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Abstract. The present work focuses on the formulation of new modelling approaches to

ensemble-averaged equations describing multiphase flows, based on the symmetries admitted

by these equations. Particular attention will be given to the proper treatment of the unclosed

terms in the equation for the interface tracking which represent the influence of unresolved part

of the surface. Modelling of those terms is crucial in flows with heat and mass transfer. In

the work, two approaches to track the interface will be considered: the level-set function and

sharp-step indicator function method. The differences between the two approaches in terms of

turbulence-interface interactions modelling will be outlined.

1. Introduction

The phenomenon of turbulence and its interaction with the surface in two-phase flows is
particularly interesting from the physical point of view and is important in a variety of industrial
and geophysical applications. Examples of turbulent flows with agitated surface include the wave
breaking flows, relevant in the ocean and marine engineering (Brocchini & Peregrine 2001a), open
channel flows with the surface disrupted by the action of turbulence as well as flows where heat
and mass transfer is considerably enhanced due to the deformation of the surface (Smolentsev
& Miraghaie 2005). In spite of an increasing research effort oriented towards investigation and
modelling of such flows some authors claim that there is still a lack of fundamental physics based
modelling approaches, cf. Prosperetti & Tryggvason (2007), and that there is considerable room
for improvements in this field.

To find a closure, a given term should be written in terms of known variables, hence, it is
necessary to derive the most general, consistent form of such closures and decide which flow
variables can be used in the model. Such basic rules for the modelling approaches can be
provided by the group theory. Lie group analysis of the original, closed system of equations
will lead to its symmetries. The main idea is that the modelled system should reflect the same
symmetries as the original one. Otherwise, a turbulence model may fail to properly describe
the physics of the flow. With the use of the group theory one may identify which terms can be
present in a model for unclosed terms, so that all symmetries are satisfied. For interface problem
in the context of premixed combustion this has been done for the first time by Oberlack et al.
(2001).
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The aim of this wok is, first, to apply the Lie group analysis to equations describing the
multiphase flows. A possible outcome of such analysis are guidelines for modelling approaches.
Moreover, new ideas will also be developed, as far as tracking of the interface in turbulent flow
is concerned. The indicator function, smoothed as a result of averaging or filtering process will
be interpreted as a probability of finding the k-th phase in the considered point of the flow. We
will investigate an equation for this quantity and aim to model an evolution of the whole layer
where the probability of finding the surface is non-zero.

The paper is structured as follows. In the next section, a short review of the existing
approaches to turbulent two-phase flows modelling is presented. In Section 3 we perform
group analysis of the equations governing two-phase flows, first for the level-set and then for
the indicator function formulation. The closure proposals to the averaged indicator function
equation are proposed in Section 4. This is followed by the conclusions and perspectives for the
further work.

2. State of the art

We consider a two-phase flow with clearly defined interface where one or both phases exhibit
turbulence characteristics. If the turbulent eddies are present in the bulk flow they may reach
and deform the interface between the phases, as well as influence its motion. On the other
hand, the disturbances generated at the surface may contribute to the turbulent production in
the bulk flow. Brocchini & Peregrine (2001)a provide a comprehensive empirical study of the
turbulent air-water flows. The authors classify different regimes of free-surface deformations
and parameterize them using two turbulence-related quantities: the typical length scale of the
turbulent ”blobs” reaching the surface - L and the intensity of the turbulent fluctuations q. To
investigate the stabilizing effect of the surface tension and gravity Brocchini & Peregrine consider
three criterial numbers the Reynolds number: Re = qL/ν, the Froude number: Fr = q/

√

(2gL)
and the Webber number: We = q2L̺/(2γ), where ν is the kinematic viscosity of the liquid
phase, g stands for the acceleration due to the gravity and γ is the surface tension coefficient.
The rough estimate of their critical values divide the L − q diagram into various flow regions,
cf. Fig. (2). In the region 0 on the diagram one deals with the flat surface where both the
gravity and the surface tension stabilizes it (small We and /or Fr). In Region 1, where the
Froude number is large and the Webber number small, we observe small-scale structures on
the surface, the surface tension prevents the surface from being disintegrated. Next, in region
2 neither gravity nor surface tension can prevent the surface breakage (both Fr and We are
large). Finally, in Region 3 we have Fr << 1 and We >> 1 which means that the gravity
effects plays a dominant stabilizing role.

