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Abstract. Resonances, with their lifetimes comparable to that of the fireball, can be used to
estimate the time span and hadronic interaction cross section in the phase between chemical and
kinetic freeze-out. In pp collisions, measurements of resonances provide an important baseline
for heavy-ion data and allow for the tuning of QCD-inspired particle production models. The
ALICE collaboration measured K∗(892)0 and φ(1020) production, both in pp collisions at

√
s=7

TeV and in Pb–Pb collisions at
√
sNN=2.76 TeV. The inelastic yield of Σ(1385)± in pp collision

at
√
s=7 TeV was also measured. Transverse momentum spectra, ratios to stable particles and

a comparison between central and peripheral production are shown.

1. Introduction
The study of resonance production plays an important role both in elementary and in heavy
ion collisions. In pp and e+e− collisions, it contributes to the understanding of hadron
production [1, 2] as the decay products of resonances represent a large fraction of the final
state particles. In addition, it provides a reference for tuning event generators inspired by
Quantum Chromodynamics (QCD) such as PHOJET [3] and PYTHIA [4]. Hadronic resonances
are a sensitive probe of the dynamical evolution of the fireball. Due to their short lifetime (a
few fm/c) a significant fraction decays during the evolution from chemical to kinetic freeze-out
and their hadronic daughters interact with the medium during the fireball expansion [5, 6, 7, 8].
In particular, products of their hadronic decay may rescatter reducing the measured resonance
signal. Resonances may also be regenerated through collisions of hadrons. The competition
between resonance-generating processes and rescattering, and therefore the ratio of resonance
yields to non-resonance yield is governed by the lifetime and the temperature of the hadronic
medium. Thermal models [7, 9, 10, 11] predict particle ratios as function of the chemical freeze-
out temperature (Tch) and the time between chemical and thermal freeze-out. Particularly
interesting is the comparison of φ and K∗ production, considering the different lifetimes (about
a factor 10) of the two resonances. Due to the large lifetime (44 fm/c) the φ is expected to decay
outside the hot and dense interacting medium.

2. Experimental setup and data analysis
The results reported in this paper refer to analyses carried out using a sample of minimum-bias
pp data at

√
s=7 TeV (60 to 250 millions events, for the different resonances analyzed) and
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of minimum-bias Pb–Pb data at
√
sNN=2.76 TeV (about 10 millions events), collected during

2010. The events are selected with a primary vertex within 10 cm of the detector center.

2.1. Experimental setup
The ALICE detector [12, 13] provides extensive particle tracking and identification in the central
pseudorapidity range (|η| ≤ 0.9) as well as muon tracking and identification at forward angles
(−2.5 > η > −4). For the analysis described in this paper, only the central barrel has been
used. The central tracking and particle identification detectors include, from the innermost
outwards, the Inner Tracking System (ITS), the Time Projection Chamber (TPC) and the
Time of Flight array (TOF). The central detectors are embedded in a 0.5 T solenoidal field. The
moderate field, together with a low material budget permits the reconstruction of low pT tracks.
Furthermore, two forward scintillator hodoscopes (VZERO) placed along the beam direction at
-0.9 m and 3.3 m on either side of the interaction point, which cover the pseudorapidity regions
−3.7 < η < −1.7 and 2.8 < η < 5.1, were used for minimum-bias triggering and for rejecting
beam-gas interactions.

The Inner Tracking System (ITS) is a silicon detector that surrounds the interaction point,
with six layers between radii 3.9 cm to 43 cm from the beam axis. The two innermost layers,
based on silicon pixels (SPD), are also used as an on-line trigger and to reconstruct the collision
vertex with a resolution better than 100 µm.

The TPC [14] provides track reconstruction with up to 159 three-dimensional space points
per track in a cylindrical active volume of about 90 m3. The standard tracking used in this
analysis combines the information from the ITS and TPC. The momentum resolution of the
TPC is in the range 1-7% for pions with 1<pT<10 GeV/c. Furthermore it provides very good
resolution in the distance of closest approach to the vertex (impact parameter resolution in the
transverse direction is <100 µm for pT>1 GeV/c) and hence an excellent separation of primary
and secondary particles.

The TPC identifies particles via the specific energy loss dE/dx determined with a truncated-
mean procedure. It achieves a resolution ranging from 5-6.5% (tracks with 159 clusters - mean
over all the reconstructed tracks) in pp and Pb–Pb collisions. Identification is achieved by
calculating the difference between the measured energy loss and the one expected for different
mass hypotheses. A selection on this difference, normalized to the resolution σTPC, is optimized
for each analysis and depends in general on the signal to background ratio and on the transverse
momentum. The TPC dE/dxmeasurements allow pions to be separated from kaons for momenta
up to p ∼0.7 GeV/c, while the proton/antiproton band starts to overlap with the pion/kaon
band at p ∼1 GeV/c. The electron/positron dE/dx crosses the other bands at various momenta.

