13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 022001 doi:10.1088/1742-6596/318/2/022001

Length scale analysis in wall-bounded turbulent flow
by means of Dissipation Elements

Fettah Aldudak', Martin Oberlack!?3

! Chair of Fluid Dynamics, TU Darmstadt, Petersenstr. 30, 64287 Darmstadt, Germany
2 Center of Smart Interfaces, TU Darmstadt, Petersenstr. 32, 64287 Darmstadt, Germany
3 GS Computational Engineering, TU Darmstadt Dolivostr. 15, 64293 Darmstadt, Germany

E-mail: aldudak@fdy.tu-darmstadt.de

Abstract. The Dissipation Element (DE) method is used to analyse the geometric structure
of turbulent pattern for several scalar fields in a turbulent plane channel flow obtained by
Direct Numerical Simulations (DNS) of the Navier-Stokes equations. We show that both the
probability density function (pdf) and the number of DE exhibit a clear scaling behavior as a
function of the wall. Further, a remarkable insensitivity of the pdf is observed with respect to
the Reynolds number and the choice of the scalar.

1. Introduction

The turbulent scalar field obtained by Direct Numerical Simulations (DNS) is divided into
various finite size regions by identifying local pairs of minimal and maximal points in the scalar
field ¢(x,y, z,t) where V¢ = 0. Any scalar quantity like the components of the velocity, the
vorticity vector, the kinetic energy and its dissipation could be chosen as such a scalar field ¢.
Gradient trajectories of finite length starting from every point in the scalar field in the directions
of ascending and descending scalar gradients will necessarily reach a minimum and a maximum
point. The set of all points and trajectories belonging to the same pair of extremal points defines
a dissipation element. Accordingly, the decomposition of the domain into dissipation elements
follows from the structures of the flow itself and is not arbitrary. Different from classical length
scale concepts in turbulence theory DE is domain filling which means that any turbulent scalar
field can be completely decomposed into such elements. The shape of a DE is highly irregular.
Nevertheless, the Euklidian distance ¢ between its extremal points and the absolute value of the
scalar difference A¢ at these two points are appropriate parameters to uniquely parameterize
the geometry and the field variable structure of a DE.

The authors in Wang & Peters (2006) report for the case of homogeneous shear turbulence
that the mean DE length is in the order of the Taylor scale defined as A = (10vk/e)*/2. Our
present results confirm this for the turbulent channel flow as well although it is a statistically
inhomogeneous flow in the wall-normal direction .

The turbulent channel flow investigated presently exhibits characteristic wall-normal layers
namely, viscous sublayer, buffer layer, logarithmic region and the core/defect region. Our main
focus will be to explore the influence of solid walls on the DE distribution, i.e. the wall-normal
dependency of statistical parameters such as the number of DE, the DE length ¢ and its relation
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to classical length scales. In addition, the influence of the choice of the friction Reynolds number
Re, as well as of the scalar variable ¢ is studied. The probability density function pdf assumed
to be a function with the dependencies P (¢, A¢,y, Re;) is examined closely.

DNS of turbulent channel flow

Corresponding to the respective wall-normal layer different turbulence phenomena are dominant
leading to inhomogeneity in all wall-normal statistics. This typically applies to the turbulent
length scales as well. While sufficiently far from the wall large scale length scales (¢ > n)
are widely independent of the influence of viscous forces the latter become very influential
approaching the wall. The anisotropic largest turbulent scales correspond to the integral length
scale which are of the order of channel height.

A spectral numerical method using Fourier series in the horizontal streamwise (z) and
spanwise (z) directions and Chebyshev polynomial expansion in the wall-normal (y) direction is
applied to solve the three-dimensional time-dependent incompressible Navier-Stokes equations
in the dimensionless form (for details see Lundbladh et al. (1999))
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where x, t, u and p are respectively the position vector, time, the velocity vector and pressure.
Time integration is performed using a third order Runge-Kutta scheme for the advective and
forcing terms and second order Crank-Nicolson for the viscous terms. While periodic boundary
conditions are applied in the homogeneous streamwise (z) and spanwise (z) directions no-slip
boundary condition is adopted at the channel walls where u(z,y ==+1,2) = 0. u = (u,v,w)
denote the streamwise, wall-normal and spanwise velocity components.