When the averaging or filtering procedure is applied to transport equations describing
multiphase flows, a number of unclosed terms appear. Some of them are connected with jump
conditions at the interface and hence, they are very specific to multiphase flows. Labourasse
et al. (2007) classify the unclosed terms in the evolution equations in the one-fluid approach
and estimate their subgrid-scale contribution using apriori study. Moreover, Toutant et al.
(2008) propose to use a scale similarity models to approximate those terms and estimate the
error of such modelling attempt by performing a DNS of an interaction between a deformable
bubble and spatially decaying turbulence. All the above-mentioned works concern the LES
context. The Reynolds averaged (RANS) approach is discussed in Brocchini & Peregrine
(2001)b. Those authors present the averaged equations for the liquid phase with appropriate
boundary conditions to be applied on the surface (the gas phase is neglected). They also discuss
a closure proposals, mainly referring to the intermittency models used in classical turbulence
modelling. Contrary to the latter contribution we consider here the motion of both phases and
concentrate on the Reynolds-averaged equation describing motion of the interface.
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2.1. Governing equations

In the following, we consider a flow of incompressible, non-miscible fluids, separated from each
other by an interface. The position of the interface can be described by the level-set function
fk(x, t) as follows; x is a point placed at the interface if and only if fk(x, t) = f0 where f0 is
a selected level of the function fk. Moreover, it is assumed that the k-th phase is placed at a
given point x if fk(x, t) > f0. Based on the level-set function one can define a sharp indicator
function as

χk(x, t) = H(fk(x, t) − f0) (1)

where H is the Heaviside function.
A part of the surface at a given time t is sketched in Fig. 1. The surface is parametrized using

a two-dimensional, local coordinate system (λ, µ). A unit vector normal to the point xs(λ, µ, t)
of the surface is denoted by nk(λ, µ, t) and is directed towards the phase i 6= k. It is important
to note that the parametrization of the surface is arbitrary and does not influence its properties.

The gradient of the indicator function is zero everywhere except at the surface and it reads,
cf. Juric and Tryggvason (1998)

∇χk = −
∫∫

nk(λ, µ, t)δ (x − xs(λ, µ, t)) Adλdµ (2)

where the volume integral has been transformed into the integral over the surface and A dλdµ
describes the infinitesimal area of the surface with A given by the formula

A =
∣

∣

∣

∂xs

∂λ
× ∂xs

∂µ

∣

∣

∣
. (3)

In the most general formulation, the flow of k phases can be described by a set of conservation
equations, separately for each phase. These equations are complemented by jump conditions at
the interface. Alternatively, a one-fluid formulation can be considered where one set of equations
is solved in the entire flow region and the interface is tracked directly by a kinematic equation
for the level-set function or for the indicator function. The one-fluid variables are written as
φ =

∑

k χkφk. The one-fluid mass and momentum conservation equations have the following
form, cf. Labourasse et al. (2007)

∂̺

∂t
+ ∇ · (̺u) = 0, (4)

∂̺u

∂t
+ ∇ · (̺uu) + ∇p − ̺f −∇ · τ = −γ

(

∇s · n1
)

∇χ1. (5)

where ∇s ·nk = κk is the surface curvature, equal to the surface divergence of the normal vector
κk = ∇s · nk = (Id − nknk) : ∇nk. In the absence of mass transfer the deviatoric part of the
stress tensor can be written as τ = µ

(

∇u + ∇uT
)

. The flow variables and material properties of
the fluid are computed with the use of the indicator function, ̺ = χ1̺1 +χ2̺2, µ = χ1µ1 +χ2µ2.
The system (4)–(5) is supplemented by an equation for the motion of the interface which can
be described either in terms of the level-set function, cf. Osher & Sethian (1998)

