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Abstract. Based on direct numerical simulations of forced turbulence, shear turbulence,
decaying turbulence, a turbulent channel flow as well as a Kolmogorov flow with Taylor based
Reynolds numbers Reλ between 69 and 295, the normalized probability density function of
the length distribution P̃ (l̃) of dissipation elements, the conditional mean scalar difference
< ∆k | l > at the extreme points as well as the scaling of the two-point velocity difference
along gradient trajectories < ∆un > are studied. Using the field of the instantanous turbulent
kinetic energy k as a scalar, we find a good agreement between the model equation for P̃ (l̃)
as proposed by Wang and Peters (2008) and the results obtained in the different DNS cases.
This confirms the independance of the model solution from both, the Reynolds number and
the type of turbulent flow, so that it can be considered universally valid. In addition, we show
a 2/3 scaling for the mean conditional scalar difference. In the second part of the paper, we
examine the scaling of the conditional two-point velocity difference along gradient trajectories.
In particular, we compare the linear s/τ scaling, where τ denotes an integral time scale and s
the separation arclength along a gradient trajectory in the inertial range as derived by Wang
(2009) with the s · a∞ scaling, where a∞ denotes the asymtotic value of the conditional mean
strain rate of large dissipation elements.

1. Introduction

One of the many approaches in turbulence research is to study geometrical structures in terms of
critical points in the flow field. Gibson (1968) analyzed the behaviour of zero gradient points and
minimal gradient surfaces in turbulent scalar fields. Based on the extreme points of turbulent
scalar fields, i.e. points of vanishing scalar gradient, Wang & Peters (2006, 2008) developed the
theory of dissipation elements, which arise as natural geometries in turbulent scalar fields, when
these are analyzed by means of gradient trajectories. Starting from every grid point, trajectories
along the ascending and descending gradient direction can be calculated, which inevitably end
at extreme points. All points that share the same two ending points define a finite volume which
is called a dissipation element. These elements are parameterized by two values, namely the
linear length l between and the scalar difference ∆k at the extreme points, where k is the scalar
to be used in the present paper. Based on this theory, space-filling elements are identified, which
allow the reconstruction of statistical properties of the field as a whole in terms of conditional
statistics within the elements.
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From the definition follows that the temporal evolution of dissipation elemenets in turbulent
fields is inherently connected to the evolution of their ending points, which are separated by a
mean linear distance lm of the order of the Taylor microscale λ, see Wang & Peters (2006). While
strain and diffusion lead to a continuous distortion of an element as a whole, the creation or
annihilation of extreme points leads to their abrupt formation or dissappearance. These different
effects have successfully been considered in a modelled evolution equation for the probability
density function (pdf) for the length distribution P (l) of dissipation elements, which in its
normalized form P̃ (l̃) is assumed to be independent of both, the Reynolds number and the
type of turbulent flow. In this equation two parameters appear, cf. Wang & Peters (2008),
which can be identified as a splitting respectively attachment frequency of the elements and
thus indirectly correspond to the life time of extreme points, see Schaefer et al. (2009, 2010b)
for further details. A third important parameter employed in Wang & Peters (2008) for the
description of the pdf of the length distribution, is the normalized rate of strain ã. The strain
rate is defined as the difference of the velocity at the ending points, projected in direction of the
connecting line between the two extreme points. It will be shown below that there is a linear
scaling of the mean absolute value of the velocity difference with the curvilinear distance along
gradient trajectories for large elements.

The basis for this scaling is a paper by Wang (2009), who studied the two-point correlation
of scalar gradients along gradient trajectories. Starting from the governing equation for the
passive scalar, a decorrelation assumption for the product of two-point scalar gradients and the
velocity difference in the triple correlation term is used to derive a positive linear scaling of the
velocity difference with curvilinear separation distance along the trajectory s and the inverse
of the integral time scale τ . Furthermore, Wang shows that this result is in good agreement
with data obtained from direct numerical simulations (DNS) of homogenous shear turbulence.
It is argued that due to a conditioning of the statistics on gradient trajectories, regions of large
extensive strain, which smooth the scalar field, are preferentially extracted, thereby allowing a
gradient trajectory to extend over large distances. For relatively short distances in the viscous
range however, with s < λ, no analytic expression for the scaling of the velocity difference
has been derived so far. Based on an argument involving the curvature term, which arises in
the derivation of the governing equation along trajectories, a negative value for the velocity
difference is qualitatively concluded by Wang (2009).

