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Abstract.
We report on experiments using the (α, α′γ) method to investigate the structure of the

Pygmy Dipole Resonance (PDR) in the nuclei 94Mo, 124Sn, 138Ba and 140Ce. The experiments
were performed with the Big-Bite Spectrometer (BBS) at the KVI at an incident energy of
Eα = 136 MeV. The method allows a clean separation of the PDR from other excitations in
the same energy region by selecting the ground-state γ-decay channel. In addition, the high
resolution of the γ-ray spectroscopy using high-purity Germanium detectors allows a state-to-
state analysis even in the case of the rather high level density of the investigated nuclei. The
comparison to (γ, γ′) experiments on the same nuclei reveals a splitting of the PDR into two
groups of states with different underlying structure.

1. Introduction
The electric dipole (E1) response is one of the basic properties of atomic nuclei. For medium
to heavy spherical nuclei it can roughly be divided into three major contributions as shown
schematically in Fig. 1. The major part (red) is exhausted by the well-known Isovector
Electric Giant Dipole Resonance (IVGDR) located at energies well above the particle separation
thresholds, which has been investigated extensively in the past, see e.g. [1] for an overview. The
second contribution is the so-called two-phonon states (green), which arise from the coupling
of the lowest quadrupole and octupole phonons and represent typically the lowest lying E1
excitation in heavy spherical nuclei [2, 3]. In the energy region in between, in the vicinity of
the particle thresholds, another contribution to the E1 response has been found in most studied
nuclei (blue). This fragmented resonance-like structure is usually denoted as Pygmy Dipole
Resonance (PDR) and exhausts depending on the nucleus around 1% of the energy-weighted
sum rule (EWSR). Whereas the basic structure of the IVGDR and the two-phonon states are
known, the nature of the PDR is still a matter of on-going discussions.

Up to now the PDR has been nearly exclusively studied in real photon scattering experiments.
This method is well suited, since it is very selective to J = 1 states and by using high-purity
Germanium (HPGe) detectors it provides the necessary energy resolution in order to resolve
the states of the fragmented E1 strength in the PDR region. A systematic survey has been
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Figure 1. Schematic picture of the E1 strength in heavy nuclei. For details see text.

performed in the last decade in order to investigate the PDR using the (γ, γ′) method in nuclei
in different mass regions, see e.g. [4, 5, 6, 7, 8, 9, 10, 11]. In recent years, the investigations
have also been extended to exotic nuclei using the method of Coulomb excitation in inverse
kinematics [12, 13, 14, 15].

The experimental studies are accompanied by many theoretical investigations; see [16] for a
recent review. The models include different microscopic approaches [17, 18, 19, 20, 21, 22, 23, 24].
In most models, the nature of the PDR is predicted as an oscillation of a neutron skin against
a proton/neutron core. The experimental data seem to support such a description, since the
systematic investigations report an enhancement in more neutron-rich nuclei, which might be
due to a more developed neutron skin. However, the experimental data based on real and virtual
photon scattering are not sufficient in order to verify this picture of the PDR. Complementary
experiments using different probes are thus of high importance in order to learn more on the
structure of this low-energy dipole strength.

An experimental approach has to provide two major conditions in order to allow an
investigation of the PDR on a state-to-state basis: an excellent selectivity to E1 excitations
and a high energy resolution. The first one is fulfilled in the (α, α′γ) reaction by measuring in
coincidence the excitation and decay energy to select the ground-state decay channel [25]. By
using HPGe detectors for the γ-ray spectroscopy also the second condition can be fulfilled [26].
This new method has been used to investigate the PDR in the (α, α′γ) reaction in the N=82
isotones [27, 28] and in 124Sn [29]. The results show a structural splitting of the PDR in these
nuclei. Here, we report on further experiments in order to establish first systematics of the PDR
using this method.

2. Experiments and Results
The experiments were performed at the Big-Bite spectrometer (BBS) at the AGOR cyclotron
facility of KVI. For light-ion detection the BBS is equipped with the EUROSUPERNOVA (ESN)
detection system [30]. The large solid angle of the BBS of up to 13 msr [31] allows the efficient
performance of coincidence experiments with additional detector systems. An array of HPGe
detectors is positioned for the γ-ray detection as close as possible to the target. A picture of the
setup for one of the experiments is shown in Fig. 2. The absolute photo-peak efficiency at 1.33
MeV photon energy is about 0.5%. A detailed description of the setup can be found in [26].

The excitation energy is determined by measuring the energy loss of the scattered α particle
and the deexcitation energy is determined by the measured γ-ray energy. The combination of
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Figure 2. Experimental setup at the BBS at
KVI. Large volume HPGe detectors surround
the target chamber in order to measure the
γ decay in coincidence with the scattered α
particles.

