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Abstract. We present an analytical and direct numerical simulation (DNS) study to describe
an incompressible, fully developed turbulent Poiseuille flow with wall transpiration i.e. uniform
transverse velocity with constant flux on the wall. The DNS was conducted at Reτ = 250
for different relative transpiration velocities. The DNS data serve as a first test case of a
new turbulent scaling law in the form of a logarithm. DNS data validates the new turbulent
logarithmic scaling law derived from Lie symmetry theory of the infinite dimensional multi-point
correlation equation and is principally different from the classical near-wall log-law. We will
show that the DNS data agree with the new turbulent scaling law over practically the whole
cross-section of the channel.

1. Introduction

A turbulent plane Poiseuille flow with wall transpiration serves as an interesting and important
object of investigation. On the one hand, being homogeneous in streamwise and spanwise
directions, it is among relatively simple near-wall flows. On the other hand, it has fundamental
properties universal for flows with transpiration and longitudinal pressure gradient. Moreover,
it is an example of channel flow with an asymptotic mean velocity profile and a peculiar shear
stress distribution when the point of zero shear stress may not coincide with that of maximum
mean velocity. The flow geometry is shown on the figures 1 (sketch) and 2(volume plot). Only
one known experimental study of a pressure-driven Poiseuille flow with wall transpiration was
performed by Zhapbasbayev & Isakhanova (1998) (see also Zhapbasbayev & Yershin (2003)).
Experiments were carried out in an air duct at Reynolds numbers based on the bulk velocity
and the channel half width 10400, 22400 and 34000 as well as the blowing velocity normalized
by the bulk one, up to 0.01. Beside mean velocity also the Reynolds-stress-tensor components
were measured. DNS of a turbulent Poiseuille flow was conducted by Sumitani & Kasagi (1995).
The authors investigated Poiseuille flow at Reτ = uτh/ν = 150 and v0/uτ = 0.05, where

uτ =

√
h

ρ

∂p

∂y

∣∣∣
y=0

(1)

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 022004 doi:10.1088/1742-6596/318/2/022004

Published under licence by IOP Publishing Ltd 1 License: CC BY-NC-SA 3.0 Unported - Creative Commons, 
Attribution, NonCommercial, ShareAlike 

https://creativecommons.org/licenses/by-nc-sa/3.0/



6

x1-

x2

?

6

2h

v0

v0

Figure 1. Sketch of Poiseuille-type flow with wall-transpiration.

is friction velocity calculated from the longitudinal mean pressure gradient, h is the channel half
width and v0 is the transpiration velocity.

For the same flow type, Nikitin & Pavel’ev (1998) generated results at Reτ = 356, v0/uτ =
0.112 and 681.2, 0.118, respectively. Vigdorovich, Hu & Coleman (2002) performed computation
at Reτ = 360 and v0/uτ = 0.05.
All the above mentioned DNS data were generated at low Reynolds numbers according to
computational resources available ten years ago. However recently, Hoyas & Jiménez (2006)
have studied a plane Poiseuille flow with impermeable walls for Reynolds numbers up to
Reτ = 2003. Poiseuille flow without transpiration was studied analytically, by the method
of matched asymptotic expansions at high Reynolds numbers by Yajnik (1970), Bush & Fendell
(1972, 1973, 1974) and Lund & Bush (1980) with the use of some approximate particular closure
hypotheses. In a series of papers Oberlack (2000, 2001); Oberlack & Rosteck (2010, 2011) the
turbulent Poiseuille and related flows where studied using Lie symmetry theory investigating
the infinite series of multi-point correlation equations and derived a variety of classical and
new scaling laws. In the present paper DNS of the flow at Reτ=250 and a wide range of the
key parameter v0 (transpiration velocity) was carried out to test a new theory based on Lie
symmetries applied to the infinite set of multi-point correlation equations derived from the
Navier-Stokes equations and to obtain the data on the microstructure of turbulent motion that
cannot be provided by any present theory.

2. Analysis

2.1. Statistical transport equation
It seems suitable to introduce the analysis by giving a short review of the pertinent features of
the phenomenological description of turbulent channel flow along the walls with transpiration.
Axial statistical transport equation has the following form:

v0
∂Ū1

∂x2
= −1

ρ

∂p̄

∂x1
+ ν

∂2Ū1

∂x22
− ∂u′1u

′
2

∂x2
(2)

where v0 = 0.003; 0.0164; 0.05 for present DNS. The ordinary no-slip boundary conditions
were imposed only on the u1 and u3 components at the walls, but a constant mean velocity
was given to the wall-normal component (u2). Due to friction at the walls, the flow constantly
looses kinetic energy, and hence a forcing needs to be employed in order to keep the flow from
decelerating. This was done by fixing mass-flow rate. Due to a pressure gradient the latter
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adapted at every time step in order to keep the bulk velocity ub constant:

1

2h

∫ h

−h
Ū1(x2)dx2 = ub (3)

Mass transfer in and out of the system occurs normal to the porous surfaces only.

2.2. Lie symmetry analisys
One of the key objectives of the research is to further develop and validate an asymptotic
and Lie symmetry group theory for turbulent Poiseuille flow with wall transpiration at high
Reynolds numbers. Related to the former a friction law for Poiseuille flow with transpiration
was derived in Vigdorovich & Oberlack (2008), which allows to describe the relation between
the wall shear stress, the Reynolds number, and the transpiration velocity by a function of one
variable. Further a velocity defect law was established, which generalizes the classical law for
the core region in a channel with impermeable walls to the case of transpiration.

