
Self-consistent Green’s functions calculation of the

nucleon mean-free path

A. Rios1 and V. Somà2,3
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Abstract. Transport coefficients provide a unique insight into the near-equilibrium behavior
of quantum many-body systems. The mean-free path, λ, of a particle within a dense medium is
a basic transport coefficient, at the basis of several theoretical concepts and closely related to
experimentally measured quantities. Green’s functions techniques are particularly well suited
to study such transport properties, since they are naturally formulated in the time domain.
We present a calculation of the mean-free path of a nucleon in symmetric nuclear matter using
self-consistent ladder self-energies extended to the complex energy plane. Our results indicate
that, for energies above 50 MeV at densities close to saturation, a nucleon has a mean-free path
of 4 to 5 femtometers.

1. Introduction

Over the years, the nuclear many-body community has primarily concentrated on the study of
the equilibrium properties of extended hadronic systems [1]. A focal point of these efforts has
been the calculation of the Equation of State (EoS) of neutron matter [2]. This determines to
a large extent the mass-radius relation of neutron stars, which is expected to be experimentally
constrained by near-future astronomical observations. The hope is that precise simultaneous
measurements of both the radius and the mass of pulsars will indirectly provide precious
information on nucleon-nucleon interactions and more in general on strongly interacting nuclear
systems [3, 4].

Transport properties characterize the behaviour of systems when driven out of equilibrium
[5]. Viscosities and mean-free paths determine the dynamics of damping (or potential growth)
of various instability modes and give insight on the microscopic structure of the medium. Unlike
those of equilibrium properties, calculations of transport coefficients of homogeneous hadronic
matter are relatively scarce. These coefficients, however, are extremely important to describe
the dynamics and time evolution of astrophysical compact objects and affect the analysis of
present generation astronomical observations. The rapid cooling observed in Cassiopeia A, for
instance, is thought to be related to a modification in the specific heat associated to pairing
phenomena [6] and it is sensitive to transport in dense matter [7, 6]. Shear and bulk viscosities
are often needed in neutron star modeling [8, 9, 10]. In particular, the potential instability to
general relativistic modes is very sensitive to the bulk viscosity [11].
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In some cases, the theoretical calculations of transport coefficients involve an artificial
coupling between the many-body treatment (or the equilibrium problem) and the transport (or
non-equilibrium) approach. A typical example is provided by recent calculations of the shear
viscosity [10, 12]. The equilibrium problem is treated using many-body techniques, like the
Correlated Basis Functions or the Brueckner-Hartree-Fock approaches. These provide access to
scattering properties in equilibrated dense matter, in particular in-medium cross sections. The
latter can then be used as input in an Abrikosov-Khalatnikov-type calculation for the viscosity
[13]. Yet, the scattering processes described by equilibrium many-body calculations need not be
the same as those originally considered within Abrikosov theory. One can therefore argue that,
by coupling both approaches, uncontrolled errors are being introduced in the calculation.

In contrast, Green’s functions are well suited to compute transport coefficients from first
principles. Time dependence is treated explicitly in the theory [14], to the extent that one can
even consider non-equilibrium dynamics in a meaningful way [15]. Pauli principle and beyond
mean-field correlations can be consistently taken into account. Kubo relations give access to
several non-equilibrium properties from correlators computed near equilibrium [16] and have
been used to compute a handful of transport coefficients in a wide variety of systems [17].
In principle, two-time Kadanoff-Baym calculations could also provide reliable calculations of
transport properties beyond the near-equilibrium assumption. In the following, we concentrate
on the application of equilibrium Green’s functions techniques to compute the mean-free path
of particles in the nuclear medium.

2. Nucleon mean-free path

The mean-free path, λ, is perhaps the best studied transport coefficient in nuclear physics, as
it is directly linked to the medium’s absorptive properties [18, 19, 20, 21, 22]. This absorption
is closely related to nuclear optical potentials, which can be fitted or measured in a variety of
experiments. In the past, the lack of microscopic propagators in nuclear systems has hampered
the calculation of transport coefficients using Green’s function techniques. Consequently,
most previous attempts to compute the mean-free path have been derived from extensions
of Brueckner’s theory of nuclear matter [18, 19, 21, 23, 24, 25]. These calculations have been
performed at energies arbitrarily close to the real axis and, as a consequence, ad-hoc non-locality
corrections have had to be introduced, generally through the k−mass approximation [18].

