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Ümit V Çatalyürek4,5, Joachim Langhammer3, Esmond Ng2,

Erik Saule4, Robert Roth3, James P Vary1 and Chao Yang2

1 Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
2 Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA 94720,
USA
3 Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
4 Dept. of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
5 Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH
43210, USA

E-mail: pmaris@iastate.edu

Abstract. The atomic nucleus is a self-bound system of strongly interacting nucleons. In
No-Core Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater
determinants of single-nucleon wavefunctions (Configurations), and the many-body Schrödinger
equation becomes a large sparse matrix problem. The challenge is to reach numerical
convergence to within quantified numerical uncertainties for physical observables using finite
truncations of the infinite-dimensional basis space. We discuss strategies for constructing and
solving the resulting large sparse matrices for a set of low-lying eigenvalues and eigenvectors on
current multicore computer architectures. Several of these strategies have been implemented in
the code MFDn, a hybrid MPI/OpenMP Fortran code for ab initio nuclear structure calculations
that scales well to over 200,000 cores. We discuss how the similarity renormalization group can
be used to improve the numerical convergence. We present results for excitation energies and
other selected observables for 8Be and 12C using realistic 2- and 3-body forces obtained from
chiral perturbation theory. Finally, we demonstrate that collective phenomena such as rotational
band structures can emerge from these microscopic calculations.

1. No-Core Configuration Interaction approach

Solving for nuclear properties with realistic potentials, using a quantum many-particle framework
that respects all the known symmetries of these potentials, is recognized to be computationally
hard. A nucleus with Z protons andN neutrons is a self-bound quantum many-body system with
A = N + Z strongly interacting nucleons. The interactions are strong (otherwise nuclei would
not be bound) and feature both attractive and repulsive contributions along with significant spin
and angular momentum dependence. Furthermore there are both short-range and long-range
terms in the interaction, and in addition to two-body forces (2NF) [1, 2, 3], one also needs
suitable three-nucleon forces (3NF) [4, 5, 6, 7, 8] (and possibly higher A-body forces).

A commonly used approach to address this problem in nuclear physics is the Configuration
Interaction (CI) method for solving the many-body nuclear Hamiltonian in a (sufficiently large)
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single-particle basis space. In this approach, the many-body Schrödinger equation

H Ψi(~r1, . . . , ~rA) = Ei Ψi(~r1, . . . , ~rA) (1)

becomes a large sparse matrix problem with eigenvalues Ei. In No-Core CI (NCCI)
calculations [9], the wavefunction Ψ of a nucleus consisting of A nucleons is expanded in an
A-body basis of Slater determinants Φk of single-particle wavefunctions φi

Ψ(~r1, . . . , ~rA) =
∑

ckΦk(~r1, . . . , ~rA) , (2)

with Φk(~r1, . . . , ~rA) = A[φn1l1j1m1tz1(~r1)φn2l2j2m2tz2(~r2) . . . φnAlAjAmAtzA(~rA)]. Here A is the
antisymmetrization operation that insures compliance with the Pauli exclusion principle for
identical fermions. Conventionally, one uses a harmonic oscillator (HO) basis for the single-
particle wavefunctions, but it is straightforward to extend this approach to a more general
single-particle basis [10]. The single-particle wavefunctions are labelled by the quantum numbers
n, l, j, m, and tz, where n and l are the radial and orbital HO quantum numbers, with N = 2n+l
the number of HO quanta; j is the total single-particle spin, with m its projection along the
z-axis; and tz is the isospin projection (+1

2
for protons and −1

2
for neutrons). The many-body

basis states have well-defined total spin projection M , which is simply the sum of mk of the
single-particle states, M =

∑

mk, hence the name M -scheme. However, the many-body basis
states do not have a well-defined total spin J . Some of the benefits of this scheme are that it
is very simple to implement, and that in two runs (one for positive and one for negative parity
states), we get the complete low-lying spectrum, including the ground state, even if the spin of
the ground state is unknown.

In a complete basis, this method would give exact results for a given input interaction
V . However, practical calculations can only be done in a finite-dimensional truncation
of a complete basis. Different truncation schemes have different convergence rates: Full
Configuration Interaction employs a widely-know truncation in which all many-body basis states
that can be constructed from a finite set of single-particle states are retained. However, this
truncation method has a rather slow convergence rate in typical ab initio nuclear structure
calculations [11, 12]. The so-called Nmax truncation, in which the total number of HO quanta
in a basis state is limited:

∑

Nk ≤ N0 + Nmax , is generally much more efficient for NCCI
calculations. Here, Nk is the number of quanta of each single-particle state in the many-body
basis state; N0 is the minimal number of quanta for that nucleus; and Nmax is the truncation
parameter. For HO single-particle states, or more general, for any basis in which the single-
particle states have radial and orbital quantum numbers n and l, we have Nk = 2nk + lk.
Furthermore, in combination with a HO basis as single-particle basis, this Nmax truncation
leads to an exact factorization of the center-of-mass wavefunction and the relative wavefunction.

