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Abstract. A particle can gain appreciable irreversible energy (“absorption”) from linear or nonlinear
oscillations only by ballistic excitation (“collision”) or, if excited by an adiabatic pulse of constant
frequency, by undergoing resonance. For the linear oscillator it is shown that the transition from ballistic
to adiabatic behavior out of resonance occurs for sin2-pulses 2–4 eigenperiod long. In the case of a linear
oscillator with time-varying eigenfrequency it is shown that Cornu’s double spiral represents an attractor,
either for zero energy gain out of resonance or finite gain by transiting through resonance. One of the
remarkable properties of nonlinear oscillators is that resonance depends on the level of excitation. It is this
property which opens a new access to understanding the dominant heating process at high laser intensities,
the so-called collisionless absorption phase in solids, extended cluster media, dusty plasmas, and sprays,
well guaranteed by experiments and computer simulations but hitherto not well understood in physical
terms.

.

1. Introduction
Coupling of radiation to plasma is, except special conditions, mediated by the elctrons. The optical
properties, like propagation and diffraction, scattering of radiation, and absorption are calculated from
single particle models where the single particle is a bare electron in an ideal plasma and a quasielectron
in a nonideal, i.e., strongly coupled plasma. In this framework the most commonly used model is that
of a driven linear or nonlinear oscillator or, such an oscillator model constitutes an equivalent alternative
to describe the phenomenon under investigation. When dealing with a fully ionized plasma in which the
electrons are free to move, one may miss the restoring force. In fact, collisional absorption in a plasma
for example is well described by means of a generalized Drude model of the structure

dve

dt
+ νve = − e

me
E (1)

where the damping coefficient ν depends on the frequency ω of the driving field (an intense laser field, for
instance), on the kinetic electron temperature Te, and the driver field amplitude Ê, i.e., ν = ν(ω, Te, Ê).
In principle (1) is a damped oscillator with zero eigenfrequency. The damping coefficient ν is a
phenomenological parameter. As soon as a description on a more fundamental level, in the extreme case
on a rigorous kinetic level is chosen, it is very likely that an oscillator equation with finite eigenfrequency
and free of damping comes about again. To give an example, collisional absorption of a parallel stream
of monoenergetic electrons of velocity v0 in the dielectric approach is described by the linear oscillator
equation for the electron displacement δ,

δ̈ + ω2
pδ = fC(v0, t). (2)
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Here, the driving term is the Coulomb force fC of a bare charge (for example an ion) and the plasma
frequency ωp provides for screening. The finite eigenfrequency and the absence of damping reflect the
facts that free electrons in a plasma are always exposed to their own space charge fields and that the
quantum or classical equations of motion are reversible. In the case of (2) the amplite δ̂ is a function of
the impact parameter b, δ̂ = δ̂(b), and it can be shown that excitation becomes negligible for b > v0/ωp,
or in other words, when the interaction time is longer than τ = 2/ωp, i.e., approximately one third of the
eigenperiod T0 = 2π/ωp [1]. If a force fC of halfwidth larger than T0/3 acts on the oscillator (2) the
oscillator reacts adiabatically, i.e., the interaction is reversible; a collision lasting longer than T0/3 is no
longer a collision.

With the application of ultrashort intense laser pulses to create dense plasmas by heating solid matter,
extended cluster media, dusts and aerosols so-called collisionless laser light absorption has shown to
play an important role. Its existence is well proved in experiments and by computer simulations [2, 3],
however until recently the underlying physical mechanism leading to irreversibility was not understood.
Progress in analyzing the phenomenon has been made by studying the excitation of nonlinear oscillators
governed by an equation of the type

ẍ + f(x) = a(t) (3)

where f(x) is any sufficiently smooth restoring force, and a(t) is an external driver. The linear oscillator
is described by f(x) = ω2

0x with constant eigenfrequency ω0 at all excitation amplitudes. Under the
action of a harmonic driver a(t) = â(t) cos ωt, ω �= ω0, it behaves adiabatically as soon as â(t) is an
envelope of several cycles T = 2π/ω long, whereas it continues to oscillate indefinitely (net energy
absorption) if â(t) is δ-peak like.