∂fk

∂t
+ u · ∇fk = ṁk

(

1

̺1
+

1

̺2
− ̺

̺1̺2

)

∣

∣∇fk
∣

∣. (6)

or the sharp-step indicator function, cf. Labourasse et al. (2007)

∂χk

∂t
+ u · ∇χk = −

∫∫

ṁk

(

1

̺1
+

1

̺2
− ̺

̺1̺2

)

δ (x − xs) Adλdµ. (7)
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Although both approaches are mathematically equivalent the mass transfer terms in Eq. (7)
and (6) have different forms. The further analysis will show that this difference is of large
significance for the issues of statistical averaging or filtering of the governing equations and
modelling approaches.

3. Group analysis of transport equations for multiphase flows

The purpose of the symmetry analysis based on the Lie group theory is to analyse, simplify and
find solutions of partial differential equations cf. Ibragimov (1993). The method gives a deep
insight into the underlying physical problems described by PDE. By “symmetry transformation”
we understand such transformation of variables which does not change the functional form of
the considered equation. As an example, consider the equation written in terms of independent
variables x, t and dependent variables u

F (x, t,u,u
1
,u

2
, . . . ,u

q
) = 0 (8)

where u
k

denote the k-th derivatives of the function u with respect to any possible combination

of independent variables and q is the highest order of derivative present in the above equation.
Functional form of (8) is invariant under the transformation of variables x → x∗, t → t∗

u → u∗ if the following equality also holds F (x∗, t∗,u∗,u∗

1
,u∗

2
, . . . ,u∗

q
) = 0. Using a

strictly determined mathematical procedure the one-parameter Lie group method provides the
infinitesimal transformations ηi, ξt, χxi and, further, by solving the equations

du∗

i

dǫ
= ηi,

dt∗

dǫ
= ξt,

dx∗

i

dǫ
= ξxi (9)

with the boundary conditions ǫ = 0, u∗ = u, t∗ = t, x∗ = x leads to the final form of the finite
transformations u∗, t∗, x∗. Different, independent group transformations can be presented using
a set of independent differential operators

Xk = ξt
∂

∂t
+

3
∑

i=1

ξxi
∂

∂xi
, +

J
∑

j=1

ηj
∂

∂uj
+ k = 1, . . . ,N (10)

where N is the total number of independent group transformations admitted by the considered
equation.

3.1. Level-set formulation

The symmetry analysis of the system of equations with additional assumptions of the inviscid
fluid without the surface tension and in the absence of the gravity was performed using the
Maple program with the GeM (General Module) software developed by A. Cheviakov. The
following infinitesimal transformations were found for the one-fluid system of equations (4)–(5)
and (6) .

X1 =
∂

∂t
, X2−4 =

∂

∂xi
, X5/6 = t

∂

∂t
+

3
∑

i=1

(

xi
∂

∂xi

)

(11)

X7−9 = xi
∂

∂xj
− xj

∂

∂xi
+ ui

∂

∂uj
− uj

∂

∂ui
i < j, (12)

X10−12 = t
∂

∂xi
+

∂

∂ui
, X13 = F1(t)

∂

∂p
, (13)

X14 = F(f1)
∂

∂f1
(14)

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 042025 doi:10.1088/1742-6596/318/4/042025

4



The infinitesimal transformations X1 and X2−4 represent the fact that the system of equations
is invariant under the time and space translations, respectively. X5/6 is a scaling group of
space and time. This symmetry is broken for the non-zero viscosity and/or surface tension.
The rotational invariance is determined by X7−9 and the Galilean invariance by X10−12. The
infinitesimal transformation X13 stands for the pressure translation. The presence of gravity does
not break any symmetries. Instead, the scaling and rotation groups are appropriately modified.
The transformations X1 − X13 are identical to those of the Euler equations of the single phase.
Hence, the presence of the interface between two fluids of different densities and a possible jump
of variables that follows from the boundary conditions do not break any symmetries. This would
mean that, after the averaging procedure, basically the same approaches could be used to model
unclosed terms in the continuity and momentum equations for two-phase flows.