The intention of the present paper is two-fold. In a first step, we will examine the validity of
the model for the pdf of the linear element length as derived by Wang & Peters (2008) as well
as the Kolmogorov scaling of the conditional scalar difference for different types of turbulent
flows. In a second step, the universality of the two-point velocity difference < ∆un > along
gradient trajectories is analyzed. To this end, we examine the validity of Wang’s scaling for long
trajectories.

In contrast to previous work, all gradient trajectory and dissipation element analysis presented
in this paper is based on the field of the instantaneous turbulent kinetic energy k. This appears
reasonable as it allows a direct interaction between the underlying velocity field and the examined
scalar field as well as the evaluation of the energy budget along gradient trajectories. In addition,
the field of the turbulent kinetic energy can easily be evaluated from investigations of the
three-dimensional velocity field and consequently simplifies an experimental verification of the
theoretical results, see for instance Schaefer et al. (2010a).

As numerical test cases, DNS of various turbulent flows have been performed. Details of the
different flow setups are given at the beginning of chapter 2. Before, we present the results of
the dissipation element analysis. The two-point velocity difference along gradient trajectories is
discussed in chapter 3, and a conclusion is drawn in chapter 5.
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2. Dissipation element analysis

Direct numerical simulations of six different types of turbulent flows, namely of homogenous
shear turbulence (case 1 and 2), homogeneous isotropic forced turbulence (case 3), homogeneous
isotropic decaying turbulence (case 4), a channel flow (case 5) as well as a Kolmogorov flow
(case 6) were performed. Cases 1-4 and case 6 were run on the JUGENE Supercomputer of the
Research Center Jülich using up to 16,384 CPU’s for the calculations and case 5 on the HHLR
Darmstadt. In all cases the Kolmogorov length η = (ν3/ε)1/4 was resolved, which is particularly
important for dissipation element analysis. Taylor based Reynolds numbers Reλ = u′λ/ν
between 69 and 295 have been investigated, with the Taylor microscale λ =

√
10νk/ε and

the turbulence intensity u′ =
√
2k/3.

An overview of the numerical parameters and selected mean quantities is given in table 1.
Note, that the values for case 5 originate from the channels core region, while for case 6 all
y-dependant quantities have been averaged over the inhomogenous direction.

The motivation for dissipation elements is the reconstruction of the entire three-dimensional
scalar field by means of an adequate description of an element’s characteristics. The
corresponding joint probability density function (jpdf) P (l,∆k) is expected to contain most of
the information needed for a statistical reconstruction. Based on a trajectory search algorithm,
the field of the turbulent kinetic energy has been analyzed for the different DNS cases and the
resulting joint pdf for case 1 is shown in figure 1 (to relate the values of l and ∆k given in this
figure to other characteristic flow quantities see table 1). In this illustration, different physical
effects are illustrated. Besides a distinct maximum, one observes a decrease at the origin,
corresponding to the annihilation of small elements due to molecular diffusion. The region in
the upper right hand area of the jpdf is dominated by extensive strain, as large elements are
exposed to large velocity differences.

Additionally, a dotted line corresponding to the conditional mean < ∆k | l > is included in
figure 1(left), revealing a scaling with Kolmogorov’s 2/3. This finding will be discussed in more
detail later, see figure 4. However, the spread of the jpdf around this mean value is obviously
not symmetric and can therefore not be described by a Gaussian distribution, see figure 1(right).

The jpdf can be described by a model equation. Based on Bayes theorem, it is decomposed
into a marginal pdf P (l) of the linear distance and a conditional pdf P (∆k | l) of the scalar
difference, yielding

Table 1. Parameters of the different DNS cases.

