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Abstract. The one-quadrupole phonon excitation of mixed symmetry, the 2+
1,ms state, is a

fundamental building block of nuclear structure. This article gives a summary of our recent
experimental research on this excitation mode in the A = 90 and A = 130 mass regions.

1. Introduction
The contemporary quest for the structure of exotic nuclei addresses nuclear systems with
abnormal ratios of proton and neutron numbers. It, hence, focuses on the isospin dependence of
nuclear structure. The isospin degree of freedom of collective nuclear structures has been studied
[1] some 35 years ago in the framework of the proton-neutron version [2] of the interacting
boson model [3] by Takaharu Otsuka who worked at that time with Arima and Iachello. The
formulation of the IBM-2 in its F-spin limit [4, 5] has emphasized the fundamental role of
collective isovector valence-shell excitations, so-called mixed-symmetry states (MSSs), for the
first time [2]. After the discovery of the scissors mode [6] and the clarification of its quadrupole-
collective character [7, 8] it became obvious that the isovector quadrupole excitation of the
valence shell represents the building block of mixed-symmetric structures as it is particularly
apparent in the framework of the Q-phonon scheme [9] for mixed-symmetry states [10, 11]. The
Q-phonon scheme considers ground state correlations by only providing relative wave functions
and thereby benefits from a wide applicability to good approximation [12, 13, 14].

Vibrational nuclei exhibit a one-quadrupole phonon excitation as the lowest-lying state of
mixed pn symmetry, i.e the 2+1,ms state. Its close relation to the 2+1 state is evident in the
Q-phonon scheme where the wave functions of the one-quadrupole phonon excitations are in
general well approximated by the expressions

|2+1 〉 ' Qs |0
+
1 〉 = [Qπ +Qν ] |0+1 〉 (1)

|2+1,ms〉 ' Qm |0
+
1 〉 = N

[
Qπ
Nπ
− Qν
Nν

]
|0+1 〉 (2)

where Qπ,ν (Nπ,ν) denote the proton and neutron quadrupole operators (boson numbers),
N = Nπ+Nν , and |0+1 〉 is the (in general highly correlated) ground state of a collective even-even
nucleus. Despite its fundamental role in nuclear structure, the 2+1,ms state has only recently been
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studied systematically, e.g., [15, 16, 17, 18, 19]. The dominant fragments of the one-phonon 2+1,ms

state are observed at about 2 MeV excitation energy. Due to their isovector character, MSSs
decay rapidly by dipole transitions and are very short lived, typically a few tens of femtoseconds.
Large M1 matrix elements of ≈ 1 µN are the unique signatures for MSSs and, thus, lifetime
information is needed for making safe assignments of mixed symmetry. A review article on the
status of experimental information on mixed symmetry states in vibrational nuclei has been
published [20]. We use the occasion of Taka Otsuka’s 60th birthday to summarize our recent
experimental research on one-phonon MSSs. While we have recently been asked to talk on this
subject at various occasions the presentation of the present contribution is similar to what we
have recently contributed to other conference proceedings.

2. Experimental Method
Projectile-Coulomb excitation has been established as a powerful method for the identification
and investigation of one-phonon MSSs [17, 19]. After this approach has first been applied to the
investigation of the 2+1,ms state of 96Ru at the Yale Tandem accelerator [17], we have begun a

research programme on the 2+1,ms state at Argonne National Laboratory with the nucleus 138Ce
as a first case study [19]. Crucial influence of sub-shell closures on mixed-symmetry structures
was first observed, a phenomenon which sensitively tests the effective proton-neutron interaction
in microscopic valence shell models [21, 22]. The one-phonon 2+1,ms state of 136Ce has recently
been identified from similar Coulomb excitation experiments at Gammasphere [23].

A sequence of experiments on Xenon, Barium, and Cerium isotopes has been performed. The
superconducting ATLAS accelerator provided the ion beams with energies corresponding to ∼
85 % of the Coulomb barrier for a reaction on 12C nuclei. The beam intensity amounted typically
to ∼ 1pnA. The beam was impinging on a stationary carbon target of thickness 1 mg/cm2. Light
target ions were chosen in order to favor the one-step Coulomb excitation process over multi-
step processes for ease of data evaluation. The γ-rays emitted by Coulomb-excited states of
the beam nuclei were detected in the Gammasphere array which consisted of ∼ 100 high purity
Compton suppressed Germanium detectors arranged in 16 rings. An event was defined by a
γ-ray of multiplicity 1 or higher. Two corrections had to be done in order to get the total single
spectra, an example of which is displayed in Fig. 1, namely the Doppler correction (recoiling
velocity ∼ 6-8%) and the background subtraction (difference between the ”in-beam” spectrum
and the ”off-beam” spectrum scaled to eliminate the 1461 keV 40K line).