In the above system we additionally find the generalised scaling symmetry (14) for the level-
set function. The new variables take a form:

fk∗ = F(fk), (15)

where F is an arbitrary monotonic function. It should be noted that the symmetries of the level-
set equation have been first investigated in Oberlack et al. (2001) who found the generalised
scaling for the level-set equation with mass transfer coupled with the Euler equations. Here
we consider the system of conservation equations for the one-fluid variables and note that the
Heaviside function χ = H(fk − fk

0 ) and, as a consequence, all one-fluid quantities are invariant
under the generalised scaling symmetry of the fk. Moreover, the presence of the surface tension
in Eq. (5) does not break this symmetry. Hence, the considerations presented in Oberlack et
al. (2001) concerning the consequences of the generalised scaling symmetry for the issues of
averaging and modelling of interactions between turbulence and the flame will also apply to this
case.

3.2. Indicator function formulation

Due to the presence of the integral form of the mass transfer term in Eq. (7) the group analysis
of the conservation equations with this formula is more complicated. We recall that the quantity
xs(λ, µ, t) denotes a point at the surface and, we argue that once the space variable x transforms
to x∗, xs should transform in the same way. This leads to the following infinitesimals

X1 =
∂

∂t
, X2−4 =

∂

∂xi
+

∂

∂xsi
, X5/6 = t

∂

∂t
+

3
∑

i=1

(

xi
∂

∂xi
+ xsi

∂

∂xsi

)

(16)

X7−9 = xi
∂

∂xj
− xj

∂

∂xi
+ xsi

∂

∂xsj
− xsj

∂

∂xsi
+ ui

∂

∂uj
− uj

∂

∂ui
i < j, (17)

X10−12 = t
∂

∂xi
+ t

∂

∂xsi
+

∂

∂ui
, X13 = F1(t)

∂

∂p
, (18)

(19)

In particular, with such a choice the space-time scaling invariance X5/6 of Eq. (7) is satisfied.
To see that this is true we first note that the delta distribution (as present in the RHS of Eq.
(7)) transforms according to the following relation cf. Ibragimov (1993)

δ∗(x∗) =

[

det

(

∂x∗

i

∂xj

)]

−1

x=0

δ(x). (20)

For the scaling invariance X5/6 with t∗ = a1t, x∗ = a1x and x∗

s = a1xs the integral on the RHS
of Eq. (7) transforms as

∫∫

δ (x∗ − x∗

s)
∣

∣

∣

∂x∗

s

∂λ
× ∂x∗

s

∂µ

∣

∣

∣
dλdµ =

∫∫

1

a3
1

δ (x − xs) a2
1

∣

∣

∣

∂xs

∂λ
× ∂xs

∂µ

∣

∣

∣
dλdµ. (21)
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As the LHS of Eq. (7) transforms in the same way we finally find that Eq. (7) is invariant
under the scaling transformation X5/6. Another important issue is that the generalised scaling

invariance (14) is broken for the indicator function. The difference between symmetries for χk

and fk is crucial for the further modelling proposals, discussed in detail in Section 4.

4. Modelling of interface position

4.1. Averages

A direct solution of the system of conservation equations for multiphase flows is, at present,
beyond our reach for most of the technically relevant cases. Hence, a reduced description, based
on the averaged or spatially-filtered quantities is sought for. Due to the presence of the two-
dimensional moving surface special attention should be given to the issues of averaging and
interface tracking in the averaged field.