DNS case 1 2 3 4 5 6

Flow type Shear Shear Forced Decaying Channel Kolmogorov
No. of grid cells 20483 10243 10243 10243 512×257×256 10243

Reynolds number Reλ 295 139 144 71 69 188
viscosity ν 9 · 10−4 2 · 10−3 2.8 · 10−3 5 · 10−4 1.5 · 10−5 2.5 · 10−4

kinetic energy k 3.510 1.925 3.210 0.049 3.8 · 10−5 0.115
dissipation ε 1.160 0.640 1.190 0.001 3.5 · 10−7 0.010
Kolmogorov scale η 0.005 0.011 0.017 0.010 0.010 0.006
Taylor length λ 0.165 0.245 0.275 0.135 0.134 0.170
resolution ∆x/η 0.610 0.558 0.361 0.610 0.993 0.970
mean linear distance lm 0.198 0.356 0.422 0.281 0.266 0.245
lm/λ 1.200 1.453 1.536 2.081 1.988 1.441
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P (l,∆k) = P (l) P (∆k | l), (1)

where the marginal pdf P (l) is defined by

P (l) =

∫ ∞

0
P (∆k, l)d∆k. (2)

For this pdf in its normalized form P̃ (l̃), with P̃ = P lm and l̃ = l/lm, the following model
equation was derived by Wang & Peters (2008)

∂P̃ (l̃, t̃)

∂t̃
+

∂

∂l̃
(P̃ (l̃, t̃)[ṽD(l̃) + ã(l̃)l̃]) = Λs

∫ ∞

l̃
P̃ (z̃, t̃)dz̃ − Λa l̃P̃ (l̃, t̃). (3)

In this equation, ã represents the conditional mean strain rate a of the elements of length l

a =
< ∆un | l >

l
. (4)

normalized by its asymptotic value a∞, which is approached for l → ∞.
In eq. 4, ∆un denotes the velocity difference between an element’s maximum and minimum

projected in trajectory direction.
The results for a(l) have been calculated for all DNS cases and its conditional mean is

compared to the model proposed by Wang & Peters (2008),

a = a∞
(
1− 0.4

l̃ + 0.1

)
, (5)

where the value of a∞ was also obtained from the DNS.
Figure 2 depicts the comparison of eq. 5 with DNS data. One observes a qualitatively similar

shape for all DNS cases, as well as a good agreement between DNS data and model equation.
The value of a∞ ranges from 0.68 for the Kolmogorov flow to 4.10 for the shear turbulence.

Finally, ṽD, where

ṽD = vD/(lm a∞) = −4D/l
(
c l̃ exp(−l̃)

)
/(lm a∞), (6)

denotes the normalized drift velocity due to molecular diffusion in eq. 3 and is responsible for the
linear decrease of P̃ (l̃, t) for l̃ → 0 as will be shown below. The constant c in eq. 6 is determined
from the condition that the total length of the array must not change, cf. Wang & Peters (2008),
and D is the molecular diffusion coefficient. In addition in eq. 3 the two non-dimensionalized
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Figure 1. Joint probability density function P (l,∆k) of case 1.
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Figure 2. Comparison of conditional strain rate a(l̃) from model equation and DNS.

numbers Λs and Λa appear. These describe the splitting (respectively reconnection) of larger
(smaller) elements into smaller (larger) ones and are determined from the normalization and
the first moment during the solution of the equation as eigenvalues of the problem, cf. Schaefer
et al. (2009). Eq. 3 can be solved numerically yielding the steady solution depicted by the solid
curve in figure 3.

Furthermore, the results for the normalized pdf of the length distribution obtained from the
different DNS cases are shown. One observes a very good agreement with the model solution.
Slight differences can be identified in cases 4 and 6, where the model marginally underpredicts the
maximal value of the pdf. The linear increase at the origin as well as the exponential tail however,
see especially the log-in insets, follow more or less closely the predicted solution. For cases 1 and
5, the location and the overall shape of the pdf are tilted slightly to the left, resulting in a small
deviation from the model, though the branches left and rigth from the maximum qualitatively
agree nicely. (Note again that all data presented for case 5 here and in the following just stems
from an evaluation in the core region of the channel.) However, deviations in the exponential
tails (see the slopes of the pdf in the insets) of the pdf are hard to interpret due to the limited
number of sample points. Nevertheless, figure 3 illustrates that the equation for P̃ (l̃) seems
not to be a function of the Reynolds number as the values of Rλ vary from 69 for the case of
decaying turbulence to 295 for the shear turbulence. Overall, no conclusive influences due to the
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Figure 3. Comparison of normalized marginal pdf P̃ (l̃) from model equation and DNS.

