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Abstract. Turbulent boundary layer data computed by direct numerical simulation are

analyzed using orthogonal anisotropic wavelets. The flow fields, originally given on a Chebychev

grid, are first interpolated on a locally refined dyadic grid. Then, they are decomposed using a

wavelet basis, which accounts for the anisotropy of the flow by using different scales in the wall-

normal direction and in the planes parallel to the wall. Thus the vorticity field is decomposed

into coherent and incoherent contributions using thresholding of the wavelet coefficients. It is

shown that less than 1% of the coefficients retain the coherent structures of the flow, while the

majority of the coefficients corresponds to a structureless, i.e., noise-like background flow. Scale-

and direction-dependent statistics in wavelet space quantify the flow properties at different wall

distances.

1. Introduction

The motivation for this study comes from the importance of turbulent boundary layers in
different applications, for example, flows around technological devices such as airplanes, cars
or tennis balls, where determining the drag coefficient is directly related to this thin layer
around the obstacle. In geophysical flows, the atmospheric boundary layer also plays a prevailing
role. For a review on the subject we refer the reader to the classical textbook by Schlichting
& Gersten (2003). Direct numerical simulations of turbulent boundary layers are still a
demanding problem in computational fluid dynamics for both numerical discretization schemes
and computer resources. Resolving all dynamically active scales of the flow requires a very high
resolution at least close to the boundary. Spalart (1988) did the first numerical simulations
of turbulent boundary layers. Over the past several years, a number of simulations of such
flows for higher Reynolds numbers have became available (see, e.g. Skote (2001); Khujadze
& Oberlack (2004); Khujadze & M. Oberlack (2007); Schlatter et al. (2009)). One important
research subject is the identification and extraction of coherent structures in turbulent boundary
layers. This is inspired by the existence of horseshoe vortices first observed by Theodorsen
(1952). The observation of forests of horseshoe vortices in experimental data by Adrian et al.
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Figure 1. Two-dimensional slices of the streamwise component of vorticity ωx at for x ∈ [0, 125]
(transitional region) and [750, 875] (fully developed turbulent region).

(2000) and in direct numerical simulations (DNS) recently performed by Wu & Moin (2009) gave
a second wind to this topic. Wavelet techniques have been developed for more than 20 years
(see, e.g., Farge (1992) for an early review) to analyse, model, and compute turbulent flows.
The multiscale representation obtained by wavelet decompositions is useful in understanding
the physics of turbulent flows as locality in both space and scale is preserved. Thus localised
features of turbulent flows, such as coherent structures and intermittency can be extracted
and analysed. Coherent Vorticity Extraction (CVE) has been introduced for two- and three-
dimensional turbulent flows in Farge et al. (1999) and Farge et al. (2001), respectively. The
underlying idea is that coherent structures are defined as what remains after denoising and
hence only a hypothesis on the noise has to be made. In the present study we assume the
noise to be Gaussian and white. Preliminary results of CVE applied to wall-bounded flows,
for a channel flow, have been reported in Weller et al. (2006). Scale-dependent and directional
statistics in wavelet space have been presented in Bos et al. (2007) to quantify the intermittency
of anisotropic flows. Mixing layers have been analysed in Schneider et al. (2005) and sheared
and rotating flows more recently in Jacobitz et al. (2010). An up-to-date review on wavelet
techniques in computational fluid dynamics can be found in Schneider & Vasilyev (2010).

In the present paper we apply orthogonal wavelet analysis to the new DNS data of three-
dimensional turbulent boundary layers computed with the code of KTH (Lundbladh et al.

(1999)) for higher Reynolds numbers as published in Khujadze & Oberlack (2004); Khujadze
& M. Oberlack (2007). Additional difficulties are encountered due to the non-equidistant grid
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in the wall-normal direction. The aim of this paper is to extract coherent structures out of
high-resolution DNS of zero-pressure-gradient turbulent boundary layer flow at Reθ = 1470.
The vorticity of the flow is decomposed into coherent and incoherent parts and scale-dependent
statistics, i.e., variance, flatness and probability distribution functions, are computed at different
wall-normal positions. These analyses are only a first step as they are limited to flow snapshots.
A detailed investigation of the dynamics of the coherent and incoherent flow contributions is left
for future work.