2. Computational Challenges and Solutions

For a very light nucleus like 4He or 6Li one can achieve convergence of the ground state energy
and other observables with suitable 2NFs by simply going to a sufficiently large basis, but this
is not practical for larger nuclei and with 3NFs. The computational effort depends not so much
on the dimension of the matrix, but rather on the actual number of nonzero matrix elements in
the sparse matrix. The number of nonzero matrix elements in a calculation including 3NFs is
between one and two orders of magnitude larger than the number of nonzero matrix elements
in a calculation for the same nucleus in the same basis space, but using 2NFs only [13].

For p-shell nuclei (N,Z ≤ 8), the dimension of the M -scheme basis space at Nmax = 8
reaches about one billion basis states. With 2NFs plus 3NFs, the resulting symmetric matrix
contains up to 40 trillion nonzero real matrix elements in the upper (or equivalently, in the
lower) triangle; see figure 1. Storing these nonzero matrix elements in compressed-row format (or
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Figure 1. Number of nonzero
matrix elements as function of the
basis dimension, with 2-body forces
(2NF, blue circles,), 2- and 3-
body forces (3NF, red squares) and
up to 4-body forces (4NF, green
diamonds) in an M -scheme basis
for N = Z nuclei with M = 0.

equivalently, compressed-column format) using single-precision requires an aggregate memory of
about 320 TB. That is slightly over half the total memory of Jaguar, a Cray XK6 with 18,688
16-core AMD processors at Oak Ridge National Laboratory (currently being upgraded to Titan,
a Cray XK7); slightly less than half the total memory of Mira, an IBM Blue Gene/Q with 49,152
16-core processors at Argonne National Laboratory; and about a quarter of the total memory
of the K computer, a Fujitsu supercomputer with 88,128 SPARC64 processors at the RIKEN
Advanced Institute for Computational Science in Kobe, Japan. In order to make use of such
resources, which are available for open science, we clearly need a suitable code that distributes
the matrix evenly over the available processors, and that performs well at such large scales.

For the results presented here we used the code MFDn, which is a hybrid MPI/OpenMP
parallel Fortran 90 code for nuclear structure calculations, that has been in development for
over two decades. Significant improvements in its performance have been made over the last
five years [14, 15, 16, 17] under the DOE SciDAC-2 UNEDF project. MFDn constructs the
many-body basis states in M -scheme and the corresponding many-body matrix, and solves for
the lowest eigenstates using an iterative Lanczos algorithm. Each Lanczos iteration consists
of a sparse matrix-vector multiplication (SpMV) followed by orthogonalization. At the end of
a run MFDn writes the eigenvectors to file, and evaluates selected physical observables which
can be compared to experimental data (the wavefunctions themselves are not experimentally
observable). It also writes out the one-body density matrix elements (in the underlying single-
particle basis), which can be used for further analysis. By far the most compute-intensive parts
of the calculation are constructing the large sparse matrix and obtaining the lowest eigenvalues
and eigenvectors of this matrix using a Lanczos algorithm.

2.1. Two-dimensional distribution of sparse matrix

Each vector is distributed over n processors, and the sparse symmetric matrix itself is distributed
in a two-dimensional fashion over n(n + 1)/2 processors. We keep the matrix in core, using
compressed-row or compressed-column format, and we store only half the matrix, because the
matrix is symmetric; we use the same data structure for both a SpMV and a transpose SpMV.
The local work load of the SpMV is proportional to the number of nonzero matrix elements on
each processor. Thus we want to distribute the matrix in such a way that each processor has
approximately the same number of nonzero matrix elements. Note that the overall performance
also depends on the communication overhead, and that the mapping of the matrix blocks onto
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Figure 2. Sparsity structure for 8Be at Nmax = 4 with 3NF, with a dimension of 143,792
M -scheme basis states and 402,513,272 nonzero matrix elements in the upper triangle: sparsity
structure on a single processor (left); and evenly distributed over 15 processors after a round-
robin distribution of the basis states over 5 processor (right).

the MPI processors has a large influence on this communication overhead [16, 17].
On a single processor, a lexicographical enumeration of the M -scheme many-body basis states

leads to a very structured sparse matrix, as can be seen in the left panel of figure 2, although it is
a rather nontrivial structure. A simple distribution of this structured matrix over 15 processors
(see the red grid in figure 2) leads to rather poor load balancing and therefore very poor scaling.