Our philosophy has been that of a fully ab initio calculations and we have sought to
introduce as few approximations as possible. Our starting point are state-of-the-art self-energies,
computed within the ladder approximation both at zero and finite temperature [26, 27]. We
take into account the underlying model dependence associated to different nucleon-nucleon (NN)
interactions. We shall also briefly comment on the dependence on temperature and density of
our results. As we shall see in the following, the extension of Green’s functions techniques
to the complex energy domain provides a consistent approach to compute quasi-particle (qp)
properties [28, 18, 14]. Direct calculations on the complex energy plane have been performed
in electronic systems since the early 1960’s [29] and have been recently employed to describe
microscopic excitations in solid state applications [30, 31]. To our knowledge, this represents
the first application of these techniques within nuclear physics.

Our many-body approximation of choice is the ladder approximation implemented self-
consistently [15]. Its formal and computational implementation is a demanding task and the
interested reader can find more details in Refs. [32, 27]. Here, we summarise briefly the different
stages of the approach. First, an energy- and momentum-dependent in-medium interaction, or
T−matrix, is obtained from a Lippman-Schwinger equation, which succinctly reads:

T = V + V GIIT . (1)

The in-medium two-body propagator, GII , is a convolution of fragmented one-body propagators,
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G(k, ω), which naturally takes into account intermediate particle-particle and hole-hole states
[33]. Further, the self-energy, Σ(k, ω), is obtained from the T−matrix by closing a fermionic
line. The Dyson equation can then be used to find the in-medium propagator, G. This gives rise
to a self-consistent problem, as GII depends on G. For a given density and temperature, these
equations are solved in an iterative fashion, taking into account the full energy and momentum
dependence of all quantities. Three-body forces (3BF), which are necessary in nuclear systems,
are included effectively via an average over a third, correlated nucleon [27].

2.1. Complex energy self-energy

The propagation of an excitation in nuclear matter is described by the retarded propagator,
GR(k, t) ≡ Θ(t)

〈{

a(k, t), a†(k, 0)
}〉

. In a uniform system in thermal equilibrium, GR only
depends on the time difference, t, and the momentum modulus, k. For a system with well-
defined quasi-particles, the retarded one-body Green’s functions has the following long-time
asymptotic form [14, 34]:

GR(k, t) −−−−−→
t>>Γ−1

−i η(k)e−iε(k)te−|Γ(k)|t . (2)

While η(k) represents the strength of the excitation, the qp spectrum ε(k) determines the
oscillation frequency of the propagator. The spectrum is closely related to the group velocity,

v(k) =
∂ε(k)

∂k
=

k

m∗(k)
, (3)

which is often studied in terms of an effective mass, m∗(k). The inverse lifetime, Γ(k), determines
the timescale of the quasi-particle decay. Within Fermi liquid theory, one expects Γ(k) to vanish
near the Fermi surface. The knowledge of both the group velocity and the inverse lifetime is
enough to compute the mean-free path through the fundamental relation:

λ(k) =
v(k)

|Γ(k)|
. (4)

The question is how to extract both ε(k) and Γ(k) from the retarded propagator, GR(k, ω).
Note that, in nuclear physics, the latter is traditionally computed in real time rather than in,
say, Matsubara space [33]. From a Fourier transform point of view, one is tempted to associate
Eq. (2) to a pole of order 1 in the lower half-plane [14]. The argument goes as follows. To
Fourier transform to time-space, one integrates the propagator slightly above the real axis. If
this contour is swapped to a contour that includes the (so-far hypothetical) pole in the lower
complex plane, Cauchy’s theorem guarantees the final result:

GR(k, t) =

∫ ∞

−∞

dω

2π
e−iωtG(k, ω+) ∼

∫

C′

dz

2π
e−izt η(z)

z − (ε(k) − i|Γ(k)|)
= −iη(k)e−iε(k)te−|Γ(k)|t ,

(5)

where ω+ ≡ ω + iη with η → 0. The single pole description is particularly attractive due to its
simplicity and its relation to Fermi liquid theory [35].