Presently, the channel flow at two Reynolds numbers Re, = u,h/v are analyzed, where
ur = \/7/p is the friction velocity, 7 is the mean wall-shear stress at the wall and p is the
density (see table 1). The numerical resolution N, x Ny x N, reads 512 x 257 x 256.

Table 1. Simulation parameters. h denotes the channel half-height.

- Re, L,/h L,/h
Case 1 180 2 T
Case 2 360 2 T

Dissipation Element statistics

The probability density function (pdf) of the Euclidian length ¢, the mean scalar difference
conditioned on ¢, i.e. (A¢|f), and in particular its dependence on the wall distance y, describing
each element will be analyzed in detail in the present work. The pdf marks the distribution of the
element lengths and the latter shows the scaling behavior of the scalar difference with respect
to the length. Hence, rather generally, the present pdf is a function with the dependencies
P, A¢,y, Re;) satisfying the normalization condition

/Ooopdezl. (3)
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The mean or expectation value for the DE length is defined as

zm:/ (Pde. (4)
0

For the analysis of DE we investigate three scalar field variables, the fluctuation of the
streamwise velocity component u, the turbulent kinetic energy k and its dissipation rate e,
which is highly intermittent, at two Reynolds numbers being a factor of two apart. The latter
two are defined as

k=< (u+v*+w?), (5)
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where v is the kinematic viscosity.

The linear length ¢,, of DE averaged over the horizontal directions x, z is plotted in figure
1(a) against the wall-normal direction y/h € [0,1]. In the vicinity of the wall regions including
viscous and buffer layers one can notice a very steep rise with a local peak. For the logarithmic
layer and the core region there is a characteristic linear behavior up to about y/h ~ 0.8 as
evidence for a linear grow of the DE size in this region such as

N |

by ~y+c. (7)

Around the center of the channel with the weakest shear the size of the DE remains largely
constant. The curves indicate that small elements are mostly located near the wall whereas
elements are larger in average in the center of the channel with the highest velocity. Since more
extremal points are produced for the scalar of the turbulent kinetic energy k - and even more
for its dissipation rate € - whose distances define the lengths of the DE its elements are smaller
compared to the fluctuation of the streamwise velocity u. In accordance with Wang & Peters
(2006) we find that DE length scales excellent with the known classical Taylor length scale .
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Figure 1. Mean DE length l,, (a) and the number of DE (b) as a function of the wall-normal
direction.

Based on the geometric properties i.e. in particular space-filling character of DE and their
linear increase along the wall-normal direction as shown above we derive a scaling relation for
the number of DE as a function of y: N(y) = b/(y + a)?, where a and b are constants (figure



13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 022001 doi:10.1088/1742-6596/318/2/022001

0.8 0.8
0.6 t 0.6
P P
04 ¢ 0.4
Scalar:u  x
02 L 02 Scalar k —— |
Scalar: ¢ ©
0 0
0 1 2 3 0 1 2 3
J4 12

Figure 2. Comparison of the overall pdf of the entire channel for different (a) Reynolds numbers
and (b) scalar variables.

1(b)) to be taken from the data. The new scaling law shows that only weak discrepancies in the
very center of the channel and in the near-wall regions highlighting the strong influence of solid
walls.

The figures in 2 illustrate the dependence of the marginal pdf of the Euclidian DE length on
(a) Reynolds number and (b) different scalar variables. Here, P = £,,P and { = % are invariants
where /,,, is the mean DE length defined in equation (4). All pdf feature a clearly non-Gaussian
distribution. For small DE the curves show a very steep rise before reaching a maximum at
around ¢ = 0.6/,, marking the highest probability for DE length scales. With further increasing
DE length an exponential decay becomes evident which can be seen even better in the small inset
figures. Figure 2 (a) reveals a very interesting insensitivity with respect to Reynolds number for
the scalar of k as an example. Despite the relatively big gap between both Re their pdf coincide
almost perfectly. The same conclusion applies to the dependency regarding to the choice of the
scalar variable as can be observed in figure 2 (b). All three curves exhibit a very good agreement
with each other almost throughout the entire spectrum of DE length scales. Only around the
maximum and in the far-tail of the pdf one can see small deviations.

At this point pdf for k and € seem to be closer than the velocity component u which decays
faster as displayed in the semi-logarithmic illustration. Nevertheless, the obvious insensitivity
with respect to the choice of the scalar variable implies a pronounced DE isotropy for all DE
spectrum.