In this paper we investigate (i) the transition from collisional to adiabatic behavior of the oscillator
(3) as a function of the length of the envelope â and (ii) under which conditions irreversible energy gain
(absorption) can take place under the action of long pulses â(t). As it will be shown this last step will be
the key to understanding collisionless absorption out of linear resonance.

2. Excitation of the linear oscillator
For orientation and to make the behavior of the nonlinear oscillator (3) more understandable it is advisible
to study first the collisional and adiabatic excitation modes of the linear oscillator with constant ω0 and
time-varying ω0, ω0 = ω0(t). The one-dimensional oscillator

ẍ + ω2
0x = â(t) cos ωt (4)

under the initial condition x(−∞) = ẋ(−∞) = 0, â(−∞) = 0 evolves in time according to

x(t) =
sin ω0t

ω0

∫ t

−∞
â(t′) cos ω0t

′ cos ωt′ dt′ − cos ω0t

ω0

∫ t

−∞
â(t′) sin ω0t

′ cos ωt′ dt′. (5)

For â(t) = ω0x0δ(t) the ballistic solution x(t > 0) = x0 sin ω0t results. The general solution can be
cast into the form

x(t) =
sinω0t

2ω0

∫ t

−∞
â(t′)[cos ω1t

′ + cos ω2t
′] dt′ − cos ω0t

2ω0

∫ t

−∞
â(t′)[sinω1t

′ + sinω2t
′] dt′. (6)

where ω1 = ω0 + ω and ω2 = ω0 − ω. For laser interaction with solid density matter ω � ω0 can be
chosen. With a rectangular excitation amplitude â(t) = ω2

0x0, centered around t = 0 and ∆t = 2t0 long,

x(t ≥ t0) = 2x0 sinω0t0 sinω0t (7)

results.
Maximum irreversible energy gain is achieved with exciting pulses of length ∆t ≈ π/ω0 = 2T0 �

T = 2π/ω. Alternatively, if â(t) is a smooth function of halfwidth ∆t/2 = t0
>∼ T integration by parts
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of (6) with suitable test functions â(t) shows that the irreversible energy gain ea(t = ∞) compared to
the maximum oscillatory energy emax during the pulse is much less than unity. In Fig. 1 the transition of
ea(t > t0) from ballistic to adiabatic excitation of (4) is shown at ω0 = ω (solid), ω0 = 2ω (dotted), and
ω0 = 10ω (dashed) as a function of the number of exciting ω-cycles n for â(t) = a0 sin2[ωt/(2n)] in the
interval 0 < ωt/(2n) < π and zero outside. It is seen that far from resonance ballistic excitation with
finite irreversible gain ea(t → ∞) is achieved with very short pulses only. To save 1% of the maximum
ea(t → ∞), reached with pulses of length 0.1T = T0 for ω0 = 10ω and 0.7T = 1.4T0 for ω0 = 2ω,
the exciting pulse length must not exceed 0.2T and 1.9T , respectively. For comparison the energy gain
at resonance ω0 = ω is also plotted. It resembles the quadratic time dependence of the energy gain at
constant amplitude.
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Figure 1. Ballistic vs adiabatic excitation of the
linear oscillator (4). Absorbed energy in units
of (a0/ω)2 from a sin2-pulse, n cycles long;
dashed: ω0 = 10ω, dotted: ω0 = 2ω. Maximum
irreversible energy gain is achieved with pulses of
length 0.1T = T0 for ω0 = 10ω and 0.7T =
1.4T0 for ω0 = 2ω (ballistic excitation). The
higher the detuning q, ω0 = qω, the faster drops
the energy gain with increasing pulse duration
(adiabatic behavior). For comparison the energy
absorption at resonance q = 1 is also shown
(solid).