This description, however, is somewhat at odds with the complex extension derived from the
Lehmann representation,

GR(k, ω) =

∫

dω′

2π

A(k, ω′)

ω+ − ω′
. (6)

Progress in Nonequilibrium Green’s Functions V (PNGF V) IOP Publishing
Journal of Physics: Conference Series 427 (2013) 012009 doi:10.1088/1742-6596/427/1/012009

3



The extension to the complex energy plane is obtained by replacing ω+ with a complex energy, z.
Such extension exists and is unique, but gives rise to a complex variable function that is analytic
off the real axis [36]. In other words, the extension of G to complex energies implies that no
poles are present in the complex plane. An illustration of the complex energy dependence of the
propagator is given in the left panel of Fig. 1. This shows the imaginary part of G(k = 0, z) for
a SCGF self-energy obtained from a CDBonn NN interaction. The cut of G across the real axis
is determined by the spectral function, Im {G(k, ω−)− G(k, ω+)} = A(k, ω). As expected, this
extension to the complex plane does not yield a pole.

To recover Eq. (2) from the real frequency Fourier transform, we supposed that one could
deform the integration contour from slightly above the real axis to just include the pole in the
lower half-plane. The discontinuity of G across the real axis, however, precludes us from doing so.
Instead, one could eliminate the discontinuity by providing a functional continuation, G̃, which
is continuous across the real axis. This continuation will have a pole in the lower half-plane. It
is this pole, i.e. that ofG̃ rather than that of G, that can be associated to a qp.

The propagator in the complex energy plane fulfills a Dyson equation:

G(k, z) =
1

z − k2

2m − Σ(k, z)
, (7)

with a self-energy, Σ, extended to complex energies in analogy with the complex extension of
the propagator:

Σ(k, z) ≡

∫

dω

2π

γ(k, ω)

z − ω
. (8)

The function γ(k, ω) is proportional to the imaginary part of the self-energy near the real axis.
The complex plane self-energy has the same analytic structure as the propagator, i.e. it is an
analytic function except for the real axis. A way to obtain G̃, is to use the complex Dyson
equation, Eq. (7), with Σ replaced by the following extrapolation of the self-energy into the
lower half-plane, Σ̃:

Σ̃(k, z) ≡

{

Σ(k, z), Im z > 0
Σ∗(k, z), Im z ≤ 0

. (9)

This choice eliminates the discontinuity of Σ across the real energy axis and produces a pole in
the lower half-plane propagator. This procedure seems to be valid in the case of the retarded
propagator in nuclear matter, but one cannot exclude a different outcome in other cases.

The right plot in Fig. 1 shows the imaginary part of G̃(k = 0, z). G̃ is analytic across the real
axis, but develops an isolated pole in the lower half-plane. The position of this pole is given by
a zero in the denominator of the complex propagator, Eq. (7). This gives rise to the complex
equation:

z(k) =
k2

2m
+ReΣ̃(k, z(k)) + iIm Σ̃(k, z(k)) . (10)

The solution, z(k) = ε(k) + iΓ(k), yields the fully dressed qp spectrum and inverse lifetime.
As we have access to the SCGF self-energies in the complex plane via Eq. (8), we are able
to compute numerically the dressed spectra and lifetimes for different momenta, densities and
temperatures. Note that, in the most general case, the solution to the previous equation need
not be unique. We have not found any signature of multiple solutions in our nuclear matter
calculations.
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Figure 1. Imaginary part of the propagator in the complex energy plane, z = E + iΓ, at
zero momentum for a CDBonn self-energy at ρ = 0.16 fm−3 and T = 5 MeV. The left plot
corresponds to the usual propagator, G(k, z), while the right plot represents G̃(k, z). Solid lines
show the imaginary part of the propagator just above/below the real axis, ±A(k, ω)/2.

Our strategy can therefore be divided in four steps. First, we perform a ladder SCGF
calculation of the self-energy along the real axis. We then extend the self-energy to the complex
plane using its Lehmann representation, Eq. (9). The knowledge of Σ(k, z) in the upper half
plane is then used to find Σ̃ in the lower half-plane. Finally, using Eq. (10), one can determine
the qp properties and hence the mean-free path. In the next section, we will discuss the result
of these calculations for symmetric nuclear matter.

