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Abstract. A brake can be modeled as an axi-symmetric rotor perturbed by dissipative,
conservative, and non-conservative positional forces originated at the frictional contact with the
anisotropic stator. The Campbell diagram of the unperturbed system is a mesh-like structure in
the frequency-speed plane with double eigenfrequencies at the nodes. The diagram is convenient
for the analysis of the traveling waves in the rotating elastic continuum. Computing sensitivities
of the doublets we find that at every particular node the untwisting of the mesh into the branches
of complex eigenvalues is generically determined by only four 2x2 sub-blocks of the perturbing
matrix. Selection of the unstable modes that cause self-excited vibrations in the subcritical
speed range, is governed by the exceptional points at the corners of the singular eigenvalue
surface—‘double coffee-filter’—which is typical also in the problems of electromagnetic and
acoustic wave propagation in non-rotating anisotropic chiral media. As a mechanical example
a model of a rotating shaft is studied in detail.

1. Introduction

It is well known that bending waves can propagate in the circumferential direction of an elastic
body of revolution rotating about its axis of symmetry [2, 3, 12, 39]. The frequencies of the
waves plotted against the rotational speed are referred to as the Campbell diagram [4, 39]. Since
the spectrum of a perfect rotationally symmetric rotor at standstill has infinitely many double
semi-simple eigenvalues—the doublet modes—the Campbell diagram contains the eigenvalue
branches originated after the splitting of the doublets by the gyroscopic forces [2]. The branches
correspond to simple pure imaginary eigenvalues and intersect each other forming a spectral mesh
[37] in the frequency-speed plane with the double eigenfrequencies at the nodes [23], Fig. 1(a).
Dissipative, conservative, and non-conservative perturbations of the axially symmetric rotor,
caused by its contact with the anisotropic stator, generically untwist the spectral mesh of pure
imaginary eigenvalues of the Campbell diagram into the separate branches of complex eigenvalues
in the (Ω, Imλ,Reλ)-space, see Fig. 1(d). Nevertheless, the eigenvalue branches in the perturbed
Campbell diagram can both avoid crossings and cross each other, Fig. 1(e). Moreover, the
real parts of the perturbed eigenvalues plotted against the rotational speed—decay rate plots
[39]—can also intersect each other and inflate into ”bubbles”, Fig. 1(f). This rather complicated
behavior is difficult to predict and even to interpret as it was reported in the studies of numerous
mechanical systems, see, e.g, [20, 21, 24, 25, 27, 29, 35, 36, 39, 43, 48]. The present work reveals
that the untwisting of the Campbell diagrams is determined by a limited number of singular
eigenvalue surfaces.
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Figure 1. (a) The Campbell diagram of the unperturbed system (2) with 6 d.o.f. in case of
ω1 = 1, ω2 = 3, and ω3 = 6; (b) the Campbell diagram and (c) decay rate plots for the stiffness
modification κK1 with κ = 0.2; (d) untwisting the Campbell diagram in the (Ω, Imλ,Reλ)-space
due to perturbation with the matrices K = K1, D = D1, N = N1 and κ = 0.2, δ = 0.1, and
ν = 0.2, (e) the corresponding Campbell diagram and (f) decay rate plots.

2. A model of a weakly anisotropic rotor system

In general, the imperfections in the rotor and stator complicate the linearized equations of motion
making them non-self-adjoint with time-dependent coefficients [39]. Nevertheless, an axially
symmetric rotor with an anisotropic stator as well as an asymmetric rotor with an isotropic
stator are autonomous non-conservative gyroscopic systems [39]. Neglecting the centrifugal
stiffness without loss of generality, we consider the finite-dimensional anisotropic rotor system

ẍ + (2ΩG + δD)ẋ + (P + Ω2G2 + κK + νN)x = 0, (1)

which is a perturbation of the isotropic one

ẍ + 2ΩGẋ + (P + Ω2G2)x = 0, (2)

where x = R
2n, P=diag(ω2

1 , ω
2
1, ω

2
2 , ω

2
2 , . . . , ω

2
n, ω2

n) is the stiffness matrix, G = −GT is the
matrix of gyroscopic forces defined as

G = blockdiag(J, 2J, . . . , nJ), J =

(

0 −1
1 0

)

, (3)

and the matrices of damping, D = DT , stiffness, K = KT , and non-conservative positional
forces, N = −NT , can depend on the rotational speed Ω. The intensity of the perturbation is
controlled by the parameters δ, κ, and ν.

