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Abstract. We presently show that the infinite set of multi-point correlation equations, which
are direct statistical consequences of the Navier-Stokes equations, admit a rather large set of Lie
symmetry groups. Additional to the symmetries stemming from the Navier-Stokes equations
a new scaling group and translational groups of the correlation vectors and all independent
variables have been discovered. These new statistical groups have important consequences
on our understanding of turbulent scaling laws. Exemplarily, we consider one of the key
foundations of statistical turbulence theory, the universal law of the wall, and show that the
log-law fundamentally relies on one of the new translational groups. Furthermore, we present
rotating channel flows, where different rotational axes result in very different scaling laws.

1. Introduction

Turbulence represents an important field in hydrodynamics with applications in innumerable
natural and technical systems. Examples for natural turbulent flows are atmospheric flow
and oceanic current which to calculate is a crucial point in climate research. Only with the
advent of super computers it became apparent that the Navier-Stokes equations provide a very
good continuum mechanical model for turbulent flows, although practical flow problems at high
Reynolds numbers cannot be calculated without invoking any additional assumptions.

In the most applications it is not at all necessary to know all the detailed fluctuations of
velocity and pressure present in turbulent flows but for the most part statistical measures are
sufficient. This represents the key idea of O. Reynolds who was the first to suggest a statistical
description of turbulence. Due to the non-linearity of the Navier-Stokes equations an infinite
set of statistical equations occurs.

The mathematical theory of Lie group analysis allows us a deeper insight into the statistical
behavior of turbulence. This theory is developed to create special solutions of partial differential
equations such as the Navier-Stokes equations or the resulting multi-point equations. At the
end we will consider two different flow situations and determine the corresponding scaling laws.

This work presents the most important results from Oberlack & Rosteck (2010), Oberlack &
Rosteck (2011), extended by new developments concerning the extension of the set of symmetries
in Rosteck & Oberlack (2011) and applications to various rotating channel flows (see Oberlack
& Rosteck (2011)).
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2. Equations of statistical turbulence theory

2.1. The closure problem
Assuming an incompressible fluid under the assumption of a Newtonian material with constant
density and viscosity, the given flow is described by the Navier-Stokes equations

∂Uk
∂xk

= 0 , (1)

Mi(x) =
∂Ui
∂t

+ Uk
∂Ui
∂xk

+
∂P

∂xi
− ν ∂2Ui

∂xk∂xk
= 0 , i = 1, 2, 3 , (2)

where t ∈ R+, x ∈ R3 and U = U(x, t) represent time, position vector and instantaneous
velocity vector. The pressure P ∗ already appears in its normalized form P ∗ = P ∗

ρ , while the
density ρ and the viscosity ν are positive constants.

After U and P are decomposed according to the Reynolds decomposition, i.e. U = Ū + u
and P = P̄ + p, we gain an averaged versions of the Navier-Stokes equations

∂Ūk
∂xk

= 0 , (3)

∂Ūi
∂t

+ Ūk
∂Ūi
∂xk

= − ∂P̄
∂xi

+ ν
∂2Ūi
∂xk∂xk

− ∂uiuk
∂xk

, i = 1, 2, 3. (4)

At this point we observe the well-known closure problem of turbulence since, compared to
the original set of equations, the unknown Reynolds stress tensor uiuk appeared. However,
rather different from the classical approach we will not proceed with deriving the Reynolds
stress tensor transport equation which contains additional four unclosed tensors. Instead the
multi-point correlation (MPC) approach is put forward out of two reasons. In every higher
moment only one unclosed tensor appears and the multi-point correlation delivers additional
information on the turbulence statistics such as length scale information.