On the other hand, with a round-robin distribution of individualM -scheme basis states over n
processors, we achieve almost perfect load balancing over n(n+ 1)/2 processors for the matrix,
both in memory usage and the number of local floating-point operations during the Lanczos
iterations, as is indicated in the right panel of figure 2. This scheme has been implemented and
used in various versions of MFDn, up through the current production Version 13, and indeed
leads to very good scaling of the SpMV – in fact, sometimes better than ideal scaling, as we will
show below. However, a disadvantage of a round-robin distribution of individual basis states is
that on any given processor there is little correlation between neighboring states. Although this
distribution leads to an overall sparsity pattern for each submatrix on one of the n(n + 1)/2
processors that looks similar to that of the entire matrix on a single processor, see figure 2, at the
level of individual matrix elements we are effectively dealing with a randomly sparse matrix; see
the top panel of figure 3. For large runs with 3NFs, we have sparse matrices with less than 1 in
103 nonzero matrix elements. Determining exactly which matrix elements are nonzero becomes
an extremely time-consuming task for such large sparse matrices [14]. Furthermore, any local
SpMV with a randomly sparse matrix will suffer from poor cache performance, in particular if
the input and output vectors are too large to remain in cache.

In the latest version of MFDn (Version 14, currently under development), we distribute
groups of M -scheme basis states in a round-robin fashion over the n processors, instead of
individual basis states. One of the advantages of this scheme is that on any given processor
at least some of the neighboring basis states are correlated (namely those within a group),
leading to a more regular and predictable sparsity structure down to the level of individual
matrix elements; see the bottom panel of figure 3. This greatly improves the efficiency of
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Figure 3. Sparsity structure for 8Be atNmax = 4 with 3NF on 120 processors: detailed structure
of the upper-left (1000× 300) submatrix on the first (diagonal) processor (each dot represents a
single matrix element). Top: using round-robin distribution of individual M -scheme basis states
(Version 13 of MFDn); Bottom: using round-robin distribution of groups of states (Version 14,
under development).

determining which matrix elements are nonzero, while at the same time improving the cache
performance. The main disadvantage is that the load-balancing is not as good as with the round-
robin distribution of individual states. By changing the definition of a ’group of states’ one can
trade-off between more structure in the matrix but less load-balanced, and vice versa: smaller
groups lead to better load-balancing but less structure, larger groups give less load-balancing
but more structure. The ’ideal’ definition of a group of states depends on a combination of the
nucleus under consideration, the truncation and basis space, and the specific hardware for the
calculation (available aggregate memory, memory per core, cache sizes, and memory bandwidth).

2.2. Input 3NF matrix elements

Another recent improvement concerns the input 3NF matrix elements. For the construction of
the many-body matrix we need 2NF and 3NF matrix elements in M -scheme in a proton-neutron
basis. These can be read in from file either in M -scheme or in a more compact representation
known as the coupled-J (or coupled-JT ) format [18]. The angular momenta j of the 2 (or 3)
interacting nucleons are coupled to form 2-nucleon (or 3-nucleon) states of well-defined combined
angular momentum J , using Clebsch–Gordan coefficients (jαmα, jβmβ |JM)

|nαlαjαmα;nβlβjβmβ〉 =
∑

J

(jαmα, jβmβ |JM)
∣

∣(nαlαjα, nβlβjβ)
J
〉

, (3)

with M = mα+mβ , and the sum runs over the allowed values |jα− jβ | ≤ J ≤ jα+ jβ . Since the
interactions are rotationally invariant, and thus preserve total angular momentum J , we only

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012063 doi:10.1088/1742-6596/454/1/012063

5



have nonzero matrix elements between 2-nucleon (or 3-nucleon) states of the same combined
angular momentum J . (In addition to combining the angular momenta j of the interacting
nucleons to a total angular momentum J , we can also combine the isospin t = 1

2
of each nucleon

to a total isospin of T = 0 or 1 in the 2NF case, or to T = 1

2
or 3

2
in the 3NF case.)

Thus for 2NFs we can either read in matrix elements between two nucleons in M -scheme

〈nαlαjαmα;nβlβjβmβ |V |nγlγjγmγ ;nδlδjδmδ〉 ,

with mα +mβ = mγ +mδ, or we can read in matrix elements using the in coupled-J scheme

〈

(nαlαjα, nβlβjβ)
J
∣

∣V
∣

∣(nγlγjγ , nδlδjδ)
J
〉

.