Next we consider the linear oscillator with time varying eigenfrequency ω0(t),

ẍ + ω2
0(t)x = â cos ωt, ω0(t) = ωe−αt, α > 0. (8)

It is a model for linear as well as nonlinear resonance absorption and wave breaking with nanosecond
lasers [4]. The driver is adiabatically switched on at t = −∞ and held constant in the interval of interest.
The eigenfrequency varies from ω0(−∞) = ∞ to ω0(+∞) = 0. Highest excitation is expected for
α � ω, i.e., when the oscillator remains close to resonance ω0(t = 0) = ω for a time as long as
possible. Under α � ω the functions sin φ and cos φ,

φ =
∫ t

0
ω0(t′) dt′ =

ω

α

(
1 − e−αt

)
, φ̈ = −αω0 � −ω2

0, (9)

represent two independent solutions of the homogeneous oscillator equation (8) to a satisfactory
approximation. Hence the desired solution of (8) with x(−∞) = ẋ(−∞) = 0 is

x(t) ≈ â

{
sin φ(t)

∫ t

−∞

cos φ(t′)
ω0(t′)

cos ωt′ dt′ − cos φ(t)
∫ t

−∞

sinφ(t′)
ω0(t′)

cos ωt′ dt′
}

. (10)

This expression becomes an exact solution if on the RHS of (8) the term

y(t) = φ̈â

{
cos φ(t)

∫ t

−∞

cos φ(t′)
ω0(t′)

cos ωt′ dt′ + sinφ(t)
∫ t

−∞

sinφ(t′)
ω0(t′)

cos ωt′ dt′
}

(11)

is added. The amplitude x̂(t) of x(t) is expected to grow appreciably only in a narrow interval ∆ω0

around the resonant point t = 0. Therefore, under the integral (and only there) ω0(t) and φ(t) can be
expanded to lowest order,

ω0(t) = ωe−αt ≈ ω(1 − αt), φ(t) ≈ ω(t − αt2/2). (12)
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By observing that cos φ cos ωt = [cos(φ + ωt) + cos(φ−ωt)]/2, sin φ cos ωt = [sin(φ + ωt) + sin(φ−
ωt)]/2 the terms containing cos(φ + ωt) and sin(φ + ωt) can be omitted since they merely lead to fast
low-amplitude modulations, whereas the two terms containing φ − ωt exhibit a stationary phase around
ω0 = ω. This is analoguous to the rotating wave approximation in the magnetic and optical Bloch
models. Further, ω0(t) can be taken out of the integrals. Then x(t) from (10) reads in the resonance
region

x(t) ≈ â

2ω

{
sin φ(t)

∫ t

−∞
cos

α

2
ωt′2 dt′ + cos φ(t)

∫ t

−∞
sin

α

2
ωt′2 dt′

}
. (13)

By the substitution t = [π/(αω)]1/2η it transforms into

x(η) ≈ π1/2â

2α1/2ω3/2

{[
1
2

+ C(η)
]
sinφ(η) +

[
1
2

+ S(η)
]
cos φ(η)

}
, (14)

with the Fresnel integrals [5]

C(η) =
∫ η

0
cos

π

2
η′2 dη′, S(η) =

∫ η

0
sin

π

2
η′2 dη′. (15)

For η → ∞ they behave as

C(η) =
1
2

+
1
πη

sin
π

2
η2 + O(η−2), S(η) =

1
2
− 1

πη
cos

π

2
η2 + O(η−2).

Solution (14) can be expressed in terms of amplitude and phase,

x(η) ≈ x̂(η) sin[φ(η) + ψ(η)], (16)

x̂(η) =
π1/2â

2α1/2ω3/2

{[
1
2

+ C(η)
]2

+
[
1
2

+ S(η)
]2

}1/2

, ψ(η) = arctan
(

S(η) + 1/2
C(η) + 1/2

)
+ ψ0.