For this we need the equations for the fluctuating quantities u and p which are derived by
taking the differences between the averaged and the non-averaged equations, i.e. (1)−(3) and
(2)−(4). The resulting fluctuation equations read

∂uk
∂xk

= 0 , (5)

Ni(x) =
D̄ui
D̄t

+ uk
∂Ūi
∂xk
− ∂uiuk

∂xk
+
∂uiuk
∂xk

+
∂p

∂xi
− ν ∂2ui

∂xk∂xk
= 0 , i = 1, 2, 3 . (6)

2.2. Multi-point correlation equations
The idea of two- and multi-point correlation equations in turbulence was presumably first
established by Keller & Friedmann (1924). At that time the assumption was formulated that
all correlation equations of orders higher than two may be neglected. This, however, was later
refuted, so that all higher correlations have to be taken into account.

In order to write the MPC equations in a very compact form, we introduce the following
notation. The multi-point velocity correlation tensor of order n+ 1 is defined as follows:

Ri{n+1} = Ri(0)i(1)...i(n) = ui(0)(x(0)) · . . . · ui(n)(x(n)) , (7)

where the first index of the R tensor defines the tensor character of the term and the second
index in braces denotes the order of the tensor. The curly brackets point out that not an index
of a tensor but an enumeration is meant. Beginning the indices with 0 is an advantage when
introducing a new coordinate system based on the Euclidean distance of two space points.
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In order to set up the whole infinite set of equations some further notation is needed to
understand the formulas describing the MPC equations. It happens that the list of indices is
changed for one special point x(l), so that we write

Ri{n+1}[i(l) 7→k(l)] = ui(0)(x(0)) · . . . · ui(l−1)
(x(l−1)) · uk(l)(x(l))ui(l+1)

(x(l+1)) · . . . · ui(n)(x(n)) . (8)

If also the space point itself changes, e.g., we note

Ri{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)] = ui(0)(x(0)) · . . . · ui(n)(x(n))uk(l)(x(l)) , (9)

If indices are missing e.g. between i(l−1) and i(l+1) we define

Ri{n}[i(l) 7→∅] = ui(0)(x(0)) · . . . · ui(l−1)
(x(l−1))ui(l+1)

(x(l+1)) · . . . · ui(n)(x(n)) . (10)

Finally, we introduce the velocity-pressure correlation

Pi{n}[l] = Ui(0)(x(0)) · . . . · ui(l−1)
(x(l−1))p(x(l))ui(l+1)

(x(l+1)) · . . . · ui(n)(x(n)) . (11)

Afterwards, the equations determining the multi-point correlations can be formulated by the
sum

Ti{n+1}(x(0), . . . ,x(n)) =
n∑
a=1

Ni(a)(x(a))
n∏

b=1,b6=a
ui(b)(x

(b)) = 0 . (12)

Inserting (6) and writing the resulting equation in a compact form we gain

Ti{n+1} =
∂Ri{n+1}

∂t
+

n∑
l=0

[
Ūk(l)(x(l))

∂Ri{n+1}

∂xk(l)
+Ri{n+1}[i(l) 7→k(l)]

∂Ūi(l)(x(l))

∂xk(l)
+
∂Pi{n}[l]

∂xi(l)

− ν
∂2Ri{n+1}

∂xk(l)∂xk(l)
−Ri{n}[i(l) 7→∅]

∂ui(l)uk(l)(x(l))

∂xk(l)
+
∂Ri{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)

]
= 0

for n = 1, . . . ,∞ . (13)

In the case n = 2 we have Ri{1}[i(l) 7→∅] = 0. Further, the two-point correlation tensor Ri{2}
has a close link to the Reynolds stress tensor, i.e. limx(k)→x(l) Ri{2}(x(k),x(l)) = ui(0)ui(1)(x(l))
with k 6= l and arbitary x(k) and x(l) which is the key unclosed quantity in the Reynolds stress
transport equation (4).

In the process of searching Lie groups for the MPC equations (13) the non-linearity implies a
main disadvantage. This is the reason that we used another set of multi-point equations based
on the instantaneous velocities, so that the corresponding multi-point correlation is defined by
Hi{n+1} = Ui(0)(x(0)) · . . . · Ui(n)(x(n)). The resulting equations form a linear set of equations

equivalent to (13) which is much more suited for the analysis. The symmetries, found for the H
approach, can be directly transferred to the presently employed R-P approach.