First, the classical ensemble-averaged quantity 〈φ〉(x, t) is defined as a mean over infinitely
many independent realisations. Another type of average was introduced by Pope (1988) for the
quantities averaged at the instantaneous surface. The surface-average of a quantity Q(x, t) reads

〈Q(x, t)〉s =
1

Σ

∫∫

〈Q(x, t)δ(x − xs)A(λ, µ, t)〉dµdλ. (22)

where Σ is the so-called surface-to-volume ratio and describes the ratio of the mean infinitesimal
area 〈δA〉 to the infinitesimal volume δV containing δA. The term Σ is computed as the following
integral

Σ(x, t) =

∫∫

〈δ (x − xs(λ, µ, t)) A(λ, µ, t)〉dλdµ. (23)

4.2. Level-set equation.

A special attention should be given to the issue of the interface tracking in the averaged/filtered
field. As far as the level-set equation (6) is concerned, it was shown in Oberlack et al. (2001), with
the use of group theory, that classical ensemble-averaging or filtering of the level-set equation
leads to a contradiction. This is related to the generalised scaling symmetry of the level-set
equation (14) and may also be interpreted as follows, the fk-field has the physical meaning only
at fk = f0. Outside the front its values are arbitrary, what is reflected in the invariance under
transformation fk∗ = F(fk). When the ensemble averaging at a certain point in space x is
performed different values of fk contribute to the mean 〈fk〉. Hence, the level 〈fk〉 = f0 does
not, in general, specify the position of the mean interface. Instead, a well-posed methodology
would be to find a single surface that would describe the most probable position of the interface
and track this surface by the use of the level-set method.

As it was discussed by Oberlack et al. (2001) the fundamental form of the level-set equation
is solely determined by its symmetries. The symmetries of the system restrict and determine the
possible, general form of the turbulence model to be used. In particular, due to the presence of
the generalised scaling symmetry the level-set equation cannot contain the diffusion term ∇2fk.
Hence the gradient diffusion hypothesis cannot be used as a turbulence closure in the level-set
equation. Although such attempts exist in the literature, they were proven to be mathematically
incorrect, cf. Peters (2000). Moreover, from the same scaling symmetry it follows that only the
derivatives of fk (and not fk explicitly) can be present in the level-set equation.

Indicator function. In this work we concentrate on the indicator function approach. In contrary
to the level-set function approach, the system (4–5) and (7) does not reflect the generalised
scaling symmetry. This has important consequences. First, and the most important is that
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the transport equation for the level-set function can be averaged. As a result of averaging or
filtering of the indicator function one obtains a smoothed function αk, cf. Labourasse et al.
(2007) , αk = 〈χk〉 which can be interpreted as the probability of finding the phase k at point
x. The evolution of the function α is described by the averaged/filtered Eq. (7)

∂αk

∂t
+ 〈u · ∇χk〉 = −

∫∫

〈ṁk

(

1

̺1
+

1

̺2
− ̺

̺1̺2

)

δ (x − xs) A〉dλdµ. (24)

The unclosed term on the LHS is connected with the contribution of the instantaneous velocity
on the interface shape and the interface position. The influence of turbulence on the interfacial
mass and heat transfer is contained in the RHS of the above equation. In most of the works
the unclosed LHS term in the kinematic equation for interface tracking is simply replaced by
〈u〉 · ∇αk (or by a term with Favre-averaged velocity). The first work, where the closure for
analogous term in a LES context was proposed is Toutant et al. (2008). The scale similarity
hypothesis was used there to model the unclosed term in the equation for the interface tracking.
A possible closure in the RANS context has recently been discussed by Wac lawczyk & Oberlack
(2011). The considerations presented therein will be shortly outlined below. Substituting Eq.
(2) into the LHS of Eq. (24) leads to

∂αk

∂t
−

∫∫

〈u · nkδ(x − xs)A〉dλdµ = RHS (25)

If we use the definition of the surface mean (22) in the above equation we obtain

∂αk

∂t
− 〈u〉 · 〈nk〉s − 〈u′ · nk〉sΣ = − 1

̺k
〈ṁk〉sΣ (26)

where the velocity has been decomposed into the mean 〈u〉 and the fluctuation part u′.
Wac lawczyk & Oberlack (20011) proposed to replace the correlation 〈u′ · nk〉s by the eddy
diffusivity hypothesis which, after further transformations led to the following formula

∂αk

∂t
+ 〈u〉 · ∇αk = Dt∇ · (∇αk) + Dt〈nk〉s · ∇Σ − 1

̺k
〈ṁk〉sΣ. (27)

It was argued that the first term on the RHS of Eq. (27) causes diffusion, i.e. spreading of the
region where 0 < α < 1 due to the action of turbulence. The effect of the second RHS term is
likely to be opposite, it describes the stabilization of the surface due to the action of gravity and
surface tension which, after the ensemble averaging, is observed as the shrinking of the surface
layer.