The paper is organised as follows. Section 2 presents the flow configuration and the
computational approach. Some visualisation and analyses of the DNS data are also given.
The CVE methodology is described in Section 3, mentioning technical details like the required
interpolation on a dyadic adapted grid, the adaptive anisotropic wavelet transform and the
wavelet-based statistics which are applied in the numerical results in Section 4. The latter
discusses the total, coherent, and incoherent flows using both flow visualisation and statistical
analyses. The efficiency of CVE is also assessed. Finally, conclusions are drawn in Section 5 and
some perspectives for future investigations are given.

2. Flow configuration and parameters

Here we give some details on the DNS code for solving the incompressible Navier–Stokes
equations which was developed at KTH, Stockholm; for details we refer the reader to Lundbladh
et al. (1999). A spectral method with a Fourier decomposition is used in the horizontal
directions, while a Chebyshev discretization is applied in the wall-normal direction. Third-
order explicit Runge-Kutta and Crank-Nicolson schemes were used for the time integration for
the advective and the viscous terms correspondingly. Since the boundary layer is developing in
the downstream direction, a fringe region (where the outflow is forced by a volume force to the
laminar inflow Blasius profile) has to be added to the physical domain to satisfy the periodic
boundary condition. A wall-normal trip force is used to trigger the transition to turbulence.
Since the first study by Spalart (1988), several other authors have also used this approach for
simulating zero-pressure-gradient (ZPG) turbulent boundary layer flows. Note that is assumes
that the boundary layer thickness remains sufficiently small in the whole computational domain.
Extensive studies of turbulent boundary layer flows were performed by Skote (2001).

Here we give some details about the simulations used in our study. DNS of ZPG turbulent
boundary layer flow was performed for a number of grid points Nx×Ny×Nz = 2048×513×256

at starting laminar Reynolds number Reδ∗ |x=0 ≡ u∞δ∗|x=0

ν = 600. All quantities were non-
dimensionalized by the free-stream velocity u∞ and the displacement thickness δ∗ at x = 0,
where the flow is laminar. The size of the computational box was Lx ×Ly ×Lz = 1000 δ∗|x=0 ×
30 δ∗|x=0 × 34 δ∗|x=0. Figure 1 represents only part of the computational domain, i.e., for
0 ≤ x ≤ 125 and 750 ≤ x ≤ 875. The axes x, y and z correspond to the streamwise, wall-
normal, and spanwise directions, respectively. The flow is assumed to extend to an infinite
distance perpendicular to the wall. However, the discretization used in the code can only handle
a finite domain size. Therefore, the flow domain is truncated and an artificial boundary condition
is applied in the freestream at the wall-normal position yL. In the present computations we use
a generalisation of the boundary condition introduced by Malik et al. (1985) which allows the
boundary to be placed closer to the wall. The boundary condition exactly represents a potential
flow solution decaying away from the wall. It is essentially equivalent to requiring that the
vorticity is zero at the boundary. Thus, it can be applied immediately outside the vortical part
of the flow.

The simulations were run for a total of 11500 time units (δ∗|x=0/u∞). The Reynolds number
was Reθ ≈ 1470 with Reθ = u∞θ

ν and where θ is the momentum loss thickness. The grid
resolution in viscous or plus units (∆x+ ≡ ∆x/uτν, where uτ is the friction velocity) was
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Figure 2. Left plot : Mean velocity profile in lin-log representation at Reθ = 1470.
1/κ log y+ +B with κ = 0.41 and B = 5.2; Right plot : Diagonal components of Reynolds

stress tensor for the present DNS ( ) and from Simens et al. (2009) ( ) at the Re ≈ 1550,
with u1u1
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Figure 3. Left plot: Adapted dyadic grid by the position of the corresponding wavelets. Right

plot: Interpolation of vorticity ωy in the wall-normal direction. Original/Chebyshev grid,
△ dyadic grid, × reinterpolated on Chebyshev grid.

∆x+ ×∆y+ ×∆z+ = 12.8 × (0.018 to 5)× 3.5.
Figure 2 (left) shows the mean velocity profile in lin-log representation. The dashed line

corresponds to the fit of the classical log-law and the solid line represents the present DNS at
Reθ = 1470. The fit shows that for 3 < y+ < 20 the DNS mean velocity follows a log-law. A
comparison of the normal Reynolds stresses between our and those data of Simens et al. (2009)
is given in Figure 2 (right), which shows a reasonable agreement.