2.2. Other approaches

Previous calculations have relied on solving Eq. (10) using successive approximations for the
dependence on the imaginary part of the complex energy of Σ̃ [18, 19, 21]. In the following,
the different orders in the approximation are referred to as renormalizations, in accordance to
the usual solid state nomenclature [31]. At the lowest order, known as first renormalization,
one completely neglects the dependence on the imaginary part of z. This provides the usual
definition of a qp:

ε1(k) =
k2

2m
+ReΣ̃(k, ε1(k)) , (11)

Γ1(k) = Im Σ̃(k, ε1(k)) , (12)

which coincides with the peak of the spectral function. A second renormalization qp pole is
obtained by expanding the self-energy around z1(k) to first order in the imaginary part of z,

ε2(k) = ε1(k)− Im Σ̃(k, ε1(k)) Im
1

1− Σ̃′(z1(k))
, (13)

Γ2(k) = Γ1(k)Re
1

1− Σ̃′(z1(k))
. (14)

In the context of nuclear physics, it has generally been assumed that the dependence of Σ̃ on
the imaginary part of z is soft and can be ignored in the previous derivatives [18]. This gives
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Figure 2. Upper panels: spectral function at ρ = 0.16 fm−3 and T = 0 MeV for the CDBonn
interaction. Lower panels: absolute value of G̃ in the same conditions. The fully dressed
pole is indicated by a cross, while the circle (square) show the position of the first (second)
renormalization quasi-particle.

rise to a slightly different expression for the qp pole:

ε2′(k) = ε1(k) (15)

Γ2′(k) = Γ1(k)
1

1 −ReΣ̃′(ε1(k))
. (16)

As we shall see, this approximation is well justified only above kF . Note that the previous
expressions do not need any evaluation of self-energies in the complex plane. Access to real-
energy self-energies, as those provided by Brueckner-Hartree-Fock, is enough to compute qp
properties under the previous assumptions.

Once the qp spectrum and inverse lifetimes are known, one can go ahead and compute
the mean-free path. Note, however, that this requires a consistent determination of ε,
Γ and v, via Eq. (3). For the nuclear physics renormalization, Eqs. (15) and (16), the
prefactor on the inverse lifetime is the inverse of the ω−mass. The group velocity involves
the full effective mass, m∗

m
= mω

m
mk

m
. As a consequence, the mean-free path is only

renormalized by the k−mass, λ2′(k) = m
mk

λ0, with respect to the uncorrected mean-free path,

λ0(k) = k/[2m Im Σ(k, ε1(k)+)]. In this case, one can interpret the k−mass as a non-locality
correction to the lowest order mean-free path. Within the nuclear physics community, this is a
well-known correction that increases the mean-free path towards correct values [18, 19, 21].

3. Results

The upper panels of Figure 2 show the SCGF spectral function, as a function of energy, for three
different characteristic momenta (k = 0, kF and 2kF ). These have been obtained from a T = 0
self-energy based on the CDBonn interaction [27]. The lower panels give the absolute value of
the continued propagator. One can clearly see, from the contour levels, that G̃ develops a pole
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in the lower half-plane. The location of this fully dressed pole is consistent with the numerical
solution of Eq. (10), shown with a cross. Differences between this pole and the first or second
renormalization predictions (corresponding to the circle and square, respectively) are visible
at k = 0. At and above the Fermi surface, discrepancies disappear and the fully dressed pole
coincides with the first and second renormalizations. This points towards a very soft dependence
of Σ on the imaginary part of z for k ≥ kF . The contour lines, which are basically aligned along
the imaginary axis, validate this picture. Let us highlight that, at the Fermi surface itself, the
calculation yields a quasi-particle with zero width, providing a verification of Fermi liquid theory
[34].

Nuclear many-body calculations are subject to uncertainties associated to the underlying
NN interaction as well as to the approximation scheme itself. These uncertainties are explored
in Fig. 3. The upper panel displays the mean-free path of a nucleon in homogeneous nuclear
matter at a density of ρ = 0.16 fm−3 and zero temperature, obtained with a CDBonn self-energy
supplemented with an Urbana-type 3BF [27]. As expected, we find that the largest discrepancies
between different approximations occur for hole energies, below −20 MeV, in a region where λ
is already relatively small. In contrast, above 50 MeV, all approximations give similar results,
except for λ0 (dashed line), which is not corrected for non-locality and thus should not be taken
as a realistic prediction. λ2′ (dashed-dotted line) is only somewhat larger than λ0 because of
the small mk associated to the SCGF results. Note that the classical kinetic theory prediction,
λ ∼ (ρσnp)

−1 (dotted lines), is well below all quantum in-medium mean-free paths. The latter
flatten at high energies, and remain constant, at a value of around 4− 5 fm.