The plot of I(η) = C(η) + iS(η) in the complex plane yields the familiar Cornu spiral, Fig. 2, well
known from diffraction theory in classical optics. The path s along the spiral from the origin to a point
P = C(η) + iS(η) is the parameter η itself, s(η) = η, the amplitude A(η) = {[1/2 + C(η)]2 + [1/2 +
S(η)]2}1/2 is the length of the arrow pointing from O′ = −(1/2 + i/2) to P = C(η) + iS(η). The
resonance width and the factor of amplitude growth are conveniently defined by the change of phase ψ(η)
from ψ0 − π/2 to ψ0 + π/2 and S(η) = C(η) (see arrows in Fig. 2). This is the case for η = ηr = 1.27
and η = −ηr, respectively. According to (14) the resonance interval and frequency halfwidth are

ω + ∆ω0 ≥ ω0 ≥ ω − ∆ω0,
∆ω0

ω
= (πα)1/2η. (17)

The resonance interval 2∆ω0 increases as α1/2 and covers the number of oscillations

N =
2tr

2π/ω
=

(
ω

πα

)1/2

ηr. (18)

For α = ω/100 and α = ω/10 results N = 7.2 and N = 2.3. The associated resonance halfwidths
are ∆ω0/ω = 0.23 and ∆ω0/ω = 0.7. In general the quantities x(t) and y(t)/φ̈ from (10) and (11)
are of the same magnitude. Therefore x(t) is expected to be a good approximation if (α/ω)1/2 � 1
is fulfilled. The same restriction follows also from (17) for the validity of expansion (12). From the
numerical examples above for ∆ω0/ω one sees that with α/ω = 10−2 the two quantities exp(−αtr) and
(1− αtr) differ very little from each other at the border of resonance (3%) whereas for α/ω = 10−1 the
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Figure 2. The Cornu spiral (plot of
the Fresnel integrals C(η) and S(η),
η = (αω/π)1/2t) visualizes the growth
of amplitude (length of the arrows) of
a harmonically driven linear oscillator
undergoing resonance at t = η =
0. Resonant excitation happens in the
interval |η| ≤ 1.27.

difference is 33%. Nevertheless the Fresnel integrals yield very satisfactory results also in this case as
shown in Fig. 3 for x(t).

For determining the factor of resonant growth of x(t) and the amount of energy absorbed by the
oscillator we observe that outside the resonance width any adiabatic variation of ω0(t) �= ω under an
adiabatically varying driver â(t) may influence the shape of the two spirals of Fig. 2 but has no effect on
the resonance segment in between (|η| < ηr). Hence, the growth of x(t) for ω0(t) = ω exp(−αtr) is
(nearly) the same as for ω0(t) from (12), provided α/ω ≤ 0.3 as deduced from Fig 3. After the driver is
switched off adiabatically x(t → ∞) points to the center of the upper spiral at C(∞) = S(∞) = 1/2.
This position also indicates the final energy ea(∞) irreversibly gained by the oscillator after crossing
the resonance point if its frequency is kept at ω0(tr) = ωf = const. Equation (16) yields the following
quantities for resonant and asymptotic amplitude increase κr, κ∞, and stored energy ea(∞),

κr =
x̂(ηr)

x̂(−ηr)
= 7.0, κ∞ =

x̂(∞)
x̂(−ηr)

= 6.0, (19)

ea(∞) =
1
2
ω2x̂2(∞) =

πâ2(η = 0)
4αω

.

For ω0(t > tr) → 0 the final energy depends on how rapidly the parabolic potential flattens: if the
number of turning points is infinite ea(∞) is zero, if it is finite the particle escapes with finite kinetic
energy. We conclude by observing that if the oscillator is switched off adiabatically before −tr it returns
to its starting position C = S = −1/2; if it is adiabatically switched off after +tr and ω0(tr) = ωf

is kept constant it has made the irreversible transition from the center of the lower spiral to the center
of the upper spiral in Fig. 2. A linear oscillator can gain irreversible energy (absorption) under ballistic
(collisional) excitation or, adiabatically, by crossing a resonance.