In figures 3 pdf of DE length have been investigated for three characteristic wall-normal
layers of a turbulent channel flow exemplarily for the case of k to explore the influence of the
distance from the wall. The very thin viscous sublayer has been excluded to avoid ambiguity of
the DE definition at the wall. The layers defined in terms of the wall distance are as follows.

e buffer region: 5 <y < 30
e log region:  y* >30, y/h <0.3
e core region: 0.3>y/h <1

where y = yu, /v.

The pdf in figure 3 (a) are normalized only according to equation (3) while in figure 3
(b) the length scale has also been normalized by the corresponding local mean length ¢, of
the channel layer. As can be seen, without re-scaling of the pdf figure 3 (a) features huge
deviations indicating a strong impact of the wall distance on the pdf. The pdf closer to the
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Figure 3. pdf for characteristic wall-normal layers where in (a) ¢ is not normalized while in (b)

¢ is normalized with £,,.

wall exhibit a narrower shape while at the same time the maximum peak moves towards smaller
element lengths. Thus, one can conclude that smaller elements can be encountered near the
wall whereas larger elements are mostly located in the far-wall regions. This is in agreement
with the observations on the basis of figure 1 where the DE length distribution illustrates the
the influence of the wall distance. Furthermore, with its broader shape pdf for the core region
reveals that this layer consists of a wider spectrum of length scales than the logarithmic and the

buffer regions.
On the other hand, the pdf curves exhibit an evident similarity if ¢ is normalized with the

according mean length, i.e. (=1 /lm. This behavior is a strong indication toward a Lie scaling
group and its corresponding similarity (Oberlack (2001)). Thus, the rescaled similarity variable
P = (,,P is plotted in figure 3 (b). An almost complete collapse of the pdf is displayed for the
logarithmic and the core regions which together amount to more than 90% of the entire channel.
In contrast, pdf for the near-wall buffer region is substantially different from others as a result
of predominant wall and viscous effects. The lack of linear scaling of the mean DE length in the

buffer layer which was observed in the far-wall regions is certainly the reason for this deviation.
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Figure 4. Conditional mean scalar differences for different wall-normal channel layers. (a)

logarithmic, (b) semi-logarithmic.
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Finally, we examine the conditional mean scalar differences between the values at the extremal
points conditioned on the length of the corresponding dissipation element for the instantaneous
turbulent kinetic energy k. Therefore, the first order conditional moment is investigated to
measure its scaling along wall-normal distance. The first moment based on gradient trajectories
is non-zero since the value of the turbulent kinetic energy increases per definition monotonically
along a trajectory from the minimum to the maximum point.

Hence, in figure 4 conditional mean scalar difference is plotted for different wall-normal layers.
In (a) we focus on a restricted region in the very center region (central core) corresponding to
0.8 < y/h < 1 featuring the highest degree of isotropy and the weakest shear in present flow
regime. For sufficiently large DE the logarithmic plot reveals an algebraic scaling which is
remarkable close to the Kolmogorov exponent of 2/3. Approaching the wall, of course, this
scaling is likely to break under the influence of shear induced anisotropy as can be confirmed
by the semi-logarithmic plots. In the near-wall buffer layer and the logarithmic layer where
turbulent kinetic energy scales as u2 we observe a In(f) law equivalent to the classical K ! law
in this very region (Perry et al. (1986)). In the buffer layer this behavior is extended to an even
wider spectrum of elements.

Conclusion

Dissipation Element (DE) method has been applied to the wall-bounded turbulent channel flow
to analyze the geometrical structure of turbulent length scales. Different statistics such as the
probability density function pdf for different turbulent scalar variables, the conditional mean
scalar difference of the turbulent kinetic energy and the DE length have been studied. The
dependency of this statistics on the wall-normal distance in terms of characteristic wall-normal
regions (buffer, logarithmic and core regions) has been investigated. Generally, strong influence
of the wall could be observed in all statistics except for rescaled pdf for different channel layers
yielding invariant forms of the pdf. Mean DE size was found to have clear linear scaling with
respect to the distance from the wall as well as the conditional mean scalar differences between
the extremal points of DE. We showed that in the very center of the channel Kolmogorov’s 2/3
scaling holds whereas layers closer to wall feature a logarithmic law rather than a power law.
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