From equation (5) a continuity equation for the multi-point equations

∂Ri{n+1}[i(a) 7→k(a)]

∂xk(a)
= 0 ,

∂Pi{n}[k][i(l) 7→m(l)]

∂xm(l)

= 0 for a, k, l = 0, . . . , n and k 6= l (14)

can be derived. Further there exist side conditions, e.g. Ri(0)i(1)(x(0),x(1)) = Ri(1)i(0)(x(1),x(0)),

which result from the definition of the MPC (7).
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3. Symmetries of statistical transport equations

After recalling the Lie symmetries of the Euler and Navier-Stokes equations we will transfer
these symmetries to its corresponding ones for the MPC equations. Then we will present some
additional symmetries of the MPC equations which are not reflected in the original Euler and
Navier-Stokes equations. Although the additional symmetries are found for the H-approach, we
will show only the transfered ones in the R notation out of reasons of brevity (see Oberlack &
Rosteck (2010)).

In order to appreciate the analysis on Lie symmetries below we will define its basic concepts.
Suppose the system of partial differential equations under investigation is given by

F (y, z, z(1), z(2), . . . ) = 0, (15)

where y and z are the independent and the dependent variables respectively and z(n) refers to
all nth-order derivatives of any component of z with respect to any component of y.

A transformation y = φ(y∗, z∗) and z = ψ(y∗, z∗) is called a symmetry transformation
of the equation (15) if the equivalence

F (y, z, z(1), . . . ) = 0 ⇔ F (y∗, z∗, z∗(1), . . . ) = 0 (16)

holds, i.e. the given transformation substituted into (15) does not change the form of equation
(15) if written in the new variables y∗ and z∗.

A second concept which will be heavily relied on is that of an invariant. It refers to quantities
that do not change structure under a given symmetry i. e. I(y, z) = I(φ(y∗, z∗),ψ(y∗, z∗)) =
I(y∗, z∗).

The final concept in this context is that of an invariant solution. The invariants may be taken
as new dependent and independent variables which in turn leads to a reduction of the number
of the independent variables. The self-similarity solution well-known in mechanics corresponds
to invariant solutions with certain scaling properties.

3.1. Symmetries of the Euler and Navier-Stokes equations
The Euler equations, i.e. equation (1) and (2) with ν = 0 admit a ten-parameter symmetry
group,

T1 : t∗ = t+ a1, x
∗ = x, U∗ = U , P ∗ = P,

T2 : t∗ = t, x∗ = ea2x, U∗ = ea2U , P ∗ = e2a2P,

T3 : t∗ = ea3t, x∗ = x, U∗ = e−a3U , P ∗ = e−2a3P,

T4 − T6 : t∗ = t, x∗ = a · x, U∗ = a ·U , P ∗ = P,

T7 − T9 : t∗ = t, x∗ = x+ f(t), U∗ = U +
df

dt
, P ∗ = P − x · d2f

dt2
,

T10 : t∗ = t, x∗ = x, U∗ = U , P ∗ = P + f4(t) , (17)

where a1-a3 are independent group-parameters, a denotes a constant rotation matrix with the
properties a · aT = aT · a = I and |a| = 1. Moreover f(t) = (f1(t), f2(t), f3(t))T with twice
differentiable functions f1-f3 and f4(t) may have arbitrary time dependence.

The physical meaning of T1 is a time translation while T4-T6 designate rotation invariance.
The symmetries T7-T9 comprise translational invariance in space for constant f1-f3 as well as
the classical Galilei group if f1-f3 are linear in time. In its rather general form T7-T9 and T10

are direct consequences of an incompressible flow and do not have a counterpart in the case
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of compressible flows. The complete record of all point-symmetries (17) was first published by
Pukhnachev (1972).