3. Adiabatic excitation of a nonlinear oscillator
The main difficulty in understanding frictionless interaction of intense laser beams with dense matter
(solids, clusters, aerosols, dust) has its origin in the fact that the eigenfrequency of ionized matter ωp

is typically ten times higher than the driving laser frequency. It is evident that for this reason a linear
oscillator fails to explain the phenomenon of collisionless heating.
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Figure 3. Total energy ω2
0(t)x

2(t)/2 + ẋ2(t)/2 and trajectory x(t) from the numerical solution of (8)
vs η for â = ω = 1 and α = 0.01 (a), 0.1 (b), 0.3 (c), and 1.0 (d), all drawn solid and bold. For
comparison x(t) according (10) (thin solid curves) and (13) (dotted) are included. The resonance region
|η| < ηr = 1.27 is shaded gray. Dotted graph is relevant only in the resonance region. Equation (10) is a
valid approximation in the shaded region for αω ≤ 0.3. The discrepancy in x(t) at η > ηr is partly due
to a constant drift of the particle, not included in (10). The modulations in energy can be qualitatively
understood with the help of the Cornu spiral.

An undamped nonlinear oscillator may exhibit properties differing in many respects from its linear
counterpart. For our purpose here its most important difference is the dependence of the eigenperiod T0

on the excitation level, i.e., on the amplitude. In the case of the very general nonlinear oscillator (3) T0

is given by
∫

dt =
∫

ds/v, v particle velocity, or

T0 =
∮

ds{(
2
m

)
[V0 − V (x)]

}1/2
, V0 = max V (x). (20)

The integration is taken along the orbit x(t), with the line element ds. In the following we limit ourselves
to oscillations in one dimension. Let V (x) be the potential associated with the restoring force f(x) so that
f(x) = −∂xV (x). If the graph of V (x) stays inside the parabola ω2

0x
2/2 the eigenperiod decreases with

the amplitude; if however it widens compared to the parabola its eigenperiod increases with increasing
level of excitation. This latter case is of particular interest because Coulomb systems exhibit such a
characteristics owing to the 1/r-dependence of the Coulomb potential at large charge separation and,
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in concomitance, at a fixed driver period the nonlinear system may enter into resonance when excited
to high amplitude. This property opens the new possibility to couple appreciable amounts of energy
by adiabatic excitation into such systems originally out of resonance. Since even the shortest laser
pulse contains several oscillations ballistic excitation is not possible, in a locally plane wave not even in
principle, regardless of how short the electromagnetic pulse is (see next Section).

e 
 (

t)
a

x(t)

Figure 4. Electron trajectory in the xea-plane, ea(t) = V (x(t)) + ẋ2(t)/2, for the case where the
particle does not cross the nonlinear resonance T = T0 with T0 according (23), i.e., at x0 ≈ V (x0) = 4.
Equation (22) was solved numerically for ε = 0.1, â(t) = a0 sin2[ωt/(2n)], a0 = −0.84, n = 40 cycles,
ω = 0.555, and x(0) = ẋ(0) = 0. Almost no energy remains in the system after the end of the pulse,
ea(∞) ≈ 0.

Owing to its relevance to collisionless heating large amplitude oscillations of a neutral plasma layer
are studied. The ions are supposed to be fixed and to occupy uniformly a plane layer of thickness d. The
electrons are uniformly distributed over a distance a ≥ d in order to allow for thermal expansion due to
finite electron pressure. The electrons oscillate according to the following equations of motion,

ẍ + ω2
px = −eEd(t)/me for |x| ≤ (a + d)/2,

ẍ +
a + d

2
ω2

p sgn x = −eEd(t)/me for |x| > (a + d)/2.
(21)

Without loss of essential aspects these two equations can be approximated by one describing the
motion in a potential V (x) = (ε2 + x2)1/2 with ε a parameter,

ẍ +
x

(ε2 + x2)1/2
= â(t) cos ωt. (22)

Once the particle gained an energy ea � ε, V (x) ≈ |x| holds, and the eigenperiod results from (20) as

T0 = 4(2x0)1/2 (23)

where ±x0 are the two turning points for a given total energy V (x0). For excursions x � ε, on the other
hand, the potential reads V (x) ≈ ε + x2/(2ε) with the constant eigenfrequency ω0 = ε−1/2.