In this work we aim to derive a possible form of the closure for the ”antidiffusion” term from
the symmetries of the considered system of equations. We follow here the work of Oberlack et al.
(2001) where the same procedure was used to derive the level-set equation from its symmetries.
We will assume that the model equation will have the following, general functional form

F (t,x, x̂s, α,u, αt, α
1
, α

2
) = 0 (28)

where x̂s denotes a point at the isosurface α = 0.5 where the probability of finding both phases
is equal, αt denotes the derivative of α with respect to time, α

1
and α

2
denote, respectively, all

possible first and second order space derivatives. As formula (28) should be invariant under the
symmetries (16–18) the following condition should simultaneously be satisfied

X1F = 0,X2−4F = 0, . . . X10−12F = 0. (29)
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where the point xs is replaced by the point x̂s. From X1F = 0 it follows that ∂F/∂t = 0, hence,
formula (28) does not explicitly contain time. For the space translations group X2−4 we have
the relation

∂F

∂xi
+

∂F

∂x̂si
= 0, i = 1, . . . , 3, (30)

hence, F can possibly depend on a difference x − xs, i.e. a distance from a given point x to
an arbitrary point at the isosurface α = 0.5. Employing additionally the Galilean invariance
X10−12, cf. Eq. (18) as it was done by Oberlack et al. (2001) provides the following form of the
model

F (αt − u · ∇α,x − x̂s, α, α
1
, α

2
) = 0, (31)

In order to investigate the rotational invariance we derived the so-called second prolongation of

X7−9, denoted as X
(2)
7−9. Details of this procedure are explained e.g. in Oberlack et al. (2001).

The condition X
(2)
7−9F = 0 leads to a partial differential equation which can be solved by the

method of characteristics. This leads to the following possible form of F

F (αt − u · ∇α,α,
∣

∣x − x̂s

∣

∣, (x − x̂s) · ∇α,
∣

∣∇α
∣

∣,∇2α,∇ · n̂) = 0. (32)

where n̂ = −∇α/|∇α| is a vector normal to the isosurfaces of α. In contrary to the level-set
approach described by in Oberlack et al. (2001) the functional F can depend explicitly on α and
∇2α. Moreover, an additional variable x̂s was introduced which leads to the term (x−x̂s)·∇α in
Eq. (32). An analogous term was considered in the previous work of the authors, cf. Waclawczyk
& Oberlack (2011) as a closure for the antidiffusion term in Eq. (27), therein x̂s was defined as
a point at the isosurface α = 0.5 closest to x. Therein it was shown that the stationary solution
of the 1D equation

∂α

∂t
+ 〈u〉∂α

∂x
= Dt

∂2α

∂x2
+ Ω (x − x̂s)

∂α

∂x
. (33)

(where Ω is a model coefficient proportional to the reciprocal of the turbulence time scale) is a
Gaussian error function

α(x) = 0.5
[

1 + erf
(√

σs(x − x̂s)/
√

2
)]

(34)

where σs =
√

Dt/Ω. Such solution is physically reasonable as it was observed experimentally
in various flow regimes cf. Hong & Walker (2000), Freeze et al. (2003) and was also mentioned
by Brocchini and Peregrine (2001b) as a profile observed experimentally in the splashing” flow
regime. Brocchini and Peregrine (2001b) argued that the values b = −3σ and t = 3σ can be
taken as the bottom and the top of the surface layer. Therein the shape of the surface and
the surface layer thickness were quantified on the L − q diagram. The authors also relate two
quantities: the maximal ”width” of the layer t − b (distance from lowest troughs to the highest
splashes) and the amount of water above the base of the layer d, to the length scale L of turbulent

eddies d =
∫ t
b αkdx = AL(q), t − b = BL(q) where A and B are constants. The diagram from

Brocchini and Peregrine (2001b), cf. Fig. 2, presents quantitative estimate of the constants A
and B for different flow regimes.