Invoking a formal transfer from Euler to the Navier-Stokes equations symmetry properties
change and a recombination of the two scaling symmetries T2 and T3 is observed

TNaSt : t∗ = e2a4t, x∗ = ea4x, U∗ = e−a4U , P ∗ = e−2a4P, (18)

while the remaining groups stay unaltered.
It should be noted that additional symmetries exist for dimensional restricted cases such as

plane or axisymmetric flows (see Andreev & Rodionov, 1988; Cantwell, 1978).

3.2. Symmetries of the MPC implied by Euler and Navier-Stokes symmetries
A first set of symmetries can be directly derived from the symmetries of the Euler equations.
Applying the Reynolds decompostion to these symmetries we easily show that

T̄1 : t∗ = t+ a1, x
∗ = x, r∗(l) = r(l), Ū

∗
= Ū , P̄ ∗ = P̄ , R∗{n} = R{n}, P

∗
{n} = P{n},

T̄2 : t∗ = t, x∗ = ea2x, r∗(l) = ea2r(l), Ū
∗

= ea2Ū ,

P̄ ∗ = e2a2P̄ , R∗{n} = ena2R{n},P
∗
{n} = e(n+2)a2P{n},

T̄3 : t∗ = ea3t, x∗ = x, r∗(l) = r(l), Ū
∗

= e−a3Ū ,

P̄ ∗ = e−2a3P̄ , R∗{n} = e−na3R{n}, P∗{n} = e−(n+2)a3P{n},

T̄4−T̄6 : t∗ = t, x∗ = a · x, r∗(l) = r(l), Ū
∗

= a · Ū , P̄ ∗ = P̄ ,

R∗{n} = A{n} ⊗ R{n}, P∗{n} = A{n} ⊗ P{n},

T̄7−T̄9 : t∗ = t, x∗ = x+ f(t), r∗(l) = r(l), Ū
∗

= Ū +
df

dt
,

P̄ ∗ = P̄ − x · d2f

dt2
, R∗{n} = R{n}, P∗{n} = P{n},

T̄10 : t∗ = t, x∗ = x, r∗(l) = r(l), Ū
∗

= Ū , P̄ ∗ = P̄ + f4(t), R∗{n} = R{n}, P
∗
{n} = P{n}, (19)

are symmetries of the MPC equations (13), where all function and parameter definitions are
adopted from 3.1 and A is a concatenation of rotation matrices as Ai(0)j(0)i(1)j(1)...i(n)j(n) =
ai(0)j(0)ai(1)j(1) . . . ai(n)j(n) . Formulating the MPC equations in relative coordinates the vector

r = x(1) − x(0) is introduced (see Oberlack & Rosteck (2010) and all given symmetries are
formulated in relativ coordinates.

3.3. Statistical symmetries of the MPC equations
It is clear that a general symmetry analysis of the MPC equations could result in further
symmetries, which have no correspondance in the Navier-Stokes equations so that these
symmetries will be called statistical symmetries.

In Oberlack & Rosteck (2010) we showed already the first new symmetries, which can be
found for the MPC equations. Considering this work the basis of this analysis does not lie on
the MPC equations in the R formulation, but the previous mentioned H formalism is needed.

This entire new set of symmetries for the R-P-system

T̄ ′1 : t∗ = t, x∗ = x, r∗(l) = r(l) + a(l), Ū
∗

= Ū , P̄ ∗ = P̄ , R∗{n} = R{n}, P
∗
{n} = P{n}, · · · (20)

T̄ ′2{1} : t∗ = t, x∗ = x, r∗(l) = r(l), Ū
∗
i(0)

= Ūi(0) + Ci(0) ,

R∗i(0)i(1) = Ri(0)i(1) + Ūi(0)Ūi(1) −
(
Ūi(0) + Ci(0)

)(
Ūi(1) + Ci(1)

)
, · · · (21)
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T̄ ′2{2} : t∗ = t, x∗ = x, r∗(l) = r(l), Ū
∗
i(0)

= Ūi(0) , R
∗
i(0)i(1)

= Ri(0)i(1) + Ci(0)i(1) , · · · (22)

T̄ ′s : t∗ = t, x∗ = x, r∗(l) = r(l), Ū
∗
i(0)

= easŪi(0) ,

R∗i(0)i(1) = eas
[
Ri(0)i(1) + (1− eas) Ūi(0)Ūi(1)

]
, · · · , (23)

can be seperated in three sets of symmetries. Note that this group is not related to the classical
translation group in usual x-space (here T7 − T9 in equation (17) with f = const.).

