Investigation of the CNO-break-out reaction: 15 O $(2p, \gamma)$ ¹⁷Ne by the Coulomb dissociation of ¹⁷Ne

Justyna Marganiec

ExtreMe Matter Institute EMMI, GSI Darmstadt, Germany The Joint Institute for Nuclear Astrophysics JINA, Notre Dame, IN, USA

E-mail: j.marganiec@gsi.de

Thomas Aumann

Kernreaktionen und Nukleare Astrophysik, GSI Darmstadt, Germany Institut für Kernphysik, TU Darmstadt, Germany

Michael Heil

Kernreaktionen und Nukleare Astrophysik, GSI Darmstadt, Germany

Ralf Plag

Kernreaktionen und Nukleare Astrophysik, GSI Darmstadt, Germany Goethe-Universität, Frankfurt am Main, Germany

Felix Wamers

Kernreaktionen und Nukleare Astrophysik, GSI Darmstadt, Germany Institut für Kernphysik, TU Darmstadt, Germany

for the LAND-R³B collaboration

Abstract. By the Coulomb dissociation of ¹⁷Ne, the time-reversed reaction ¹⁵O(2p, γ)¹⁷Ne has been investigated. This reaction might play an important role in the rp process, as a bypass of the ¹⁵O waiting point. The secondary ¹⁷Ne ion beam of 500 AMeV has been dissociated on a Pb target, and the reaction products have been recorded with the LAND-R³B experimental setup (GSI). This experiment allows to determine the Coulomb dissociation cross section σ_{Coul} , which can be converted into a photo-absorption cross section σ_{photo} , and a radiative-capture cross section σ_{cap} for the ¹⁵O(2p, γ)¹⁷Ne reaction. Additionally, informations about the structure of the ¹⁷Ne nucleus, a possible two-proton halo, may be obtained. The analysis is still in progress.

1. Introduction

At high temperature and density conditions, the CNO cycle is linked with the rp process by the α capture reaction on the ¹⁵O nucleus. By the rp process, which is a sequence of proton captures and β^+ decays, the initial CNO material can be processed towards heavier nuclei. ¹⁵O

Journal of Physics: Conference Series 337 (2012) 012011

is a waiting point nucleus, which hampers the reaction flow between the CNO cycle and the FeNi-mass region. The ${}^{15}\text{O}(2p,\gamma){}^{17}\text{Ne}$ reaction can bridge this waiting point. The three-body radiative capture can proceed sequentially [1] or directly from the three-body continuum [2]. It has been suggested that the reaction rate can be enhanced by a few orders of magnitude by taking into account the three-body continuum [2]. In order to verify these calculations, the ${}^{15}\text{O}(2p,\gamma){}^{17}\text{Ne}$ reaction has to be investigated and the radiative capture cross section has to be determined.

This experiment is also interesting for nuclear structure. The proton dripline nucleus ¹⁷Ne is a promising candidate for a two-proton halo, because of a comparatively small 2p separation energy ($S_{2p} = 970 \text{ keV}$) [3]. The mixture of the d^2 and s^2 configurations of the two protons outside the ¹⁵O core in the ¹⁷Ne ground state is still unknown. In the case of large s^2 weights of proton configurations the ¹⁷Ne is a halo nucleus, while in the case of large d^2 weights the nucleus ¹⁷Ne has no halo structure (Fig. 1).

Figure 1. Schematic representation of the structure of 17 Ne, if: (a) - the d^2 component dominant; (b) - the s^2 component dominant.

2. Coulomb dissociation method

The Coulomb dissociation method is an indirect technique, which is useful in case of very small cross sections, unstable nuclei and three particles in an entrance channel. In this method, instead of the radiative-capture process, the time-reversed process is studied, and the Coulomb field of a heavy nucleus is used as a source of photons [4] (Fig. 2).

Figure 2. Coulomb dissociation in the field of a Pb target. (*b* - impact parameter)

Using virtual photon-theory, a Coulomb dissociation cross section σ_{Coul} can be converted into a photo-absorption cross section σ_{photo} , which can then be converted into a radiative-capture cross section σ_{cap} with the help of the detailed-balance theorem.