At Ω = 0 the eigenvalues ±iωs, ωs > 0, of the isotropic rotor (2) are double semi-simple with
two linearly independent eigenvectors. The sequence of the frequencies ωs, where s is an integer

7th International Conference on Modern Practice in Stress and Vibration Analysis IOP Publishing
Journal of Physics: Conference Series 181 (2009) 012023 doi:10.1088/1742-6596/181/1/012023

2



index, is usually different for various bodies of revolution. For example, ωs = s corresponds to

the natural frequency fs = s
2πr

√

P
ρ of a circular string of radius r, circumferential tension P ,

and mass density ρ per unit length [25, 27].
Substituting x = u exp(λt) into (2), we arrive at the eigenvalue problem for the operator L0

L0(Ω)u := (Iλ2 + 2ΩGλ + P + Ω2G2)u = 0. (4)

The block-diagonal structure of the matrices implies eigenvalues of L0 in the explicit form

λ+
s = iωs + isΩ, λ−

s = −iωs + isΩ, λ−

s = iωs − isΩ, λ+
s = −iωs − isΩ, (5)

where bar over a symbol denotes complex conjugate. The eigenvectors of λ+
s and λ−

s are

u+
1 = (−i, 1, 0, 0, . . . , 0, 0)T , u+

2 = (0, 0,−i, 1, 0, . . . , 0)T , . . . u+
n = (0, 0, . . . , 0, 0,−i, 1)T , (6)

where the imaginary unit holds the (2s − 1)st position in the vector u+
s . The eigenvectors,

corresponding to the eigenvalues λ−
s and λ+

s , are simply u−
s = u+

s

For Ω > 0, simple eigenvalues λ+
s and λ−

s correspond to the forward and backward traveling
waves, respectively, that propagate in the circumferential direction of the rotor. At the angular
velocity Ωcr

s = ωs/s the frequency of the sth backward traveling wave vanishes to zero, so that
the wave remains stationary in the non-rotating frame. We assume further in the text that the
sequence of the doublets iωs has the property ωs+1 − ωs > Ωcr

s , which implies the existence of
the minimal critical speed Ωcr = Ωcr

1 = ω1. When the speed of rotation exceeds the critical

speed, some backward waves, corresponding to the eigenvalues λ−
s , travel slower than the disc

rotation speed and appear to be traveling forward (reflected waves).
In Fig. 1(a) the mesh of the eigenvalue branches (5) is shown for the 6 d.o.f.-system (2) with

the frequencies ω1 = 1, ω2 = 3, and ω3 = 6 that imitate the distribution of the doublets in the
spectrum of a circular ring [35]. To illustrate typical untwisting of the Campbell diagram, we
plot in Fig. 1(d)-(f) the eigenvalues of the 6 d.o.f.-system (1) with κ = 0.2, δ = 0.1, ν = 0.2,
ω1 = 1, ω2 = 3, and ω3 = 6 for the perturbing matrix K = K1, whose non-zero entries are
k11 = 1, k12 = 2, k13 = 1, k14 = 2, k22 = 1, k23 = 3, k24 = 4, k33 = −3, k44 = −2.5, k55 = 4,
k66 = 2, and for the matrices D = D1 and N = N1, where

D1 =

















−1 2 1 7 2 −2
2 3 −2 −4 3 1
1 −2 1 8 2 1
7 −4 8 3 −2 3
2 3 2 −2 5 5

−2 1 1 3 5 6

















, N1 =

















0 −1 1 −1 −3 8
1 0 2 3 2 4

−1 −2 0 7 1 3
1 −3 −7 0 8 2
3 −2 −1 −8 0 2

−8 −4 −3 −2 −2 0

















. (7)

In the following we classify and interpret the typical behavior of the eigenvalues of the weakly
anisotropic rotor system (1) with the use of the perturbation formula for the double eigenvalues
at the nodes of the spectral mesh (5), which we derive in the next section.

3. Perturbation of the doublets

Introducing the indices α, β, ε, σ = ±1 we find that two branches of the spectral mesh
λε

s = iαωs + iεsΩ and λσ
t = iβωt + iσtΩ cross each other at Ω = Ω0 with the origination

of the double eigenvalue λ0 = iω0 with two linearly-independent eigenvectors uε
s and uσ

t , where

Ω0 =
αωs − βωt

σt − εs
, ω0 =

ασωst − βεωts

σt − εs
. (8)
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Let M be one of the perturbing matrices D, K, or N. In the following, we use the
decomposition of the matrix M ∈ R

2n×2n into n2 blocks Mst ∈ R
2×2, where s, t = 1, 2, . . . , n

M =















∗ ∗ ∗ ∗ ∗
∗ Mss · · · Mst ∗
∗ ...