3. Orthogonal wavelet decomposition of the turbulent boundary layer flow

In the following we introduce a new anisotropic wavelet decomposition with an adaptive grid in
the wall-normal direction which allows for analysis of the DNS data. Then, the coherent vorticity
extraction is presented and different scale-dependent wavelet based statistics are described.
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3.1. Adaptive anisotropic wavelet decomposition

From the velocity field u = (u1, u2, u3) we compute the vorticity field ω = (ω1, ω2, ω3) = ∇×u.
Both fields are given on discrete grid points (xi, yn, zk) for i = 1, ..., Nx, n = 1, ..., Ny , and
k = 1, ..., Nz . The grid is equidistant in the wall-parallel directions x and z, while in the wall-
normal direction y a Chebyshev grid is used, i.e., yn = cos(πθn) with θn = (n− 1)/(Ny − 1) for
n = 1, . . . , Ny, and rescaled to (0, Ly).

Each component ωℓ of the vorticity vector is then decomposed into a two-dimensional
orthogonal wavelet series in the wall-parallel directions x-z using a two-dimensional
multiresolution analysis. The number of scales Jxz is defined as the maximum integer such
that Nx = k2Jxz and Nz = k′2Jxz where k and k′ are any integers. For a fixed wall-normal
position yn we thus obtain for ℓ = 1, 2, 3,

ωℓ(x, yn, z) =

Jxz−1∑

jxz=0

2Jxz−1∑

ix=0

2Jxz−1∑

iz=0

3∑

µ=1

〈ωℓ(yn), ψ
µ
jxz ,ix,iz

〉xz

×ψµ
jxz,ix,iz

(x, z) ,

with the wavelet

ψµ
jxz,ix,iz

(x, z) =





ψjxz,ix(x)φjxz ,iz(z) for µ = 1
φjxz,ix(x)ψjxz ,iz(z) for µ = 2
ψjxz,ix(x)ψjxz ,iz(z) for µ = 3

(1)

where φ and ψ are the one-dimensional scaling function and wavelet, respectively, and µ = 1, 2
and 3 corresponds to the direction of wavelets in the x, z and xz direction, respectively. The
scalar product is defined in the x-z plane, 〈f, g〉xz =

∫
f(x, z)g(x, z)dxdz. Here we use Coiflet

12 wavelets (see e.g. Farge, 1992) and the scaling coefficients on the finest scale are identified
with the grid point values.

Before performing a one-dimensional wavelet transform in the y-direction (while fixing the
x-z direction), the vorticity components ωℓ have to be interpolated from the Chebyshev grid onto
a locally refined dyadic grid. For that a Lagrange interpolation of 4-th order is used and a Haar
wavelet transform is applied to the Chebyshev grid arccos(yn) to define the locally refined dyadic
grid y̌n = iy/2

jy (rescaled to [0, 1]) for jy = 0, ..., Jy − 1 and iy = 0, ..., 2jy − 1 using nonlinear
approximation. The number of grid points in the y-direction is fixed, here to Ňy = 1024. The
maximal scale in y-direction, Jy, is then determined from the Haar wavelet analysis retaining
the Ňy strongest coefficients. In the present case we obtain Jy = 13. The resulting dyadic grid
is shown in Figure 3 (left) which yields the best approximation of the Chebyshev grid using a
dyadic grid with Ňy = 1024 grid points. The one-dimensional vorticity cuts in the y-direction
in Figure 3 (right) show the original data on the Chebyshev grid, the data interpolated onto the
refined dyadic grid and after reinterpolation onto the Chebyshev grid. The agreement between
the curves is satisfactory and thus we can conclude that the interpolation between the different
grids can be performed with little loss of information.