In order to ensure high efficiency and good dE/dx resolution and to minimize the
contamination from secondaries and fakes, tracks were required to have at least 70 reconstructed
clusters in the TPC. To improve the resolution (<1% at pT∼1 GeV/c), tracks were accepted
only in the range |η| < 0.8 (i.e. well within the TPC acceptance) and with pT≥ 0.15 GeV/c.

The Time-of-Flight Detector (TOF) is an array of multi-gap resistive-plate chambers placed
at a radius of 370 to 399 cm. Particles are identified by the difference between the measured
time-of-flight and the one expected from a given particle (π, K, p). The selection is expressed
in units of the estimated resolution σTOF for each track, which has a mean value of 160 ps
and 85 ps in pp and Pb–Pb collisions, respectively. The TOF allows pions and kaons to be
unambiguously identified up to p ∼ 1.5-2.0 GeV/c. The two mesons can be distinguished from
(anti)protons up to p ∼ 2.5 GeV/c. For the analyses described in this paper the start time of
the collision (event time zero) is measured by the T0 detector, an array of Cherenkov counters
located at +350 cm and -70 cm along the beam line. For events in which the T0 signal is not
present, it is estimated using the particle arrival times at the TOF or the averaged collision time
observed in the fill.
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Figure 1. The K+K− invariant mass dis-
tribution in Pb–Pb collisions at

√
sNN=2.76

TeV. The fitting function is the sum of a
Breit-Wigner function and a polynomial.
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Figure 2. The Kπ invariant mass distribu-
tion in Pb–Pb collisions at

√
sNN=2.76 TeV.

The fitting function is the sum of a Breit-
Wigner function and a polynomial.
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Figure 3. The Λπ+ invariant mass distribution in pp collisions at
√
s=7 TeV after background

subtraction. The solid line is the result of the combined fit: a Breit-Wigner function plus a
polynomial. The dashed line describes the residual background.

2.2. Raw yield extraction and pT spectrum
Resonances are identified by their main hadronic decay (K∗ −→ π±+K∓, φ −→ K++K−,
Σ∗± −→ Λπ±). Due to their very short lifetimes, decay products cannot be distinguished
from particles coming from the primary vertex. Their yield is obtained by computing the
invariant mass spectrum of all primary candidates (tracks or hyperons) and then subtracting a
combinatorial background. This was performed by the event-mixing or the like-sign technique.
The signal, after subtracting the combinatorial background, was then fitted with a Breit-Wigner
plus a polynomial for the residual background. A Voigtian function (convolution of Breit-Wigner
function and Gaussian) was used in pp collisions for the extraction of the φ raw yield. For the
Σ∗, the residual background originating from correlated Λπ pairs coming from Λ(1520) decay,
has been estimated by Monte-Carlo simulations and subtracted before fitting the invariant mass
spectrum. Some examples of invariant mass spectra are presented in Figs.1,2 and 3. The mass
and width of analyzed resonances are close to the PDG values. In particular, in Pb-Pb collisions
no mass shift nor broadening has been observed for the φ(1020), nor for K∗(892)0, similar to
what is observed in pp collisions.

In order to extract the total production yield, the raw counts were corrected for the decay
branching ratio and for the losses due to geometrical acceptance and detector efficiency, which
was determined by Monte-Carlo simulation using PYTHIA or HIJING generators, for pp and
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Figure 4. Comparison of the K∗ pT spectrum
in inelastic pp collisions at

√
s=7 TeV with

PHOJET and PYTHIA tunes [15].
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Figure 5. Comparison of the φ pT spectrum
in inelastic pp collisions at

√
s=7 TeV with

PHOJET and PYTHIA tunes [15].
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Figure 6. Comparison of the (Σ∗+ +
Σ∗−)/2 pT spectrum in inelastic pp collisions
at
√
s=7 TeV with PHOJET and PYTHIA

tunes.
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Figure 7. Mean transverse momentum
〈pT〉 as a function of the particle mass. Au-Au
data at

√
sNN=0.2 TeV [22]; ALICE data for

pp collisions at
√
s=0.9 TeV [23, 24]; ALICE

data at
√
s=7 TeV [25].

Pb–Pb data, respectively. Final yields were obtained normalizing to the number of inelastic
collisions (pp collisions) or to the number of analyzed events in a given centrality range (Pb–Pb
collisions). The trigger efficiency was also taken into account. The analyses of K∗(892)0 and
φ(1020) mesons in pp collisions at

√
s=7 TeV are described in detail in [15].
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K∗ meson as a function of the mean number of
participants for STAR [31] and ALICE data.
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φ(1020) meson as a function of the mean
number of participants for STAR [20, 28] and
ALICE data [15].

3. Results
3.1. pp collisions at

√
s=7 TeV

Figures 4, 5 and 6 show the K∗ 1, φ(1020) and (Σ∗+ + Σ∗+)/2 spectra with a comparison to a
number of PYTHIA [16, 17, 18] tunes and PHOJET [3]. The best agreement is found for the
recent PYTHIA Perugia 2011 tune. In fact there is a good agreement of the model to the data
for the K∗. It reproduces only the high pT part (pT>3 GeV/c) of the φ spectrum. Very poor
agreement is found for the baryonic resonance.