The latter is a more compact form and requires less memory, but when we construct the many-
body matrix we need to decouple (or ’decompress’) the coupled-J matrix elements. That is, for
every nonzero matrix element needed for the construction of the many-body matrix, we need to
perform a sum over the allowed values of J

〈nαlαjαmα;nβlβjβmβ |V |nγlγjγmγ ;nδlδjδmδ〉 =
∑

J

(jαmα, jβmβ |JM) (jγmγ , jδmδ|JM)
〈

(nαlαjα, nβlβjβ)
J
∣

∣V
∣

∣(nγ lγjγ , nδlδjδ)
J
〉

, (4)

with |jα − jβ | ≤ J ≤ jα + jβ , which involves either (repeatedly) calculating the corresponding
Clebsch–Gordan coefficients, or (more efficient in terms of number of floating-point operations)
use a look-up table for these Clebsch–Gordan coefficients.

For 3NFs we end up with triple sums over allowed J values. Schematically

〈jαjβjγ |V |jα′jβ′jγ′〉 =
∑

Jδ ,Jδ′ ,J

. . .
〈

(

(jα, jβ)
Jδ , jγ

)J
∣

∣

∣
V
∣

∣

∣

(

(jα′ , jβ′)Jδ′ , jγ′

)J
〉

(5)

with the dots representing a product of four Clebsch–Gordan coefficients. In principle, one
could extend this further: For 4NFs one would get a quintuple sum involving a product of six
Clebsch–Gordan coefficients.

Not surprisingly, the number of input matrix elements grows with the basis space. For p-shell
nuclei (N,Z ≤ 8), the number of 3NF input matrix elements in M -scheme in a proton-neutron
basis is 741,823,056 at Nmax = 6, corresponding to an input file of 3 GB (using single-precision
real numbers), and at Nmax = 8 the input file is 33 GB, containing over 8 billion input M -
scheme matrix elements. Thus, up to Nmax = 6 we can work with the input data in M -scheme
on current architectures, but at Nmax = 8 and above we quickly run out of memory. We can
deal with such large input files by processing, for example, the input data for an Nmax = 8 run
in eight to twelve ’chunks’ of a few GB each, but this is not very efficient, as we demonstrate in
the next section, and becomes prohibitively expensive above Nmax = 8.

In contrast, the number of 3NF input matrix elements in coupled-JT format is only
111,804,075 at Nmax = 8 for p-shell nuclei, that is, less than 0.5 GB. Even at Nmax = 10,
the total memory required for the 3NF input in coupled-JT format is only about 2.4 GB [18],
which is manageable on current multi-core (and future many-core) architectures. The price we
pay for using the coupled-JT format is that we need to decompress the input data whenever we
need to evaluate a matrix element, but this price may be tolerable since the trend in hardware
is that threads for floating-point operations are becoming more abundant, whereas memory is
expected to remain at a premium.
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Figure 4. Scaling of MFDn Version 13 (left) and Version 14 (right) on Hopper at NERSC with
MPI only (green symbols) and hybrid MPI/OpenMP (blue symbols), and on Jaguar at ORNL
(red symbols) with two- plus three-body forces. (For technical reasons, we use the PGI compiler
for Version 13 and the gnu compiler with Version 14, both with optimization.)

2.3. Strong and weak scaling

In figure 4 we show the strong and weak behavior of MFDn on Hopper at the National
Energy Research Scientific Computing Center (NERSC) and on Jaguar at Oak Ridge National
Laboratory (ORNL). Since the cost for the SpMV is largely proportional to the number of
nonzero matrix elements, we show the aggregate time to construct the matrix (defined as wall
clock time multiplied by the number of cores) divided by the number of nonzero matrix elements.
Also the cost for the construction of the matrix is proportional to the number of nonzero matrix
elements, once the sparsity structure is known (which is not included in the timing data of
figure 4). Ideal scaling corresponds to a straight horizontal line in these plots; and the lower
this line is, the better the performance. Symbols connected by a line are for the same nucleus
and basis space, and thus indicate the strong scaling behavior.

Hopper is a Cray XE6 at NERSC consisting of 6,384 nodes with two 12-core AMD
’MagnyCours’ processors per node and 32 GB memory per node. Each of the 24 cores have
access to all of the 32 GB memory on the node, but the memory access time is not uniform: the
compute nodes are so-called NUMA nodes (Non Uniform Memory Access). Each node has four
memory banks of 8 GB each; 6 cores share a memory bank (as well as the L3 cache). Accessing
memory from one of the three other memory banks is significantly slower than accessing local
memory. For MFDn we therefore typically use four MPI processors per node, with six threads
per MPI processor, on Hopper, though for relatively small runs our MPI-only implementation
performs better. Jaguar was a Cray XK6 at ORNL, and consisted of 18,688 nodes with a 16-core
AMD ’Interlagos’ processor and 32 GB of memory per node. Again, each node is a NUMA node,
with, on Jaguar, two NUMA domains and 8 cores per NUMA domain. On Jaguar we therefore
typically ran with two MPI processors per node and 8 threads per MPI processor. Both Hopper
and Jaguar use the Gemini interconnect between nodes. (Jaguar is currently being upgraded to
Titan by adding a GPU to each node.)