The experimental γ-ray spectra are dominated by the decays of low-spin states, such as
2+ or 3− states, that are predominantly populated by one-step Coulomb excitation from the
ground state. For each state observed we measured the excitation cross section relative to that

Figure 1. Background-subtracted
and Doppler-corrected singles γ-ray
spectrum summed over all Ge de-
tectors of the Gammasphere array
at ANL after Coulomb excitation of
136Ce on a carbon target [23].
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of the 2+1 state with an accuracy of 1 - 0.1 %. By calculating the Coulomb excitation cross
sections for each excited state with the multiple-Coulomb excitation formalism and fitting them
to our experimental data (normalized to the 2+1 state), we deduced the electromagnetic matrix
elements corresponding to each transition of the excited states. The crucial multipole mixing
ratios of the 2+ → 2+1 transitions were obtained from γ-ray angular distributions if sufficient
statistics have been obtained. A possible large B(M1) value, signature of the MSS, is then
easily derived from the data. For a further description of this method, the reader is referred to
Refs. [19, 20]. This experimental technique of projectile-Coulomb excitation on a light target
inside the Gammasphere array at ANL has been applied by us to 16 nuclei up to now: 136,138Ce,
124−134Xe, 148,154Sm, 194,196Pt, 130,132Ba, 96Ru and 94Mo. Figure 1 displays data from the
projectile-Coulomb excitation reactions of a 136Ce-ion beam on a carbon target.

3. Evolution of 2+1,ms states in the A = 130 region
The experiments performed so far allow for a nearly complete overview on the properties of the
MSS throughout the A = 130 region. A recent publication on the first identification of a MSS in
an unstable nucleus in 132Te [24] expands the experimental data on the N = 80 isotonic chain. A
recent publication on the MSS in the nucleus 136Ce [23] completes the experimental data on the
stable even-even N = 78 isotonic chain. A set of data currently under analysis on the nucleus
132Ba [25] will complete our information on the one-phonon mixed-symmetry state in the stable
even-even N = 76 isotones. An overview on the B(M1; 2+i → 2+1 ) strength distributions in the
even-even nuclei in the A = 130 region is shown in Figure 2.

In the stable N = 80 isotones the excitation energy of the 2+1,ms state increases with increasing

proton number. This trend continues in the unstable nucleus 132Te [24]. In the N = 78 isotonic
chain, the energy of the MSS again increases with increasing proton number. In the neighboring
N = 76 isotones, however, the excitation energy of the MSS decreases with increasing proton
number. It is also interesting to follow the evolution of the MSS’s excitation energies in the
different isotopic chains. In the Ce and Ba isotopes, the excitation energy of the MSS increases
with increasing neutron number, whereas in the Xe isotopes an increase in Nν results in a
decrease of E(2+1,ms). Apparently, the 2+1,ms state evolves in different ways as a function of
valence particle numbers. Whether or not the observed differences are related to a critical point
of a nuclear shape phase transition near 134Ba is unclear up to now.

From data on E(2+1 ) and E(2+1,ms), an estimate of the proton-neutron quadrupole-quadrupole

interaction V QQ
pn according to the two-state mixing scheme in [26] has been performed on the

Figure 2. Overview
of the B(M1; 2+i →
2+1 ) strength distribu-
tions for the stable
even-even nuclei in the
A=130 region.
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Figure 3. Simultaneous fit of
the experimental energies of the
2+1 states (solid curve) and of the
B(M1)-weighted average energies
of the 2+1,ms states (dashed curve)
in the N = 78 isotones. Taken from
[23].

N = 80 isotones [27], the Xe isotopes [28], and, just recently, on the N = 78 isotones [23].
The results show, that the proton-neutron quadrupole-quadrupole interaction in the N = 78
isotonic chain is about 14% smaller than that for the N = 80 isotopic chain [27] and about 6%
smaller than for the Xenon isotopic chain [28]. An example of the data, taken from Ref. [23], is
displayed in Fig. 3.

4. Phase of proton- and neutron-components to MSSs: The case of 92Zr
We studied the formation of quadrupole collectivity in the particularly simple case of a nucleus
with a low-energy structure that is dominated by one pair of valence particles each for protons
and neutrons. An example is the nucleus 92Zr with 2 neutrons beyond the N = 50 shell closure
and 2 protons beyond the Z = 38 sub-shell closure. The lowest 2-quasiparticle (2qp) states
have π(1g9/2)

2 and ν(2d5/2)
2 configurations. In 92Zr, the predominantly symmetric and mixed-

symmetric one-phonon 2+ states are experimentally identified as the 2+1 and 2+2 states [29, 20]
with some degree of configurational isospin polarization [30].