Wac lawczyk & Oberlack (2011) connected the model proposal with the experimental
observations of Brocchini and Peregrine (2001b). The formulas for d and t− b, based on the 1D,
stationary profile of αk, cf. Eq. (34), with b = −3σ and t = 3σ taken as the limits of the surface
layer, read

d = 3

√

Dt

Ω
= AL(q), t − b = 6

√

Dt

Ω
= BL(q). (35)
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Figure 1. Coordinate system
(x, y, z) and the local system (λ, µ)
connected with the surface.

Figure 2. The L-q diagram from cf. Brocchini &
Peregrine (2001a).

In the next step the values of modelling constants were estimated, based on Eqs (35). Assuming
that Dt = Cµk2/(ǫSct) and Ω = CΩǫ/k where k is the turbulent kinetic energy, ǫ is its mean
dissipation rate, Cµ is the constant taken from the k− ǫ model and Sct is the turbulent Schmidt
number, we obtain the value of the modelling constant CΩ as a function of A. This is an
important point of the considerations, as it relates the newly derived, theoretical model with
the constants in the experimental diagram from Brocchini and Peregrine (2001b) i.e. with the
physics of the air-water flows.

In order to model dynamics of two-phase turbulent flows the model for the surface layer
α should be coupled with the Navier-Stokes equation. The disadvantage of the proposal (33)
is its non-conservative form. However, another closures for the antidiffusion term could be
investigated, e.g. due to the explicit presence of α in Eq. (32) we can consider the form
∇(cα(1 − α)n̂) where the coefficient c could be expressed as a product of the length scale L
and Ω. Such closure would be analogous to those used in the equation for the progress variable
in combustion, cf. Peters (2000). A stationary solution of the α equation with such a model
will, probably, be close to the Gaussian error function. Hence, the values of modelling constants
could also be estimated based on the data given in Brocchini and Peregrine (2001b).

A possible simple closure for the mass transfer term Eq. (27) was discussed by Wac lawczyk
& Oberlack (2011). Another forms of the model can also be proposed, possibly based on the
models for the mass transfer term in combustion, cf. Peters (2000). Such closure could involve
modelling of the surface-to-volume ratio Σ which can be done either by providing an algebraic
relation or an additional model equation for this quantity. This task is left for further work.

5. Conclusions

In this work, the symmetry analysis of equations describing the flow of two incompressible,
immiscible fluids in the one-fluid approach was performed. We considered two different
descriptions for the interface tracking, namely, in terms of the the level-set function and the
indicator function. The main difference between the two approaches was that the generalised
scaling symmetry was found for the level-set function, while for the sharp-step indicator this
scaling was broken. Moreover, due to the specific integral form of the mass transfer term
in the indicator function approach an additional variable xs was present in the symmetry
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transformations. As it was shown by Oberlack et al. (2001), with the generalised scaling
symmetry, the averaging of the level-set equation was not allowed. The lack of the generalised
scaling symmetry for the χ function allows for some more freedom in choosing the modelling
approach. The indicator equation can be averaged and an equation for the smoothed function α
contained within the bounds 0 ≤ α ≤ 1 is obtained. In this work we put forward, based on the
symmetry analysis, possible modelling closures for this equation. We have shown that values
of modelling constant for the air-water flows can be estimated from the empirical observations
given by Brocchini & Peregrine (2001b).

The perspective that follows from this theoretical study is to perform numerical RANS
simulations of the turbulent two-phase flows in simple geometries using the proposed models.
Another perspective is to consider turbulent two-phase flows with non-zero mass transfer between
the phases and investigate possible closures for the mass transfer term in the equation for α.
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