A translation of the relative coordinates (20) occurs, where a(l) represents the related set
of group parameters. The second set of statistical symmetries was in fact already partially
identified in Oberlack (2000), however, falsely taken for the Galilean group, where Ci(0) , Di(0) ,
Ci(1) , ... refer to group parameters. In this representation only the translation for Ri{n} , n = 1, 2,
is mentioned, although for arbitary n a respective symmetry can be formulated. The third
statistical group (23) that has been identified denotes simple scaling of all MPC tensors.

In Rosteck & Oberlack (2011) we proved that (21) or (22) can be generalized, so that e.g.
Ci(0) is a function of time and then a derivative of Ci(0) appears also for P∗{n}. Also another

symmetry working on the pressure-velocity correlations can be identified. The basis reason to
find these symmetries was that the whole set of given symmetries must form a Lie algebra. Its
concrete form is omitted at this point because it is not needed for the further considerations.

4. Turbulent scaling laws

Using Lie theory to analyse the MPC equations (13) was first done only with the classical
symmetries resulting from the Euler equations Oberlack (2000). Already these symmetries
allowed a wide class of possible scaling laws for special flow characteristica.

First hints towards a considerably extended set of symmetries for the MPC equations in the
form (14) or (13) may e.g. be taken from Oberlack (2000) and Khujadze & Oberlack (2004),
where new statistical symmetries were necessary to calculate the appearing scaling law. Its
importance was not observed therein - rather it was stated that they may be mathematical
artifacts of the averaging process and probably physically irrelevant. The set of new symmetries
was first presented and its key importance for turbulence recognized in Oberlack & Rosteck
(2010) and later extended in Rosteck & Oberlack (2011).

The first scaling law calculated with the extended set of symmetries was the exponential
decay produced by a fractal grid (see Khujadze & Oberlack (2004); Oberlack & Rosteck (2010)).
The resulting scaling law shows a perfect agreement to the data by Seoud & Vassilicos (2007).
This very positive result motivates to consider some other flows. Here we will deal later with
the log law and rotating channel flows.

The following scaling laws will be derived on a pure mathematical way, where the basis is given
by the MPC equations (13). Combining the symmetries of these equations invariant solution
can be formed, while the number of used symmetries is limited by the boundary conditions (see
Bluman et al. (2009)).

4.1. Stationary wall-bounded turbulent shear flows
Due to their eminent practical importance wall-bounded shear flows are by far the most
intensively investigated turbulent flows thereby employing a vast number of numerical,
experimental and modeling approaches and this, in fact, for more than a century.

From all the theoretical approaches the universal law of the wall is the most widely cited
and also accepted approach with its essential ingredient being the logarithmic law of the wall.
Though a variety of different approaches have been put forward for its derivation neither of them
have employed the full multi-point equations, which are the basis for statistical turbulence, nor
do they solve an equation that is related to the Navier-Stokes equations.
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Reasonable for this case is a transformation of the points xi(0) · · · xi(n) into a coordinate
system of related coordinates, meaning x(0), r(1) = x(1) − x(0), · · · r(n+1) = x(n+1) − x(0). In
this case equation (13) reduces for n = 2 in relative coordinates to

Ti{2} =
D̄Rij
D̄t

+Rkj
∂Ūi(x, t)

∂xk
+Rik

∂Ūj(x, t)

∂xk

∣∣∣∣
x+r

+
[
Ūk (x+ r, t)− Ūk (x, t)

] ∂Rij
∂rk

+
∂puj
∂xi

−
∂puj
∂ri

+
∂uip

∂rj
− ν

[
∂2Rij
∂xk∂xk

− 2
∂2Rij
∂xk∂rk

+ 2
∂2Rij
∂rk∂rk

]
+
∂R(ik)j

∂xk
− ∂

∂rk

[
R(ik)j −Ri(jk)

]
= 0 . (24)

In addition, the continuity equations, the side condition and, of course, also the symmetries
transform to the new coordinate system.