In the left panel of figure 4 we see that for relatively small Nmax = 4 runs on Hopper using
MPI only, the Lanczos iteration time actually decreases with increasing number of processors (see
the green connected crosses): we have better than ideal strong scaling for these cases! It is not
entirely clear what causes this behavior, but most likely it is due to a better cache performance
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as the local matrix blocks, as well as the local vector segments, on each processor get smaller.
The minimal number of processors needed for a specific calculation is to a large extent dictated
by the memory needed to store the matrix (distributed evenly over all processors). And since
we perform both a SpMV and a transpose SpMV with the same compressed-row data structure
for the matrix, our cache performance is far from ideal on the minimal number of processors.
As we increase the number of processors for the same problem (strong scaling), the size of the
matrix blocks on each processor decreases proportionally, and more of the in- and out-vectors
of the SpMV can be kept in cache. Hence the cache performance during the Lanczos iterations
is likely to improve as the number of processors increases for a fixed problem size.

For larger problem sizes using a hybrid MPI/OpenMP implementation (red and blue
symbols), we do not see this effect. Most likely, the in- and out-vectors of the SpMV remain too
large to fit in cache, even as we increase the number of processors: if we distribute the matrix
such that we have four matrix blocks (one per NUMA node) on each node on Hopper, instead
of 24 matrix blocks (one per core), then the dimensions of those blocks, and thus the length of
the local vector segments, will be significantly larger. In addition, the memory needed for the
local vector segments increases relative to the memory needed to store the local matrix block as
both the problem size and the number of processors increase.

The scaling of the construction of the matrix (solid circles) is not as good as the scaling during
the Lanczos iterations. This is likely to be caused by the fact that in Version 13 (left panel of
figure 4) the time to distribute the input M -scheme matrix elements from the n processors on
which they are read in to all n(n+1)/2 processors is included in the time to construct the matrix
(the actual IO time is not included in figure 4). For Nmax = 6 calculations, with an M -scheme
input file size of 3 GB, this is not too much of an issue, but for Nmax = 8 calculations, with an
M -scheme input file size of 33 GB, we see that the matrix construction suddenly requires an
order of magnitude more time than at Nmax = 4 and Nmax = 6 (red solid circles). This is partly
due to the amount of input data to be redistributed (33 GB), and partly because we have to go
through the construction of the matrix typically 8 to 12 times in order to process all input data.

The 3NF input matrix elements in coupled-JT format, as described in the previous subsection,
resolves this issue of the size of the input file. Indeed, with Version 14 (right panel of figure 4)
the construction of the matrix scales almost perfectly from 6 to 30,000 cores. The aggregate time
is about twice as large as the most efficient Nmax = 4 and Nmax = 6 construction times using
the M -scheme input matrix elements. Given the fact that we have to decouple the input matrix
elements for every nonzero matrix element in the many-body matrix, see (5), this is actually a
rather modest increase in aggregate time.

The scaling of the construction of the matrix breaks down above 40,000 cores, both on
Hopper and Jaguar. Since there is no communication in this phase (at least not in Version 14
of MFDn), this has to be due to a load-imbalance. There are two sources of load imbalance:
one is simply the number of nonzero matrix elements, and the other is the fact that for a subset
of the nonzero matrix elements, we have to perform a single, double, or even triple sum over
’spectator’ nucleons. In particular, all diagonal matrix elements involve such a triple sum. We
are currently investigating this load imbalance problem.

Note that the Lanczos iterations with Version 14 show excellent strong and weak scaling over
the entire range from 6 to 300,000 cores. Below 1,000 cores, the MPI-only implementation of
Version 13 is more efficient, but for large runs, above 10,000 cores, Version 14 performs better,
both in the construction of the matrix and in the Lanczos iterations, than Version 13. In
addition, the time needed to determine the sparsity structure of the sparse matrix is typically,
for large runs, an order of magnitude smaller with Version 14 than with Version 13, due to fact
that Version 14 works with groups of M -scheme basis states, rather than individual states.
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3. Convergence and renormalization of nuclear interactions

Even with all the recent improvements in code performance and efficiency, combined with
the rapid increase in available computing power, convergence in a finite HO basis remains a
challenge. Realistic 2NF potentials, such as Argonne V18 [1] and chiral N3LO [2, 3], generate
a combination of short-range and long-range correlations that cannot be represented in many-
nucleon HO bases accessible at present computers. In order to account for the strong short-range
(high-momenta) correlations and to improve convergence with increasing basis spaces, one can
utilize a renormalization procedure specified by a unitary transformation of the Hamiltonian to
a renormalized Hamiltonian

Hrenormalized = U † H U , (6)

that softens the interactions and generates effective operators for observables, while preserving
all experimental quantities in the low-energy domain. The derived ’effective’ interactions still act
among all A nucleons and preserve all the symmetries of the initial 2NF and 3NF interactions.