In all following calculations the driver amplitude â(t) is a sin2-pulse covering 40 harmonic
oscillations of frequency ω. For convenience the scale of the excursion x(t) is fixed such that resonance
occurs at x0 = 4 which implies ω =

√
2π/8 = 0.555. Excitation much below resonance is shown

in Fig. 4 for the evolution of ea vs x(t). After the pulse is over ea(t → ∞) = 1.6% of its maximum
value during the pulse. When the oscillator undergoes a resonance the situation changes drastically, as
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illustrated by Fig. 5. In (a) the driver −a(t), the excursion x(t), and the energy ea(t) = V (x(t))+ẋ2(t)/2
are plotted. The resonance zone is crossed approximately during one cycle, and the change of
phase between driver and position x(t) by π is clearly seen. The stored energy fraction amounts to
ea(∞)/ max ea(t) = 52%. As expected from an adiabatic pulse and the structure of the Cornu spiral,
after resonance the energy ea(t) is modulated with an asymptotic value ea(∞) ≈ (max ea + min ea)/2.
In (b) the dynamics ea(x(t)) is shown. The asymptotic state ea(∞) at ea = 9.4 is easily recognized
from the horizontal trajectory after the pulse is over (free oscillations in the potential V (x)).
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 (

t)
a

e 
 (

t)
a ax(

t)
−

a(
t)

t x(t)

(a) (b)

8e  (  )

Figure 5. Numerical solution of (22) for a(t) = a0 sin2[ωt/(2n)] cos ωt, n = 40, ω = 0.555,
a0 = −0.85, and ε = 0.1. Panel (a) displays (from top to bottom) driver −a(t), position x(t), and
energy ea(t). Although the driver amplitude is only 0.01 above the value of Fig. 4 the particle now
crosses the resonance at x0 ≈ V (x0) = 4, leading to an irreversible energy gain. Panel (b) shows the
electron trajectory in the xea-plane. The final energy ea(∞) lies well above V (x0) = 4.

When ea(∞) is plotted as a function of the driver amplitude −a0 a very significant picture appears
(Fig. 6): at resonance (corresponding to x0 = 4) ea(∞) undergoes a sudden jump by 3 orders of
magnitude, except some rare “pathological” cases. One of them is shown in Fig. 7a.

Another type of rare cases is presented in Fig. 7b,c, this time obtained in an asymmetric potential.
The particle continues to absorb a significant amount of energy after passing the resonance. This is due
to the fortunate coincidence that the increasing particle bounce velocity keeps the particle in resonance
during the passage from one turning point to the subsequent one. The final horizontal trajectory in Fig. 7c
is now located close to max ea(t).

The “phase transition” from below resonance to above resonance is independent of the particular
shape of the potential. In fact, with the asymmetric potential of Fig. 7c, Fig. 8 is obtained which
reproduces all essential aspects of Fig. 6 for the symmetric potential (note the different scaling), in
particular the jump by more than three orders of magnitude between −a0 ≈ 0.5 and 1.0.

Owing to its relevance for collisionless heating of clusters and sprays the resonance behavior of
two oscillating spheres of electrons and ions has also been investigated. In this case the potential is a
polynomial in the separation coordinate r of powers −1, 2, 3, and 5. Again, the picture analogous to
Figs. 6 and 8 is qualitatively the same. As a consequence of higher nonlinearity and higher dimensionality
(motion in two directions) the discontinuity at resonance is one order of magnitude less but still high (an
abundant factor of 102) and local structures are less pronounced (less “pathology”), however, still present.
This proves our assertion that significant energy gain from an adiabatic driver requires the existence of
resonances.