In contrast, the lower panel of Fig. 3 focuses on the NN interaction dependence of our results.
All the mean-free paths here are obtained from the full pole in the complex plane. The T = 0
mean-free path with 3BF (solid line) is slightly larger than that obtained without 3BFs (dashed).
We also study the importance of the two-body NN interactions at a temperature of T = 5 MeV.
CDBonn results are shown in a dotted-dashed line, whereas Av18 results correspond to the
double-dotted-dashed line. The largest differences are observed, again, at negative energies.
Overall, the effect of changing two-body NN interactions is as large as that of switching 3BFs on
or off. If one takes the spread between different lines as an estimate of theoretical uncertainties,
these amount to less than 1 fm beyond 50 MeV. Note that this uncertainty is of the same order
of that obtained from experimental estimates [37, 38] and that the theoretical prediction agrees
well with those.

Fig. 4 focuses on the temperature and density dependence of the mean-free path in nuclear
matter obtained from the full complex plane. This demonstrates that our method can be
applied in a wide range of conditions. The upper panel displays the temperature dependence
of λ for a typical density of a nuclear interior, ρ = 0.16 fm−3. The effect of temperature is
relevant in an area of about 20 MeV around the Fermi surface. By switching on temperature,
the mean-free path at the Fermi surface immediately becomes finite due to thermal damping.
The damping effect becomes larger as temperature increases and thus the value of λ at the
Fermi surface, ω = µ, decreases as temperature increases. These results indicate that finite
temperature calculations provide reliable estimates of zero-temperature properties away from
the Fermi surface. In other words, thermal effects do not dominate the very high and low energy
behaviour of the mean-free path.

The density dependence of the mean-free path, displayed in the lower panel of Fig. 4, is more
pronounced at all energies. Near the Fermi surface, an increase in density leads to an increase
of λ. This is expected based on degeneracy arguments. A system at larger density is more
degenerate and thus closer to the zero-temperature case, where λ diverges at the Fermi surface.
At an energy of around 70 MeV this tendency is reversed, though, and λ tends to decrease
as the density grows. This behaviour is more intuitive, but it remains to be seen whether the
1/ρ dependence predicted by classical transport theory is valid in the fully correlated, quantum
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case. The low density results cover the band of experimental data of Ref. [37], which has been
extracted phenomenologically from finite nuclei. On average, these have a typical density which
is lower than 0.16 fm−3 and thus this prediction meshes well with experimental estimates.

4. Conclusions and outline

We have devised a new method to obtain the mean-free path of a nucleon in the medium.
The method involves the extension of Green’s functions techniques into the complex plane
and the determination of quasi-particle properties from a pole in the lower half-plane. Our
approach provides a validation of previously used approximations by taking into account the
full dependence on the imaginary part of the energy. In the nuclear medium, the calculation
of the pole within this method provides similar mean-free paths as those obtained with earlier,
cruder calculations. The renormalization induced by this procedure is specially relevant for hole
properties. With all many-body corrections properly implemented, we obtain a mean-free path
of around 4− 5 fm at saturation density and energies above 50 MeV.

The nucleon mean-free path lies at the heart of several theoretical and experimental
considerations. Our future work will systematically assess the density, temperature and isospin
asymmetry dependence of the mean-free path. In addition, we plan to compute other transport
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coefficients using our ladder self-energies. Bulk viscosities are particularly important in the
context of neutron stars. Ultimately, we aim at producing a consistent set of transport properties
that can be validated thoroughly against pulsar observations.
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Structure Nucléaire Théorique (ESNT, CEA Saclay).

References
[1] Baldo M 1999 Nuclear Methods and the Nuclear Equation of State International Review of Nuclear Physics,

Vol. 8 (World Scientific (Singapore))
[2] Lattimer J M and Prakash M 2007 Phys. Rep. 442 109 (Preprint 0612440)
[3] Steiner A W, Lattimer J M and Brown E F 2010 Astrophys. J. 722 33–54
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