One of these renormalization procedures is based on the Similarity Renormalization Group
(SRG) [19, 20]. In the SRG approach the unitary transformation of the Hamiltonian is
formulated in terms of a flow equation

dHα

dα
= [ηα, Hα] , (7)

with a continuous ’SRG flow parameter’ α, starting from α = 0 fm4 for the initial Hamiltonian
Hα=0. The physics of the SRG evolution is governed by the choice of the generator ηα. With a
suitable choice of ηα, one can consistently evolve 2NFs and 3NFs (and even higher-body forces)
to soften the short-range repulsion and tensor components of available initial interactions, so
convergence of nuclear structure calculations is greatly accelerated [21, 22, 23, 24, 25, 26, 27].
The SRG evolution produces an ’effective’ Hamiltonian that is independent of the nucleus and
basis space, and generally enables smooth extrapolation of results [22, 27, 28].

A convenient and commonly used form in nuclear physics is

ηα = m2
N [Trel, Hα] , (8)

where Trel is the kinetic energy operator in relative coordinates, and mN is the nucleon mass.
Thus the SRG evolution equation becomes

dHα

dα
= m2

N

[

[Trel, Hα], Hα

]

. (9)

This choice for the generator drives the renormalized Hamiltonian Hα towards the diagonal in
a basis of eigenstates of the relative kinetic energy.

The SRG evolution generates many-body forces beyond those present in the initial
Hamiltonian. The transformation is unitary only if all the induced terms up to the A-body
level are included for an A-body calculation. Only in that case are the eigenvalues of the
transformed Hamiltonian Hα identical to those of the initial Hamiltonian Hα=0, independent
of the SRG parameter α. These induced many-nucleon forces typically come in a hierarchy of
decreasing strength with increasing number of interacting nucleons (at least for very small values
of α). In practice one truncates the induced many-body terms either at the 2NF or at the 3NF
level. A dependence of the obtained spectrum on α can therefore be attributed to the induced
many-body forces that have been ignored in the calculation.

Calculations with the SRG evolved 2NF interactions, omitting induced 3NFs (as well as
higher many-body forces) indeed show a significant dependence of the binding energies on the
SRG flow parameter [22]. Most of this dependence is removed once the induced 3NF is properly
taken into account [24, 25, 26, 27], at least for light nuclei and as long as the transformation is
not pushed too far. With explicit 3NFs in the initial Hamiltonian however, there may be a need
for induced 4-body forces [26].
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4. Emergence of rotational band structures from ab initio calculations

Rotational bands arise quite naturally in α-cluster models for nuclei like 8Be and 12C, but it is
not at all obvious that such structure also emerges from ab initio calculations, which describe
these nuclei as bound states of eight and twelve nucleons respectively. The rotational energy for
states in a rotational band with an axial symmetry is given by [29]

Erotational(J) =
~
2

2I

(

J(J + 1)−K2
)

, (10)

where I is the moment of inertia, K is the projection of J along the intrinsic symmetry axis, and
J is the total angular momentum. Furthermore, the rotational model predicts for the quadrupole
moments of members of a rotational band

Q(J) =
3K2 − J(J + 1)

(J + 1)(2J + 3)
Q0 , (11)

and for the strength of the E2 transitions within a rotational band

B(E2; i → f) =
5

16π
(eQ0)

2 (Ji,K; 2, 0|Jf ,K)2 , (12)

where Q0 is the ’intrinsic’ quadrupole moment of the rotational band (in a body-fixed, non-
inertial reference frame).

For even-even nuclei with a Jπ = 0+ ground state, we anticipate that we might have a K = 0
ground state rotational band. Rotational bands starting from J = 0 are restricted to even values
of J only. Thus we expect a Jπ = 2+ and a 4+ excited state, with a ratio of excitation energies
Ex(4)/Ex(2) = 10/3 = 3.33.

Recent calculations using a realistic but nonlocal 2NF potential indicate that one does indeed
obtain rotational band structures from ab initio nuclear structure calculations [30]. For the
calculations presented here, we use the chiral N3LO 2NF potential of [2] in combination with
the chiral N2LO 3NF potential of [5, 31]. For the two low-energy constants in the N2LO 3NF
potential we use the values that have been determined from the triton binding energy and β-
decay [32]. In order to improve numerical convergence in a finite HO basis, we use the SRG
renormalization procedure described in the previous section, and monitor the dependence of our
results on the SRG parameter α.