For its relevance to numerous applications (e.g., field ionization by intense laser beams [6], generation
of fast electron and ion jets from gases and solid targets [7]) open or half open potentials are of interest.
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If the barrier V (±∞) is well above the threshold for resonance Vres only very few particles are expected
to escape (e.g., such of type Fig. 7b). If however V (±∞) <∼ Vres all particles which are resonant in
the associated closed potential do escape (an example is given in Fig. 9), except very few which may
recombine.

a

8

e 
 (

  )

−a0

Figure 6. Final energy ea(∞) as a
function of the driver amplitude −a0 for
the system (22) with ω = 0.555, n =
40, and ε = 0.1. For driver amplitudes
−a0 < 0.84 the particle remains in the
regime where T0 < T . For −a0 ≥
0.85 the particle crosses the resonance
T0 = T in most cases, and ea(∞) is
about three orders of magnitude larger.
However, the absorbed energy does not
increase further with the driver amplitude.
In a few isolated, pathological cases, a
significant amount of the absorbed energy
may be given back to the field also for
−a0 > 0.85. An example is given in
Fig. 7.
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x(t)
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(b)

Figure 7. Two examples for isolated, “pathological” cases. Plot (a) refers to the symmetric case (22)
for −a0 = 0.95, all other parameters as described in the caption of Fig. 6. From the ea-plot one infers
that the resonance at ea = 4 is crossed four times so that the particle finally ends up below resonance,
giving almost all its energy adiabatically back to the field (“2π pulse”). Plots (b) and (c) refer to the same
calculation for an asymmetric potential whose RHS part is twice as steep as the LHS part. The driver
amplitude was −a0 = 0.97. Under these particular conditions the particle continues to absorb energy
after passing the resonance around t = 210. This is due to the fortunate coincidence that the increasing
particle bounce velocity keeps the particle in resonance during the passage from one turning point to the
subsequent one (multiple “echoes”).
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−a0

Figure 8. Final energy ea(∞) as a function of
the driver amplitude −a0 for the asymmetric
potential of Fig. 7c. Only the transition regime
from underresonant (T0 < T ) to overresonant
(T0 > T ) behavior is shown. The basic
features are very similar to the result for the
symmetric potential in (6).

ae 
 (

t)

x(t)

Figure 9. Particle trajectory in the xea-plane
for an open potential and driver amplitude
−a0 = 0.9 (other laser parameters as in the
previous figures). The particle escapes not
before passing through the resonance of the
corresponding closed potential (at ea = 4)
although the potential is asymptotically open
already for ea = 2 + π/2 < 4. Consequently,
the plot of ea(∞) vs −a0 (not shown) is very
similar to Fig. 6.

4. Summary and concluding remarks
Collisionless absorption of intense laser pulses ( <∼ 100 fs) on the surface of plane solid targets or clusters
is solved by numerical simulations but still an unsolved problem physically. j × B-heating [8], Brunel
effect (wave breaking, [9]) or laser dephasing heating [10] have been invoked. At closer inspection
none of them can explain how “free” electrons can irreversibly absorb energy from a laser pulse several,
typically 3–10, cycles long. As we have shown, only resonant particles can absorb energy from adiabatic
drivers. Here one could make two objections: thermal electrons crossing the very thin skin layer of
thickness d � λ, λ laser wavelength, are subject to ballistic excitation (i), or driven in a time-dependent
potential V (x, t) (ii). In the first case heating is possible in principle, as shown in Sec. 2, but not in the
case of a locally plane electromagnetic pulse owing to the conservation of the canonical momentum in
the direction of laser polarization. The second variant does not work either because the time-dependent
potential has its only origin in the space charge of the electrons whose time-dependence is centered
around T = 2π/ω with ω � ωp. Of course, there is some contribution from higher harmonics present,
however it is much weaker than the fundamental oscillation at the laser period.

The present investigations have shown that in the absence of dissipation (collisions) particles can
absorb energy either by impact (ballistic) excitation or by being driven into resonance. The model of
the linear oscillator with time-dependent eigenfrequency is a useful tool for studying special nonlinear
phenomena [4] or as a guide to understand qualitatively the resonance behavior of nonlinear oscillators.
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