A wavelet decomposition using Daubechies 4 wavelets (Farge, 1992) is then applied to the
data on the adaptive dyadic grid and the scaling coefficients at the finest scale are computed
using a quadrature rule. Thereafter an adaptive wavelet transform is performed on the adaptive
dyadic grid and we obtain a full wavelet decomposition in all three space directions,

ωℓ(x, y, z) =

Jxz−1∑

jxz=0

Jy−1∑

jy=0

2Jxz−1∑

ix=0

2Jy−1∑

iy=0

2Jxz−1∑

iz=0

3∑

µ=1

ω̃ℓ,µ
jxz,jy,ix,iy,iz

× ψµ
jxz,ix,iz

(x, z)ψjy ,iy(y) (2)
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for ℓ = 1, 2, 3. Note that the wavelet coefficients

ω̃ℓ,µ
jxz,jy,ix,iy,iz

=

∫ ∫ ∫
ωℓ(x, y, z)ψ

µ
jxz ,ix,iz

(x, z) dxdz ψjy,iy(y)dy (3)

contain different scales in the wall-parallel (x-z) and the wall normal (y) direction. This property
allows to take into account the anisotropy of the structures observed in the DNS data.

3.2. Coherent vorticity extraction

The starting point of the coherent vorticity extraction is the wavelet representation of vorticity
in Eq. (2). The underlying idea is to perform denoising of vorticity in wavelet coefficient
space. Thresholding the wavelet coefficients then determines which coefficients belong to the
coherent and to the incoherent contributions. The latter are assumed to be noise-like. First

we compute Ω =

(∑
3

ℓ=1

(
ω̃ℓ,µ
jxz,jy,ix,iy,iz

)2
)1/2

and then we reconstruct the coherent vorticity

ωc from those wavelet coefficients for which Ω > ǫ using Eq. (2). The incoherent vorticity ωi

is obtained from the remaining weak wavelet coefficients. In the first iteration the threshold ǫ
is determined from the total enstrophy Z = 1

2
〈ω · ω〉xyz and the total number of grid points

N = NxŇyNz, i.e., ǫ =
√
4Z lnN . Subsequently, a new threshold is determined using the

incoherent enstrophy computed from the weak wavelet coefficients instead of the total enstrophy.
Then the thresholding is applied once again and improved estimators of the coherent and
incoherent vorticities are obtained. For more details on the iterative procedure we refer to Farge
et al. (1999). We note that thanks to the orthogonality of the decomposition, the enstrophy and
thus the threshold can be directly computed in coefficient space using Parseval’s relation. Only
at the end of the iterative procedure are the coherent and incoherent vorticities reconstructed
by inverse wavelet transform in physical space, in the x-z direction on a regular grid and in the
y direction on the locally refined dyadic grid. Afterwards the vorticity fields are reinterpolated
in y-direction onto the Chebyshev grid.

Finally, we thus obtain ω = ωc + ωi and by construction we also have Z = Zc + Zi. For
future work we anticipate that the corresponding velocity fields can also be reconstructed by
applying Biot-Savart’s kernel, which necessitates the solution of three Poisson equations.

3.3. Scale-dependent statistics

The wavelet-based scale-dependent statistics are built on the two-dimensional wavelet
representation (Eq. 1) for a fixed position in the wall-normal direction yn. First we define the
scale-dependent p-th order moments of the three vorticity components ωℓ in wavelet coefficient
space by

Mp,ℓ
jxz

(yn) =
2jxz−1∑

ix=0

2jxz−1∑

iz=0

(
〈ωℓ(yn), ψ

µ
jxz ,ix,iz

〉xz
)p

. (4)

The scale-dependent variance of the vorticity components corresponds to p = 2. Dividing it by
two the scalogram of enstrophy is obtained, which yields a scale distribution of enstrophy for a
given position yn. Scale-dependent flatness of each vorticity component ωℓ can be defined as

Fℓ
jxz(yn) =

M4,ℓ
jxz

(yn)
(
M2,ℓ

jxz
(yn)

)2
. (5)

Note that for Gaussian statistics the flatness equals three on all scales. The flatness (Eq. 5)
quantifies the intermittency of the flow and is directionally related to spatial fluctuations in the
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Figure 4. Visualisation of the wall-normal component of vorticity ωy = −0.16, 0.16 for the
[0, 1000]× [0, 60]× [0, 34]. The visualisations show a zoom for x ∈ [750, 870] and y ∈ [0, 30]: total
(top), coherent (middle), and incoherent contributions (bottom).
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Figure 5. Two-dimensional slices of the streamwise and spanwise components of vorticity
ωx (left column), ωz (right column) at for x ∈ [0, 125]: Total (top), coherent (middle), and
incoherent contributions (bottom).

x-z plane of the enstrophy. Indeed, as shown in Bos et al. (2007), increasing flatness values for
finer scale are an indicator of intermittency.