4.1. Beryllium-8

Experimentally the two lowest excited states in 8Be are a 2+ and a 4+ state, at 3.03 MeV
and 11.35 MeV respectively, that is, with a ratio of excitation energies Ex(4)/Ex(2) = 3.75,
somewhat larger than one would expect based on a rotational model.

We indeed find that the lowest two excited states are a 2+ and a 4+ state, as expected. With
the chiral N3LO 2NF potential, using SRG evolution including the induced 3NF, the excitation
energies for these states are 3.2 MeV and 11.1 MeV respectively; see figure 5. We estimate these
results to be converged to within about 5%, and they are virtually independent of the SRG
parameter α. The ratio of the excitation energies is better converged, at Ex(4)/Ex(2) = 3.45,
about halfway between the experimental value and that of a rotational model.

The effect of the chiral N2LO 3NF on these excitation energies is rather small: including the
initial 3NF we find 3.3 MeV and 11.5 MeV for the excitation energies of the 2+ and 4+ states
respectively. The convergence of the excitation energies with the initial 3NF is similar to that
with induced 3NFs only, and the ratio Ex(4)/Ex(2) is converged to within a fraction of a percent
at Nmax = 8. For this ratio of the excitation energies we now find 3.48, only one percent larger
than without initial 3NFs.
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Figure 5. Excitation energies of the 2+ (blue crosses) and 4+ states (red plusses) for 8Be with
SRG evolved chiral N3LO 2NF plus induced 3NF at α = 0.0625 fm4 (left-most panel) and with
SRG evolved chiral N3LO 2NF plus chiral N2LO 3NF. Experimental values are indicated by the
horizontal green lines.

The quadrupole moments and B(E2) transition strengths are not as well converged as the
(excitation) energies. This is not surprising, since the E2 operator is a long-range operator, and
therefore sensitive to the long-range behavior of the nuclear wavefunction. However, the long-
range tail of the wavefunction is not well-represented in a HO basis: HO wavefunctions fall off
like exp(−c r2), whereas the nuclear wavefunction falls off like exp(−c r). Hence the convergence
of observables like the quadrupole moments and B(E2)’s is rather slow in a HO basis.

Nevertheless, the ratios of the quadrupole moments seem to be in semi-quantitative agreement
with the notion of these states being members of a rotational band. Although our results show
a significant dependence on the basis space parameter ~ω, see the middle panels of figure 6, the
ratio Q(4)/Q(2) is within about 10% of the rotational prediction of 1.27 at Nmax = 8. Note that
the ~ω dependence is stronger with the initial chiral N2LO 3NF than with the induced 3NFs
only; and that the ~ω dependence is almost the same for the different values of α.

The B(E2) transition strength from the 2+ to the ground state is in remarkable agreement
with the rotational model, in terms of the quadrupole moment of the 2+ state. Both without and
with the initial chiral 3NFs the ratio B(E2)/Q(2)2 is very well converged and almost independent
of both Nmax and ~ω, and very close to the rotational value of 0.243; see the lower panels of
figure 6. On the other hand, for the transition from the 4+ to the 2+ state the ratio B(E2)/Q(4)2

is about 10% below what one would expect. Also note that this ratio appears to be somewhat
better converged with initial chiral 3NFs than with the induced 3NFs only.

These results support the notion that the lowest 2+ and the 4+ excited states are, to a large
extent, rotational excitations of the 0+ ground state. Furthermore, the initial chiral 3NFs have
little to no influence on the rotational nature of these excited states. Note that the total binding
energy does depend on the 3NFs; also the question whether or not the ground state is bound
with respect to breakup into two α particles with these interactions remains to be seen. At
Nmax = 8 the binding energy of 8Be is still below twice the binding energy of 4He, calculated
with the same interaction. Nevertheless, the excitation energies of lowest the 2+ and the 4+

states are very well converged, and in excellent agreement with the data.
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Figure 6. Ratios of results for 8Be with SRG evolved chiral N3LO 2NF plus induced 3NF at
α = 0.0625 fm4 (left-most panel) and with SRG evolved chiral N3LO 2NF plus chiral N2LO 3NF.
Horizontal lines represent the predictions from a rotational model. See figure 5 for the legend of
the line styles. Top: excitation energies Ex(4)/Ex(2); Middle: quadrupole moments Q(4)/Q(2);
Bottom: E2 transition strength B(E2)/Q(J)2 for the 2+ → 0+ transition (blue crosses) and for
the 4+ → 2+ transition (red plusses).