Subsequently we briefly describe the Lie symmetry and invariance structure of the present
flow emloying the infinite set of multi-point correlation (MPC) equations for the velocity and
pressure fluctuations u(x, t) and p(x, t)

Si{n+1}=
∂Ri{n+1}

∂t
+

n∑
l=1

[
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(4)

where n varies from 1 to ∞. In (4) the MPC tensor is defined as

Ri{n+1} = ui(0)(x(0)) · . . . · ui(n)(x(n)), (5)

and the four variations of it needed in equations (4) are given in Oberlack (2000); Oberlack &
Rosteck (2010). Adding the corresponding continuity equations and some side conditions for
Ri{n+1} the whole set generates a complete statistical description of turbulence.

For the present flow we have the boundary condition (BC) Ui(x1, x2 = ±1, x3) = (0, v0, 0)T

at the wall. For the transverse mean flow this implies that Ū2(x2) = const and together with
the BC we obtain Ū2(x2) = v0 which leads to a simple and direct coupling of the BC and the
MPC equation.

For the general invariance condition, i.e. requirement for a turbulent scaling law of plane
shear flows, and including the new statistical symmetries found in Oberlack & Rosteck (2010,
2011) we find

dx2
k1x2 + kx

=
dr(k)

k1r(k)
=

dŪ1

(k1− k2 + ka)Ū1 + l1
=

dR(11)(x2, r)

I(x2, r)
= · · · . (6)

Presently we have include the constraint k1− k2 + ka = 0 from the BC Ū2(x2) = v0. Imposing
this onto (6) leads to new scaling laws particularly including a new logarithmic mean flow scaling
law

Ū1

v0
= γ1 ln

(x2
h

)
+ γ2 (7)

valid in the core region of a turbulent channel flow and presumed that v0 is sufficiently large.
For brevity scaling laws for higher order moments have been omitted. A first clear hint towards
the validity of the new log-law may be taken from figure 3. Most important, and other than the
classical near-wall log-law, we have the mean velocity normalized on the transpiration velocity.
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Figure 2. 3D instantaneous velocity field of the channel flow with transpiration. Injection side
on the bottom, suction side on the top.

3. DNS of the turbulent channel flow

3.1. General information about the code
The numerical code used in the simulations was originally developed at School of Aeronautics,
Technical University of Madrid (Hoyas & Jiménez, 2008; del Álamo & Jiménez, 2003). Various
DNS of a turbulent channel flow have been performed in a computational box: Lx1 = 4πh,
Lx2 = 2 and Lx3 = 2πh (fig. 2), at a Reynolds number Reτ=250 based on the friction velocity
uτ . All quantities in the code were normalized by half width h of the channel and bulk velocity.
The number of collocation points used in the present simulations is Nx1 = 768, Nx2 = 251,
Nx3 = 256. The spatial discretization uses dealised Fourier expansions in x1 and x3 directions
and a seven-point compact finite differences in x2, with fourth-order consistency and extended
spectral-like resolution. The temporal discretization is third-order semi-implicit Runge-Kutta.

3.2. Validation of the code
Some DNS of the fully developed turbulent Poiseuille flow with uniform wall injection and
suction have been conducted, one of which was carried out by Sumitani & Kasagi (1995). We
verified our code using their results (fig. 3,4) comparing mean velocity profiles Ū1 and Reynolds-

stresses u′iu
′
j . From Sumitani & Kasagi (1995) we adopted both the friction Reynolds number

of Reτ=150 and a constant mean transverse velocity v0/uτ = 0.05.

Ū/v0

y/h

Figure 3. Comparison of mean velocity
profiles of our DNS (solid line) to results
Sumitani & Kasagi (1995) (dotted line).
The dash-dotted line is the new log-law (for
better visibility the curve is shifted up)

u′iu
′
j

y/h

Figure 4. Comparison of Reynolds-
stresses of our DNS to results Sumitani
& Kasagi (1995). From the top to the

bottom: u′1u
′
1, u
′
3u
′
3, u
′
2u
′
2, u
′
1u
′
2.
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Figure 5. Comparison of the new log-lows (dashed line) with corresponding mean velocity
profiles (solid line) obtained from DNS. Cases with different transpiration velocities, from top
to the bottom vo/uτ = 0.05, vo/uτ = 0.16, vo/uτ = 0.26.

4. Results

It has been widely believed that the mean velocity profile in the intermediate region in
wall-bounded turbulent flow is adequately described by the von Kármán-Prandtl universal
logarithmic law of the wall. In section 2 of the paper we presented a new logarithmic scaling
law for the mean velocity profile. The main new feature of the law is its dependence on the
transpiration velocity v0. We performed a series of DNS for different values of transpiration
velocity at fixed Reτ=250. Analysis of the new log-law and mean velocity profiles gave us
different overlap regions depending on transpiration velocity. For moderately large transverse
velocity numbers (v0/uτ = 0.16) new law is valid not only in the core region of the flow but
up to 85% of the entire channel width. For the smallest v0 we have chosen (v0/uτ = 0.05) log
region is 65% (fig. 5).

5. Conclusion

A new scaling law for a turbulent channel flow with wall transpiration obtained from the Lie
group theory was validated using DNS. A rather extended region of validity in the core of the
channel and the dependence on the transpiration velocity are key properties of the new log-
law. Simulations at higher Reynolds numbers are required and are presently run for a further
validation of the presented results.
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