Finally, we also consider the probability distribution functions (pdfs) of the wavelet
coefficients at given scale jxz and wall-normal position yn estimated by histograms using 128
bins. As the number of wavelet coefficients decreases at each larger scale by a factor 4, we only
consider the last three scales jxz = 6, 7, 8 in order to have sufficient statistics.

4. Numerical results

Three-dimensional visualisations of the wall-normal component of vorticity ωy are shown in
Figure 4 for the total (top), coherent (middle) and incoherent contributions (bottom). It can be
observed that the coherent vortices present in the total field are well preserved in the coherent
field using only 0.84 % of the total number of wavelet coefficients NxŇyNz, which retain 99.61%
of the total enstrophy of the flow. In contrast, the incoherent vorticity field has weaker amplitude
and is almost structureless, which is confirmed by the two-dimensional slices of the streamwise
and spanwise vorticity components shown in Figure 5.

The statistics of the different flow contributions are quantified in Figure 6 by considering the
second-order moments and the flatness as a function of scale of the vorticity component ωz for the
total, coherent, and incoherent flows at two different wall distances, at y+ = 34, which is at the
beginning of the log-layer and at y+ = 170, which is inside the log-layer. The variance illustrates
the good agreement between the total and coherent vorticity, while the variance of the incoherent
one is more than three orders of magnitude smaller. The latter also only weakly depends on
scale, which indicates an equipartition of enstrophy and thus confirms that the incoherent part
is close to white noise. The flatness for both the total and coherent vorticity increases with
scale, which is a signature of intermittency. The flatness of the incoherent part features values
around three, which is characteristic for Gaussian noise. The probability distribution functions
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Figure 6. Scale-dependent second-order moments (left) and scale-dependent flatness (right) of
the vorticity component ωz for the total (circles), coherent (squares) and incoherent (triangles)
flows at two different wall distances, y+ = 34 ( ) and y+ = 170 ( ).

Figure 7. Probability distribution functions of the wavelet coefficients of ωz in the xz-plane
at scales jxz = 6 and 7 estimated by histograms using 128 bins at two different wall distances,
y+ = 34 (left) and y+ = 170 (right).

of the wavelet coefficients at scales jxz = 6 and 7 are plotted in Figure 7 at two different wall
distances. Close to the wall, for y+ = 34, we observe an algebraic decay of the pdf tails with
slope −2, which is close to a Cauchy distribution and corresponds to strong intermittency. For
distances further away from the wall, y+ = 170, the tails of the pdf become exponential which
shows that the flow becomes less intermittent. We can also observe that the pdfs do not differ
much for the two scales considered here.

5. Conclusions and perspectives

A zero-pressure-gradient three-dimensional turbulent boundary layer was studied by means of
high-resolution DNS at Reθ = 1470. A new adaptive three-dimensional wavelet transform
was developed which accounts for the flow anisotropy by using different scales in the wall-
normal and wall-parallel directions. Coherent vorticity extraction was applied and the obtained
results showed that fewer wavelet coefficients (< 1%N) are sufficient to retain the coherent flow
structures, while the large majority of coefficients corresponds to the incoherent background flow
which is unstructured and noise-like. Scale-dependent statistics quantified the total, coherent
and incoherent flows for different wall-normal positions and showed that the statistics of the
total and coherent flows are in good agreement. The scale-dependent flatness allowed the flow
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intermittency at different wall distances to be quantified and showed that, in contrast to the
total and coherent flows, the incoherent flow is Gaussian like.

The current work is limited to time snapshots of vorticity. The reconstruction of the
velocity fields from the total, coherent, and incoherent vorticity is a prerequisite to perform
dynamical analyses of the flow, such as determining the energy transfer between the different
flow contributions. In future work we plan to rerun three simulations initialised with either the
total, coherent or incoherent flow and to compare their dynamics. On a longer term perspective
we also envisage performing Coherent Vorticity Simulation of turbulent boundary layer flows by
advancing only the coherent contributions in time.
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