4.2. Carbon-12

Experimentally, the first excited state in 12C is a 2+ state, just as in 8Be above, at an excitation
energy of 4.44 MeV, and the lowest 4+ state is at 14.08 MeV, so the ratio of excitation energies,
Ex(4)/Ex(2) = 3.17, is quite close to what one would expect based on a rotational model for
these states. A difference with 8Be is that in 12C there are several other excited states between
the lowest 2+ state and the lowest 4+ state. Here, however, we only concentrate on these two
excited states.

With the SRG evolved chiral N3LO 2NF potential the lowest 2+ and 4+ states are very
well converged [33], with excitation energies of 3.0 MeV and 10.7 MeV respectively; see the left
panel of figure 7. Again, we estimate these results to be converged to within a few percent, and
they are basically independent of the SRG parameter α. The ratio of the excitation energies
is Ex(4)/Ex(2) = 3.6, about 8% above the rotational value, and more than 10% above the
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Figure 7. Excitation energies of the 2+ (blue crosses) and 4+ states (red plusses) for 12C with
SRG evolved chiral N3LO 2NF plus induced 3NF at α = 0.0625 fm4 (left-most panel) and with
SRG evolved chiral N3LO 2NF plus chiral N2LO 3NF. Experimental values are indicated by the
horizontal green lines.

experimental value. Furthermore, the actual excitation energies are 25% to 30% below the data;
also, there are no additional excited states below the lowest 4+ state with the chiral N3LO 2NF
potential (at least no positive parity excited states), in contrast to the experimental situation.

However, in this case adding the chiral N2LO 3NF to the N3LO 2NF potential changes
the results drastically; see the right three panels of figure 7. The initial chiral 3NF not only
changes the excitation energies (and, for that matter, the spectrum in general), but it also spoils
the excellent convergence of the excitation energies that we found with only the induced 3NFs.
Though the weak dependence on Nmax suggests that the excitation energies are almost converged
at ~ω = 16 MeV or ~ω = 20 MeV, both the 2+ and 4+ states show a strong dependence on
the basis space ~ω parameter: as ~ω increases from 16 MeV to 28 MeV, the excitation energies
increase by 20% to 50%, depending on the state and on the SRG parameter α. It does mean
that our results are now in better agreement with the data, but that is partly because of the
rather large numerical uncertainty due to the lack of convergence. As expected, the convergence
is somewhat better for the larger SRG value α = 0.08 fm4, but even at this SRG value we do not
have converged results for the excitation energies. It appears that we need to go to larger bases
(Nmax = 10 or even more) and/or larger values of α in order to obtain better converged results.
With additional truncations on the basis space, such as the Importance-Truncated No-Core Shell
Model [34], we can already perform calculations with 3NFs up to Nmax = 12 [26]. Alternatively,
the Symmetry-Adapted No-Core Shell Model [35] may be used which aims to expand the range
of accessible Nmax values by implementing a truncation retaining those SU(3) configurations
that are important for low-lying collective states.

The question remains: are these two states rotational excitations of the ground state?
Without the initial chiral 3NF, the ratio of the excitation energies is about 3.6, that is, about
10% above the rotational value; see the top-left panel of figure 8. The ratio of the quadrupole
moments, Q(4)/Q(2) is very well converged at 1.3, only a few percent above the rotational value.
Furthermore, the B(E2) transition strength for the transition from the 2+ state to the ground
state agrees to within 10% of a rotational model.

When we include the initial chiral N2LO 3NF, the convergence patterns change, not only for
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Q(4)/Q(2); Bottom: E2 transition strength B(E2)/Q(2)2 for the 2+ → 0+ transition.

the excitation energies, but also for the other observables. Although the excitation energies of
these two states increases by as much as 50% as ~ω increases from 16 MeV to 28 MeV, the ratio
Ex(4)/Ex(2) changes by at most 20% over this range in ~ω, and at α = 0.08 fm4 this ratio seems
to converge to a value of about 3.5 ± 0.1, which is only 5% above the rotational value. Note
that this is quite similar to the result we found without initial 3NFs, but the ~ω dependence is
very different with and without initial 3NFs. The ratios Q(4)/Q(2) and B(E2)/Q(2)2 seem to
converge to within about 10% of their rotational values; see figure 8. The convergence rate is
slightly better at α = 0.08 fm4 than at α = 0.04 fm4, as one would expect.

Thus it seems that the rotational nature of the lowest 2+ and the 4+ states for 12C emerges
from ab initio calculations using chiral interactions. The chiral 3NFs do have a significant effect
on the convergence rate of the excitation energies and on the spectrum of 12C in general, as
well as on other observables. However, the ratios of excitation energies, quadrupole moments,
and B(E2)/Q(J)2 transition strength seem to converge to within 10% of their rotational values,
both with the chiral N3LO 2NF only and with the chiral N3LO 2NF plus N2LO 3NF.
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