [13] and 124Xe [14] manifest O(6)-like arrangements
of energy levels and E2 branching ratios which reflect the selection rules for the σ = N states
of O(6). Lately, the results of new Coulex experiments with the nuclei 124,126,128Xe [15; 16]
showed moderate collective character in their respective 0+σ=N−2 → 2+1,2 transitions, which can
be regarded as a severe violation of the ∆σ = 0 selection rule. Quantitative analyses showed a
complete dissolution of the O(6) symmetry in these nuclei, while the O(5) symmetry is preserved
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Figure 1. Background subtracted, Doppler-corrected γ-ray spectra of 194Pt after Coulomb
excitation on a Carbon target observed with the Gammasphere spectrometer. In the top panel,
the sum singles spectrum is shown. In the bottom panel, a spectrum of the γ-rays coincident to
the 2+2 → 2+1 transition is shown. The strongest transitions are indicated.

to a large extent. The amount of symmetry breaking has been quantified by a newly developed
analysis of wave-funtion amplitudes.

In the light of the recent findings it is intriguing to investigate to what extent the O(6)
symmetry is preserved or broken in the Pt isotopes. In this work, we report on an experiment of
projectile Coulomb excitation of 194,196Pt nuclei, performed in order to study the preservation
of the selection rules characteristic for the O(6) symmetry on the basis of the measurement of
absolute transition strengths. In the following we will concentrate on the nucleus 194Pt.

The experiment was carried out at Argonne National Laboratory. A pulsed (12 MHz) 194Pt
beam was delivered by the ATLAS accelerator. The 850 MeV beam was incident on a 1 mg/cm2

12C target. The deexcitation γ-rays, following the Coulomb excitation of the projectile, were
detected with the Gammasphere array [17] which consisted of 100 HPGe detectors arranged in
16 rings. In a first run the beam intensity was ∼1 pnA. Gammasphere was used in singles mode
resulting in an average counting rate of 1.5·104 counts-per-second (cps). A total of 1.6·109 events
of γ-ray fold 1 or higher was collected in about 28 hours. In a second run, the trigger of the data
aquisition was set to a gamma-ray fold of 2 or higher, allowing to increase the beam intensity to
∼5 pnA. The average count rate was ∼ 6 · 103 counts-per-second. In this run, γ-ray coincidence
data of 2.3 · 108 events was collected in about 12 hours of beam time. The data from the first
run was used to create singles spectra which have been Doppler corrected with respect to the
velocity of the recoiling projectile ions of v/c ≈ 8.1%. The contribution of the room background
was eliminated in the offline sort by correlating the γ-rays with the accelerator radio-frequency
(rf) signal. The final spectrum, which is a difference between the ‘beam-on’ (with respect to the
rf) spectrum and the ‘beam-off’ spectrum, scaled to eliminate the 1461 keV room background
transition from 40K, is shown in the top panel of Figure 1.

The coincidence data from the second run was used to create a γγ-coincidence matrix. As
an example a spectrum of γ-rays coincident to the transtion 2+2 → 2+1 is shown in the lower
panel of Figure 1. A total of 67 transitions could be observed in the coincidence spectra. Due to
this large number of ovserved transitions, only the coincidence data allowed the reconstruction
of the level scheme from the observed γ-rays. A part of the deduced level scheme is shown in
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Figure 2. Part of the deduced level scheme of 194Pt together with the placements of some of
the γ-ray transitions observed in our experiment.

Figure 2.
All observed γ rays originate from 194Pt nuclei. Many of these γ rays have already

been identified in 194Pt [18]. Some transitions, however, have not been reported so far, e.g.
the transitions depopulating a state at an excitation energy of 2072 keV and the transitions
depopulating the 3− states at excitation energies of 2145 keV, 2246 keV and 2543 keV. These
states have previously been observed in (p, p′) reactions only [19; 20].

Efficiency-corrected transition intensities were determined in the singles spectrum where
possible. For most of the transitions, the intensity had to be determined from the coincidence
data, using transitions visible both in the singles spectrum and in the coincidence data for
normalization. The transition intensities were then used to calculate Coulomb-excitation yields,
normalized to the yield of the state 2+1 at 328 keV. These relative Coulex yields are proportional
to the relative Coulex cross sections.