3. Experiment and preliminary results

The primary ²⁰Ne beam from an ion source was preaccelerated in the universal linear accelerator (UNILAC) and injected into the heavy-ion synchrotron (SIS) at GSI in Darmstadt, Germany. The accelerated primary beam was directed to a beryllium production target and the secondary ¹⁷Ne beam was produced via nuclear fragmentation. The reaction products were separated by means of the fragment separator (FRS) [5], where dipole magnets filter out all species except those with a specific A/Z ratio $(B\rho = \frac{p}{Q} \propto \frac{A}{Z}\beta\gamma)$. The secondary beam of ¹⁷Ne, with an energy

Journal of Physics: Conference Series 337 (2012) 012011

Figure 3. Experimental setup.

E = 500 AMeV, was identified in the experimental area (Fig 3), by means of energy-loss and position measurements with position-sensitive pin diodes and time-of-flight measurements.

Dissociation of ¹⁷Ne nuclei was induced by a secondary Pb target (200 mg/cm²). The reaction products have been identified using two Si-strip detectors placed before the large-gap dipole magnet (ALADIN). After the magnet, two scintillating-fibre detectors and a two-layer Time-of-Flight (ToF) wall have been used to detect the fragments. The protons have been recorded by two drift chambers and a large two-layer ToF wall [6]. By means of time-of-flight and energy-loss measurements, all reaction products have been identified (Fig. 4).

Figure 4. (a) - The identification of incoming beam nuclei; (b) - the identification of outgoing fragments; (c) - detected protons in a large two-layer ToF wall.

To obtain masses and momenta of the reaction products a tracking procedure was utilized. The mass specra of oxygen are given in Fig. 5. Journal of Physics: Conference Series 337 (2012) 012011

Figure 5. The oxygen mass spectra after tracking. (a) - for data with the Pb target; (b) - for data with the C target (to subtract the nuclear contribution); (c) - for data without any target (to subtract the background).

The measured Coulomb dissociation cross section is given by the formula:

$$\sigma_{Coul} = p_{Pb} \left(\frac{M_{Pb}}{d_{Pb} N_{Av}} \right) - p_C \left(\alpha \frac{M_C}{d_C N_{Av}} \right) - p_{empty} \left(\frac{M_{Pb}}{d_{Pb} N_{Av}} - \alpha \frac{M_C}{d_C N_{Av}} \right), \tag{1}$$

where p is the interaction probability for a target, M - the molar mass of target material [g/mol], d - the target thickness [g/cm²], N_{Av} - Avogadro's number [mol⁻¹] and α is a scaling factor between Pb and C targets.

Using this formula the preliminary exclusive Coulomb dissociation cross section has been determined. The value is $\sigma_{Coul} = 253 \pm 36$ mb (only statistical uncertainy).

4. Summary

The secondary ¹⁷Ne beam has been produced by fragmentation reactions of ²⁰Ne, and the ¹⁵O(2 p, γ)¹⁷Ne reaction has been studied. The incoming beam and outgoing reaction products have been identified, and the preliminary exclusive Coulomb dissociation cross section has been obtained $\sigma_{Coul} = 253 \pm 36$ mb (only statistical uncertainy). The next steps of the analysis will be the calculations of the photoabsorption and the radiative capture cross sections, which are not only relevant for the rp process but also are of interest with regard to the two-proton halo structure of ¹⁷Ne. The analysis is still in progress.

5. Acknowledgments

This project was supported by the German Federal Ministry for Education and Research (BMBF), EU(EURONS), ExtreMe Matter Institute EMMI, GSI Darmstadt and FIAS Frankfurt Institute for Advanced Studies.

References

- [1] Görres J et al. 1995 Phys. Rev. C 51 392
- [2] Grigorenko L V, Zhukov M V 2005 Phys. Rev. C 72 015803
- [3] Kanungo R et al. 2003 Phys. Lett. B 571 21
- [4] Baur G and Bertulani C A 1986 Nucl. Phys. A458 188
- [5] Geissel H et al. 1992 Nucl. Instrum. Meth. B 70 286
- [6] http://www-linux.gsi.de/~rplag/land02/