Already in Oberlack (1995) it was observed that in the limit of high Reynolds numbers and
|r| � ηK the logarithmic wall law allows for a self-similar solution of the two-point correlation
equation (24).

Within this subsection we exclusively examine wall-parallel turbulent flows only depending
on the wall-normal coordinate x2. Further, we only explicitly write the two-point correlation
Rij though all results are also valid for all higher order correlations. This finally yields
Ū1 = Ū1(x2), Rij = Rij(x2, r), . . . .

With these geometrical assumptions we identify a reduced set of groups, where the two scaling
groups T̄2 and T̄3 and the translation invariance form T̄7 − T̄9 in x2-direction in (19) remain.
Additionally, it is necessary to use the above-mentioned statistical symmetries, especially the
translational group in correlation space (20), the translational group (21) for Ū1, the translational
group (22) for Rij and finally the scaling group (23) Applying these statistical symmetries is
essential for calculating the following scaling laws.

Applying Lie theory (see Bluman et al. (2009)), the set of remaining symmetries can be
formed into an invariance condition of the MPC equations

dx2

k2x2 + kx2
=

dr[k]

k2r[k] + kr[k]
=

dŪ1

(k2 − k3 + ks)Ū1 + kŪ1

=
dR[ij]

ξR[ij]

= · · · , (25)

ξRij = (2k2 − 2k3 + ks)Rij −
(
ksŪ1(x2)Ū1(x2 + r2)+

kŪ1
(Ū1(x2) + Ū1(x2 + r2))

)
δi1δj1 + kRij , (26)

where no summation is implied by the indices in square brackets and instead a concatenation is
implied where the indices are consecutively assigned its values. For brevity explicit dependencies
on the independent variables are only given where there is an unambiguity. In general, any set
of parameters ki generates a set of invariants which are in fact invariant solutions.

In fact, with a distinct combinations of parameters k2, k3 and ks a multitude of flows may
be described where here we first focus on the log-law. We may keep in mind that Ū1 exclusively
depends on x2 and not on r.

Considering the classical case of the logarithmic wall law the reason of the appearing
symmetry breaking can be found by revisiting the key idea of von Kármán. He assumed that
close to the wall the wall-friction velocity uτ is the only parameter determining the flow, while
a symmetry breaking of the form k2 − k3 + ks = 0 (see Oberlack & Rosteck, 2010) follows.

Under this assumption (25) leads to the classical dimensionless logarithmic wall law

u+ =
1

κ
ln(x+

2 +A+) + C , (27)
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where the constants κ, A+ and C depend on k2, kx2 , kŪ1
and an integration constant. Moreover,

the two-point correlation can be derived by (25), formulated in dimensionless form and reduced
to Reynolds stresses by taking the limit r → 0 so that we gain

Rij = (x+
2 +A+)γDij +Bij , ij 6= 11 , (28)

R11 = D11(x+
2 +A+)γ − 1

κ2
ln2(x+

2 +A+)− 2
1

κ
C ln(x+

2 +A+) +B11 , (29)

where the new constants γ, Dij and Bij are combinations of the kα appearing in equation (25).
It is remarkable to note that γ is the same constant in all higher moments, so that the main
behavior of these scaling laws only depends on a reduced set of parameters.

4.2. Rotating channel
The second application to be focussed on is the rotating channel flow, where different rotational
axes will be considered (see also Oberlack & Rosteck (2011)).

Figure 1. Flow geometry of the pressure
driven channel flow.

Figure 2. Comparison of the scaling law (−)
in (32) with the DNS data (· · · ) of Hoyas &
Jimenez (2006) at Reτ = 2003.