Reynolds number or based on the type of turbulent flow can be identified, so that the shape of
the non-dimensional marginal pdf P̃ (l̃) and its model equation may be considered independent
from inhomogeneities and anisotropies, a finding which is illustrated in particular by the good
agreement between the model and the Kolmogorov flow.

For the second term in eq. 1, the conditional pdf of ∆k, no conclusive model equation was
derived so far. In a first step, we will therefore analyze the conditional mean of ∆k conditioned
on the length of the respective dissipation element, defined by

< ∆k | l >=

∫ ∞

0
∆kP (∆k | l) d∆k. (7)

In unconditional statistics the first moment is equal to zero. For statistics based on gradient
trajectories however, this is not the case, as the value of the turbulent kinetic energy increases
per definition monotonically along a trajectory from the minimum to the maximum point.
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Consequently, we will study the first order conditional moment to examine its scaling. In Wang
& Peters (2006, 2008) and Schaefer et al. (2010c) this conditional difference based on various
scalar fields, such as for instance a passive scalar φ or the instantanous dissipation ε, was found
to scale with Kolmogorov’s 1/3 exponential dependance. In the present case for k however, one
expects a scaling with 2/3 based on dimensional grounds. For the different DNS cases presented
in chapter two, the results for < ∆k | l > are shown in figure 4.

One observes different absolute values for the difference of the instantanous turbulent kinetic
energy between the extreme points of a dissipation element conditioned on its length (Note: for
a better graphical illustration the channel flow data (case 5) has been shifted by four orders of
magnitude, the shear flow data (case 1) has been multiplied by 5 and the decaying flow data
(case 6) has been multiplied by 5). The symbols of the different DNS cases included in figure
4 however, show a scaling with 2/3 as indicated by the solid line with a slope of 2/3, which is
more or less accurate for the different flow types. The best agreement is obtained in the case
of decaying turbulence, while for example in shear turbulence a less pronounced 2/3 scaling
is observed. In addition, it is obvious that Kolmogorov’s scaling is also valid for dissipation
element analysis based on the channel flow and the Kolmogorov flow, which are inhomogeneous
and anisotropic flows.

3. Scaling of the velocity difference along gradient trajectories

In the course of this chapter, we will study the velocity difference at two points along gradient
trajectories, motivated by the findings shown in figure 2. Conditioning on dissipation elements
and more specifically on points along one trajectory, introduces major differences as compared
to standard statistics in cartesian correlation space. Due to the limitation of the two-point
statistics on points on the same trajectory only the correlation of specific points is studied.
The conditional statistics along gradient trajectories also introduces differences with respect
to the correlation coordinate. In contrast to statistics in correlation space of a cartesian grid,
where the correlation coordinate usually denotes the linear distance between the two points
under consideration, the correlation coordinate s is defined as the curvilinear distance of the
two points along their trajectory. This obviously also introduces a flow dependant restriction
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to the length of the new correlation coordinate as the mean distance of two points is the one
between a maximum and a minimum point, which is of the order of the Taylor scale, as discussed
in the previous chapter in the context of the dissipation element length and its pdf.

Compared to statistics in cartesian coordinates caution has to be exercised when the concepts
of isotropy and homogeneity are used. In homogenous turbulence, the mean of the fluctuating
component of the instantaneous velocity is by definition equal to zero. The velocity along
trajectories un, however, is projected in trajectory direction n, and therefore time and space
dependent, yielding un = u · n. The result of this product is a scalar, whose mean value is not
by definition equal to zero. This difference also arises, when the first conditional moment is
studied, which is of particular interest for the current work in trajectory coordinates, while it is
equal to zero in the cartesian system.

In the following, we will study the scaling of the conditioned mean velocity increment
< ∆un > along gradient trajectories . Based on the governing equation for a passive scalar φ in
gradient coordinates, a relation for the inertial range was derived by Wang (2009). Neglecting
the viscous term and assuming a decorrelation of the velocity difference from the two-point
correlation of the scalar gradient, it is concluded that

< ∆un >∝ s/τ, (8)

where the integral time scale is defined as τ = k/ε. As this proportionality has only been
validated by Wang (2009) and Wang & Peters (2011) for homogenous shear turbulence, we will
examine its validity in the following for other flows.