To shed light on the microscopic origin of the effective pn-coupling strength in the valence
shell we consider the quasiparticle-phonon model (QPM) [31]. The QPM wave functions are
dominated by the lowest π and ν 2qp components, that show the expected in-phase and out-
of-phase behavior for the 2+fs and 2+ms states. The electromagnetic properties and excitation
energies are in excellent agreement with the data [32]. The magnetic moments of these
states and the strong M1 transition between them originate almost entirely from the valence-
shell configurations. However, the B(E2) strengths are generated to about 80% from many
components beyond the valence shell albeit their total contribution to the wave function norm
is small. This observation motivates a simple three-state mixing scenario between the proton-
valence shell configuration, the neutron-valence shell configuration, and the GQR for a deeper
insight in the formation of the one-quadrupole phonon states with symmetric and mixed-
symmetry character even on a semi-quantitative level [33]. For the nucleus 92Zr with higher
energy for the proton valence-shell component than the neutron valence-shell component at
the Z = 40 sub-shell closure, this scheme inevitably requires that the neutron valence-shell
component flips its phase with respect to the GQR component when going from the proton-
neutron symmetric 2+1 state to the 2+2 state with predominant mixed symmetry.

Apparently, two probes with different sensitivity to protons and neutrons are needed to
study this quantum interference experimentally. Electron scattering at low momentum transfer
provides a measure of the charge transition radius. An (e, e′) experiment was performed at
the Darmstadt superconducting electron linear accelerator (S-DALINAC). An enriched (94.6
%) self-supporting 92Zr target of 9.8 mg/cm2 areal density was used. Data were taken covering
a momentum transfer range between q ∼ 0.3 − 0.6 fm−1 indicating no difference between the
charge transition radii of the 2+fs and 2+ms states within experimental uncertainties (Fig. 4, right).
Information about the neutron transition radii can be derived from the proton scattering data
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Figure 4. Form factors for the 2+1,fs (red, solid line) and 2+1,ms (blue, dashed line) from 92Zr(p, p′)

and 92Zr(e, e′) experiments (from [33]).

of Ref. [34]. At the incident energy of 800 MeV protons interact predominantly via the isoscalar
central piece of the effective projectile-nucleus interaction [35]. Clearly, the refraction pattern
of the (p, p′) cross section for the 2+ms state are shifted to higher q values as compared to those
for the 2+fs state (Fig. 4, left) corresponding to a smaller transition radius.

Figure 5 displays the proton and neutron transition densities of the 2+fs (top) and 2+ms (bottom)
states calculated in the full QPM approach. The full transition densities (solid curves) are
decomposed in a collective part stemming from the GQR (dotted curves) and the predominant
2qp ν(2d5/2)

2 neutron contributions (dashed curves).
The key point is the different radial behaviour of both parts and their relative signs. An

out-of-phase coupling between the neutron valence shell contribution and the contribution
from the GQR in the 2+1,ms state leads to a destructive quantum interference that reduces the

neutron transition density at large radii (due to the larger radius of the ν(2d5/2)
2 orbital) and

consequently shifts the maximum of the total neutron transition density to the interior with
respect to that one for the 2+fs state, as indicated by the arrows in Fig. 5. This effect reduces
the neutron transition radius of the 2+ms with respect to the 2+fs state of 92Zr. In contrast, the
proton transition radius remains essentially unchanged since the π(1g9/2)

2 part couples in-phase
to the GQR contribution in both states. The combination of both data sets unambiguously
demonstrates for the first time that the phase of the neutron valence-shell configurations in 92Zr
changes its sign between the 2+fs and the 2+ms state [33].

Figure 5. Neutron transition den-
sities of the 2+fs (top) and 2+ms (bot-
tom) states of 92Zr from QPM cal-
culations. The full transition den-
sities (solid lines) are decomposed
in parts stemming from the GQR
(dotted lines) and from the main
2qp configurations (dashed lines).
The arrows indicate the maxima
of the corresponding full transition
densities.
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5. Summary
The isovector one-quadrupole phonon excitation of the valence shell, the 2+1,ms state with F -spin
F = Fmax − 1, has been systematically investigated in a large number of vibrational nuclei.
This state is generally identified from absolute M1 transition strengths when the experimental
sensitivity is high enough and it occurs at energies around 2 MeV featuring an M1 transition
matrix element to the 2+1 state between 0.5 and 1.5 µN with some fragmentation. The details of
its evolution as a function of particle number is not entirely understood. It may depend on the
local shell structure around the Fermi level and on the evolution of quadrupole deformation.
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