Using our symmetry analysis in order to gain scaling laws, the calculated symmetries have to
be transformed into the coordinate system of a rotating frame. Then the invariant system can
be developed and for each rotational axis the symmetries used in this case must be determined.

This leads to a rather complex and involved form of the operator (25) so details have to be
omitted and only results for the mean flow will be given.

The certainly easiest case represents the rotation around the x3 direction, so that only Ω3 is
non-zero. This was already analysed in Oberlack (2001) and the scaling law

Ū1(x2) = αrotΩ3x2 + Ūcl (30)

was formulated, where Ūcl is the averaged velocity in the centreline. In this case the classical
symmetries i.e. scaling in space and the Galilei invariance are used and extended by the action
of the new scaling symmetry (23) and the translation of the velocities (21).

Next, assuming a rotation axis lying along the x2 direction, two velocity components Ū1 and
Ū3 have to be taken into consideration since the Coriolis force induces a cross flow. Again, both
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averaged velocities may only depend on x2. Different to the first case is that one additional
symmetry appears, namely translation in time i.e. T̄ ′1 in (20). From this we derive the new Ω2

depending scaling laws

Ū1 =
(y
h

)b [
a1 cos

(
cRo2 · ln

y

h

)
+a2 sin

(
cRo2 · ln

y

h

)]
+ d1(Ro2)

Ū3 =
(y
h

)b [
a1 sin

(
cRo2 · ln

y

h

)
−a2 cos

(
cRo2 · ln

y

h

)]
+ d2(Ro2) . (31)

A simplification of these equation can be done assuming a non-rotating channel flow. In this
case we obtain the core region in defect scaling

Ucl − Ū1

uτ
= a

(y
h

)b
, (32)

where Ucl is the velocity at the center of the channel and uτ is the friction velocity. A comparison
to DNS data of Hoyas & Jimenez (2006) at Reτ = 2003 to the scaling law in Figure 2 shows an
almost perfect agreement, here the parameters are fitted to a = 6.43 and b = 1.93.

Figure 3. Comparison of the scaling law
(−) in (31) with the DNS data (· · · ) of
Mehdizadeh & Oberlack (2010) at Ro2 =
0.011.

Figure 4. Comparison of the scaling law
(−) in (31) with the DNS data (· · · ) of
Mehdizadeh & Oberlack (2010) at Ro2 =
0.18.

Finally we consider the rotating case and compare the DNS data of Mehdizadeh & Oberlack
(2010) at Reτ = 360 with the scaling law (31). Results are depicted for two different rotation
numbers Ro2 = 2Ω2h

uτ0
in the figures 3 and 4 exhibiting an excellent fit in the center of the channel

for all cases. uτ0 refers to the friction velocity of the non-rotating case. It is to note from all
the DNS data sets in Mehdizadeh & Oberlack (2010) we find that with an increasing Ω2 the
magnitudes of Ū1 and Ū3 switch position since with increasing rotation rates Ū1 is suppressed
while Ū3 increases up to a certain point and decreases again though to a smaller extend compared
to Ū1. This behavior is exactly described by the scaling law (31).

5. Summary and outlook

Within the present contribution it was shown that the admitted symmetry groups of the infinite
set of multi-point correlation equations are considerably extended by three classes of groups
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compared to those originally stemming from the Euler and the Navier-Stokes equations. In fact,
it was demonstrated that it is exactly these symmetries which are essentially needed to validate
certain classical scaling laws such as the log-law from first principles and also to derive a large
set of new scaling laws.

In spite of the very impressive results which give a much deeper understanding on turbulence
statistics there are still some key open questions to be answered. Still, we cannot assure that
all symetries are found, so that there is a development to find a algorithmic way to determine
all symmetries. Furthermore, the appearing group parameters given in the scaling laws have
certain decisive values which are to be determined. A method is necessary in order to gain
them without fitting. Finally, we clearly observe that certain scaling laws such as the log law
only cover certain regions of a turbulent flow and are usually embedded within other layers of
turbulence. The matching of turbulent scaling laws is still an open question.
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