The spectra have been fitted by a Tsallis function [19] and the extracted n values
(6.2±0.07±0.8 and 6.7±0.20±0.4 for K∗ and φ, respectively) are similar to those quoted by the
STAR experiment at RHIC for the φ measured in pp collisions at 200 GeV (n = 8.3 ± 1.2) [20].

1 We denote by K∗ the average of K∗0 and K∗0.
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In contrast, the slope parameters (254±2±18 and 272±4±11 MeV for K∗ and φ, respectively)
are significantly higher than the values obtained at RHIC, T = 202 ±14 ± 11 MeV for φ [21]. For
the φ the inelastic yield increases proportionally to the charged particle multiplicity from 0.9 to
7 TeV. The mean transverse momenta 〈pT〉 for K∗, φ(1020) and Σ(1385)± are presented in Fig. 7
as a function of the particle mass. They follow the trend observed for stable particles indicating a
common production mechanism. In this figure the 〈pT〉 for different system and various collision
energies (ALICE pp data at 0.9 and 7 TeV, STAR Au-Au data at

√
sNN=0.2 TeV) are also

shown.
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Figure 13. K∗/K ratio as a function of the
collision energy. Open symbols are for pp
data, closed symbols for ion-ion data [31, 15].

3.2. Pb–Pb collisions at
√
sNN=2.76 TeV

The transverse momentum spectra for K∗ and φ in several event centrality bins are shown in
Figs. 8 and 9. The mean transverse momentum as a function of the mean number of participant
〈Npart〉 at LHC and at RHIC energies for K∗ and φ(1020) is shown in Figs. 10 and 11, respectively.
We note that the 〈pT〉 measured in pp collisions at

√
s=7 TeV is equal to the value measured in

Pb–Pb peripheral collisions at
√
sNN=2.76 TeV. For the φ, the 〈pT〉 at LHC energies is larger

than the one at RHIC energies. This is consistent with a stronger radial flow at LHC than
RHIC. In fact, a global blast-wave fit of π, K, p shows a 10% increase in 〈βT〉 with respect to
RHIC [29], for central collisions.

In heavy ion collisions, the yields for stable and long-lived hadrons reflect the thermodynamic
conditions (temperature, chemical potentials) at freeze-out, whereas the yield for short-lived
resonances can be modified by final-state interactions inside the hot and dense reaction zone
[5, 30]. Particularly interesting is the comparison of φ(1020) and K∗ production, considering the
different lifetimes (about a factor of 10) of the two resonances.

While the φ/K ratio is independent of the collision centrality, the K∗/K ratio decreases with
increasing centrality (Fig.12). Figure 13 shows that the K∗/K ratio in pp collisions is the same
at RHIC and at the LHC. In contrast, this ratio decreases in heavy ion collisions and this
effect seems to be larger at the LHC energies. The difference in K* and φ production could
be related to the interaction of K∗ with hadronic medium, which does not affect the φ yield
due to its long lifetime. Figure 14 shows the decrease of the K∗/K ratio with respect to the
system size represented by (dNch/dη)1/3 for the different data sets of different collision systems
and energies. The fact that they all fall on a common line could indicate that the observed
decrease is related to the radial extent of the fireball. The decrease could be caused by the pion
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rescattering mechanism (σ(π, π)), which destroyes the pion-kaon correlation of the K∗ decay
products. However, there is also the possibility that the ratio K*/K changes from chemical to
kinetic freeze-out just by the variation of the temperature.
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Figure 14. K∗/K ratio as a function of (dNch/dη)1/3. STAR data are from [31].

4. Conclusions
The hadronic resonance K∗(892)0, φ(1020) and Σ(1385)± have been measured in pp collisions
at
√
s=7 TeV and in Pb–Pb collisions at

√
sNN=2.76 TeV for different event centrality bins by

the ALICE experiment at the LHC. Transverse momentum spectra of K∗(892)0, φ(1020) and
Σ(1385)± measured in pp collisions have been compared to PHOJET and different PYTHIA
tunes. Only the K∗(892)0 is reproduced by Perugia 2011 PYTHIA tune. None of tunes gives a
satisfactory description of the φ(1020) and Σ(1385)± data.

In proton-proton collisions the mean transverse momenta increase with the collision energy
and they follow the trend of the stable particles.

While the φ/K is rather flat versus centrality, the K∗/K ratio decreases with centrality. It is
shown that this decrease is related to the radial extension of the fireball.

References
[1] Aguilar-Benitez M et al. (LEBC-EHS Collaboration) 1991 Inclusive particle production in 400 GeV/c pp-

interactions Z. Phys. C 50 405
[2] Albrecht H et al. 1994 Inclusive production of K∗(892), ρ0(770), and ω(780) mesons in the Υ energy region

Z. Phys. C 61 1
[3] Engel R 1995 Photoproduction within the two component dual parton model. Amplitudes and cross-sections

Z. Phys. C 66 203; Engel R and Ranft J 1996 Hadronic photon-photon interactions at high-energies Phys.
Rev. D 54, 4244.
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