Figure 3. Two-dimensional scatter plot with
the excitation energy on the x-axis and the
decay energy on the y-axis. Transitions to
different final states can be selected by narrow
cuts as indicated for the ground state and
first-excited state.

both allows to produce a scatter plot, which is shown in Fig. 3 for the case of 140Ce. In this
representation, transitions between (excited) levels appear as thin horizontal lines, because of
the much better energy resolution in the γ-ray spectroscopy (about 10 keV at 10 MeV photon
energy). Beside the three strong transitions belonging to the 16O contamination in the target,
all transitions stem from the deexcitation of excited states in 140Ce.

As indicated by the red and blue lines the transitions are ordered in diagonal bands, each
belonging to a certain decay channel. The upper most band represents the decays into the
ground state (red lines), i.e. excitation and deexcitation energy are the same. Beside the decays
into the ground state also other decay channels are visible, as for example into the first-excited
state (blue lines). The lines appearing in between are single- and double-escape lines and thus
are due to the detector response of the HPGe detectors.

By applying narrow cuts on this two-dimensional matrix, very clean spectra for the ground-
state decay channel can be produced. Figure 4 shows a part of the resulting spectrum (after
selecting the ground-state decay channel, i.e. the region between the two red lines in Fig. 3)
for one detector at backward angles for 140Ce. Since states with J > 1 predominantly decay
to excited states in contrast to states with J = 1, which decay predominantly into the ground
state, this cut provides a very high selectivity to the E1 excitations of interest. Beside the
peaks stemming from the 16O contamination in the target, exclusively peaks corresponding to
the decay of Jπ = 1− states are present at Ex > 4MeV. This demonstrates the selectivity of the
method. At the same time, the achieved excellent energy resolution allows the separate analysis
of single excitations. For a detailed discussion of the analysis see [28].

The middle part of Fig. 4 shows the results of the (α, α′γ) experiment together with its
sensitivity limit. The lower part of Fig. 4 shows the results of the (γ, γ′) experiment [7]. The
comparison between the two experiments shows a clear difference in the distribution of the
observed E1 strength. Up to an excitation energy of about 6 MeV all states were observed in
both experiments (except for one weak state), while all higher-lying states, especially the group
of strong E1 excitations around 6.5 MeV are completely missing. The spectrum does not even
show a sign of peaks in the region around 6.5 MeV. Since the sensitivity of the experiment is
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Figure 4. Spectrum after selecting the
ground-state decay channel (upper part) to-
gether with the determined α-scattering cross
sections (middle part) [28]. The lower part
shows the results of a (γ, γ′) experiment [7].
States observed in both kind of experiments
are marked in red, states observed only in
(γ, γ′) in blue.

Figure 5. B(E1)↑ strength distributions
measured in (γ, γ′) experiments [4, 7]. States
observed in both kinds of experiments are
marked in red, states observed only in
(γ, γ′) are marked in blue. In all studied
nuclei, the same splitting between the lower-
and higher-lying states is present.

nearly constant in the region 4-8 MeV, the absence of peaks at Ex > 6 MeV means, that these
states are not excited in α scattering (from the NRF experiment it is known, that they decay
strongly into the ground state). This must be related to a difference in the underlying structure
of the Jπ = 1− states and thus a different response to excitation by photons and α particles.

Figure 5 shows the B(E1)↑ strength distributions of the four nuclei we have investigated with
the (α, α′γ) reaction so far. The color coding is the same as for the lower part of Fig. 4, i.e.
the red indicated states were observed in both reactions, while the blue states were observed in
(γ, γ′) only. For all cases the results indicate the same splitting as discussed for 140Ce above.
This spitting thus seems to be a generic feature of the PDR.

3. Conclusions and Outlook
We have reported on a new experimental approach to study the structure of the PDR,
a concentration of low-lying E1 strength below the IVGDR. The results of the performed
(α, α′γ) experiments point to a splitting of the PDR into two groups of states with different
underlying structure: A lower-lying group, which is excited by photons as well as α particles,
and a higher-lying group, which is exclusively excited in the (γ, γ′) reaction.

Further investigations, theoretical and experimental, will be necessary in order to fully
understand and pin down the nature of the low-lying part of the E1 strength. On the
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experimental side different experiments are on the way in order to provide additional observables
and systematics on the PDR. On stable nuclei, (p, p′γ) experiments will allow to further
investigate the structure of the PDR. Using tagged photons at the NEPTUN facility [32, 33]
will allow to close the gap between the IVGDR and the low-energy strength. At this new
experimental site, photon-induced experiments can be studied independently of limitations due
to the particle thresholds, which will also play an important role in extending systematics on
photon-induced reactions for nuclear astrophysics [34, 35, 36, 37]. On exotic nuclei, further
systematics will be collected in order to confirm the dependence of the PDR on the neutron
excess and also to connect to the experiments on the stable isotopes. Using hadronic interaction
in inverse kinematics will allow to perform similar experiments as the presented (α, α′γ) also
in exotic nuclei in the PDR region and hence will bring further light into the structure of the
low-lying E1 strength of atomic nuclei.
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