At this stage of our analysis, the relative Coulomb excitation yields of 11 states have been
fitted to the Winther-de Boer theory [21] using a multiple CE code [22] and taking into account
the energy loss of the beam in the target which can be estimated to about 142 MeV from a
Bethe-Bloch approach. The matrix elements involved in the calculations were constrained to
the experimental branching ratios and multipole mixing ratios. Adopted quadrupole moments
[18] for the states 2+1 , 2+2 and 4+1 were included into the calculation. The quadrupole moments
of the remaining states have been varied within the values of the rotational limit, contributing
on average by ∼4% to the uncertainties of the results. An additional degree of freedom in the
Coulex calculation is introduced by the choice of the signs of transition matrix elements. In the
case of states with more than one possible excitation path, different combinations of the signs for
the transition matrix elements involved in the excitation lead to an increase in the uncertainty
of additional 10 − 20% or to ambiguous results beyond their respective uncertainties, like in
the case of the state 0+2 at 1267 keV. The scale for the calculation is set by the strength of the
transition of the state 2+1 to the ground state of B(E2; 2+1 → 0+1 ) = 49.2(8) W.u. [18].

The calculations resulted in 23 absolute E2 transition strengths. The strengths of the
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Figure 3. Part of the level scheme, for which transition strengths have been deduced compared
to a schematic O(6) level scheme. The widths of the arrows indicating E2 decay transitions are
proportional to their B(E2) values deduced from our experiment. For B(E2) < 1 W.u. we use
dashed lines. Decay transitions of the bandhead of the σ = N − 2 group to the 2+1,2 states are

forbidden in the O(6) limit. In 194Pt, a clear assignment of the σ = N −2, τ = 0 state is difficult
due to the existence of two close-lying 0+ states in the energy range in question.

transitions depopulating the state 3+1 at 922 keV, and the 2+3,4,5-states at 1512 keV, 1622 keV
and 1670 keV, respectively, could be deduced for the first time. The resulting strengths of the
transitions depopulating the 0+2 state at 1267 keV are very sensitive to the choice of the signs
of the transition matrix elements involved in the excitation process. Two different possible
solutions have been found. At an excitation energy of 1479 keV a 0+ state is reported, e.g.
from beta decay studies [23; 24]. Transitions depopulating this state 0+3 could not be observed
directly in our data. An estimate of an upper limit for the intensity of the transition to the state
2+1 was made from which a small, non-collective upper limit for the value of B(E2; 0+3 → 2+1 )
could be deduced.

In terms of the selection rules of the O(6) symmetry, a clear conclusion cannot be drawn.
The ∆τ = ±1 selection rule is satisfied for transitions depopulating the states 2+2 , 3+1 , 0+2 and 2+3
if the τ quantum numbers are assigned to these states according to the typical O(6) scheme [5].
The more difficult question is whether the ∆σ = 0 selection rule is preserved. To address this
question, one first has to identify states belonging to a representation with different σ quantum
number than the yrast states. The most promising candidate to study is the 0+ bandhead of the
σ = N − 2 family (cf [15]), which will only be populated strongly in the case of a broken O(6)
symmetry. In the neighbouring nucleus 196Pt, showing a very similar level scheme to 194Pt,
this has been identified as the 0+ state at an excitation energy of 1403 keV. Considering the
level scheme of 194Pt in a similar energy range, one finds two close-lying 0+ states at energies
of 1479 keV and 1547 keV [18]. Under the assumption that the state 0+3 can be identified as the
σ = N − 2, τ = 0 state, the deduced non-collective strength of B(E2; 0+3 → 2+1 ) would imply a
preservation of the ∆σ = 0 selection rule. In that case, however, the existence of a close-lying
0+4 state with collective E2 transitions to the 2+1,2 states cannot be accomodated in the O(6)

symmetry scheme. If, on the other hand, one assumes the 0+4 state to be identified as the state
in question, then the collectivity of its decay transitions to the 2+1,2 states would imply a severe
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breaking of O(6) selection rules, similar to the situation observed in the Xe isotopes [15; 16]. In
either case, the existence of two 0+ states lying that close in energy cannot be desribed easily
using an IBM-1 model close to the O(6) limit. In fact, their very different transition strengths
show, that these two states do not mix and hence have a different character. So the question of
the nature of the two 0+3,4 states in 194Pt remains to be solved.

In summary, a Coulex experiment on the nucleus 194Pt has been performed. In the analysis
new information on transition strengths in this nucleus could be deduced. An interpretation of
the results against the background of the O(6) selection rules is difficult due to the unresolved
nature of the two close-lying 0+ states around 1.5 MeV.
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