In figure 5, the non-dimensional product < ∆un > (τ/λ) is shown as a function of s/λ. In
this figure the Taylor scale is used for the normalization rather than the Kolmogorov or an
integral scale, as it is the representative length scale for gradient trajectories. One observes
that both, the normalized velocity difference and the slope for all DNS cases is negative up to
roughly 0.5λ, while the zero-crossing is always close to s/λ = 1. One furthermore finds a distinct
quasi-linear increase with the separation arclength for all DNS cases beyond the minimum. The
slope however, varies for the different flows. The deviations from the linear scaling for large
separation distances s > 3.5λ may be attributed to the small number of gradient trajectories
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of such a length, an obstacle which is overcome in the DNS of shear turbulence, which employs
20483 grid points, as in this case the increase is linear up to s ≈ 8λ. As illustrated in figure 1
for the length distribution of dissipation elements, the majority of elements has a linear length
of order λ. The probability to find an element longer than s > 3.5λ is consequently very small.
Even though for the conditioned mean velocity increment the curvilinear arclengths, which
obviously is longer than the linear distance, is used, the difference between the linear distance
of two extreme points and their curvilinear distance is relatively small. Summarizing, it can
be concluded that while the linear increase of < ∆un > with s/λ in the inertial range can be
considered as well established, the proportionality constant depends on the flow.

This is not surprising since < ∆un > is normalized in figure 5 with the integral time scale
of the respective DNS case. On the other hand large dissipation elements are strained by a∞
such that the projected velocity difference ∆un at the extreme points of an element in direction
of the linear connecting line is proportional to la∞. Therefore, one may expect that the strain
rate of individual trajectories within an element, especially for large separation distances s, will
be exposed to the extensive strain a∞.

To normalize the slope of the profile of < ∆un > for large s, we therefore propose to non-
dimensionalize it by using the strain a∞, rather than the integral time scale τ . This is shown
in figure 6. Compared with figure 5, the new scaling < ∆un > /(a∞λ) naturally retains the
zero-crossing at approximately s = λ, but in addition collapses the profiles so that the results
of the different DNS cases now lie close to each other with a slope of approximately 0.5.

This normalization of < ∆un > using the strain rate a∞ connects the two-point correlation
along gradient trajectories with the concept of dissipation elements. Though all gradient
trajectories connecting the same two extreme points are only described by the parameters of their
dissipation element, this generalized three-dimensional information is still valid when returning
to a one-dimensional trajectory.
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Figure 6. Non-dimensional first order velocity structure function < ∆un > /(a∞λ) along a
gradient trajectory for DNS cases 1-6.
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4. Conclusion

Dissipation element analysis based on the instantanous field of the kinetic energy has been
extended from homogenous shear turbulence to different other types of turbulent flows exhibiting
a wide range of Taylor based Reynolds numbers. For all cases the mean length of the dissipation
elements was found to be of the order of the Taylor scale. The normalized pdf of the length
of the dissipation elements was found to be Reynolds number independant, in agreement with
the previous findings for homogenous shear turbulence. In addition, it was found that the flow
configuration does not have a noticeable effect on the shapes of the normalized pdfs. This leads
to the conclusion that the relevant physical effects which determine the pdf are independant of
residual inhomogeneities or anisotropies. The model equation for the pdf was found to be in good
agreement for all cases discussed. The first order structure function of the scalar difference at the
ending points of the dissipation elements was found to scale approximately as l2/3 in accordance
with dimensional analysis. The velocity difference at the ending points however, revealed a linear
scaling with the elements linear length for all DNS cases. This result was further analyzed in
terms of the first order velocity structure function along gradient trajectories.

In a first step, Wang’s scaling was examined for the different turbulent flows, which revealed
a negative < ∆un > (τ/λ) for small separation distance, followed by a linear increase with a
zero-crossing around λ. As shown by Wang (2009), the slope of this linear scaling varies from
case to case and is therefore not universal. In a second step however, < ∆un > was normalized
by the asymptotic strain rate calculated for dissipation elements, as strain is the dominating
physical mechanism acting on long gradient trajectories. The first order structure function along
gradient trajectories normalized with the strain rate < ∆un > /(a∞λ) consequently exhibited
the same shape for all turbulent flows. The successful normalization of statistics along gradient
trajectories using the strain rate of dissipation elements in addition illustrated the physicly
meaningful generelization used in dissipation element analysis.
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