. . .
... ∗

∗ Mts · · · Mtt ∗
∗ ∗ ∗ ∗ ∗















, Mst =

(

m2s−1,2t−1 m2s−1,2t

m2s,2t−1 m2s,2t

)

. (9)

Note that Dst = DT
ts, Kst = KT

ts, and Nst = −NT
ts.

We consider a general perturbation of the matrix operator of the isotropic rotor L0(Ω) +
∆L(Ω). The size of the perturbation ∆L(Ω) = δλD+κK+νN ∼ ε is small, where ε = ‖∆L(Ω0)‖
is the Frobenius norm of the perturbation at Ω = Ω0. For small ∆Ω = |Ω − Ω0| and ε the
increment to the doublet λ0 = iω0 with the eigenvectors uε

s and uσ
t , is given by the formula

det(R + (λ − λ0)Q) = 0 [33, 34, 44], where the entries of the 2 × 2 matrices Q and R are

Qεσ
st = 2iω0(ū

ε
s)

Tuσ
t +2Ω0(ū

ε
s)

TGuσ
t , (10)

Rεσ
st = (2iω0(ū

ε
s)

T Guσ
t +2Ω0(ū

ε
s)

T G2uσ
t )(Ω−Ω0)+iω0(ū

ε
s)

TDuσ
t δ+(ūε

s)
T Kuσ

t κ+(ūε
s)

TNuσ
t ν.

Calculating the coefficients (10) with the eigenvectors (6) we find the real and imaginary parts
of the sensitivity of the doublet λ0 = iω0 at the crossing (8) of the branches λε

s and λσ
t

Reλ = −1

8

(

ImA1

αωs
+

ImB1

βωt

)

±
√

|c| − Rec

2
,

Imλ = ω0 +
∆Ω

2
(sε + tσ) +

κ

8

(

trKss

αωs
+

trKtt

βωt

)

±
√

|c| + Rec

2
, (11)

where c = Rec + iImc with

Imc =
αωtImA1 − βωsImB1

8ωsωt
(sε − tσ)∆Ω + κ

(αωstrKtt − βωttrKss)(αωsImB1 − βωtImA1)

32ω2
sω

2
t

− αβκ
ReA2trKstJεσ − ReB2trKstIεσ

8ωsωt
,

Rec =

(

tσ − sǫ

2
∆Ω + κ

βωstrKtt − αωttrKss

8ωsωt

)2

+ αβ
(trKstJεσ)2 + (trKstIεσ)2

16ωsωt
κ2

− (αωsImB1 − βωtImA1)
2 + 4αβωsωt((ReA2)

2 + (ReB2)
2)

64ω2
sω

2
t

. (12)

The complex coefficients A1, A2 and B1, B2 depend only on those entries of the matrices D, K,
and N that belong to the four 2 × 2 blocks (9) with the indices s and t

A1=δλ0trDss+κtrKss+ε2iνn2s−1,2s, A2=σνtrNstIεσ+i(δλ0trDstJεσ+κtrKstJεσ),

B1=δλ0trDtt+κtrKtt+σ2iνn2t−1,2t, B2=σνtrNstJεσ−i(δλ0trDstIεσ+κtrKstIεσ), (13)

where

Iεσ =

(

ε 0
0 σ

)

, Jεσ =

(

0 − σ
ε 0

)

. (14)

Therefore, we have identified the elements of the matrices of the perturbation that control the
eigenvalue assignment [47] near every particular node (Ω0, ω0) of the spectral mesh.
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Figure 2. Eigenvalue surfaces (MacKay’s cones [15]) and (bold lines) their cross-sections
in the plane κ = const (grey): (a) a near-vertically oriented cone of imaginary parts in the
subcritical range (Reλ = 0); (b) imaginary parts forming a near-horizontally oriented cone (15)
with the attached membrane (16) and (c) the real parts forming a near-horizontally oriented
cone (Reλ)2 = −Rec with the attached membrane Reλ = 0 in the supercritical speed range.

4. MacKay’s eigenvalue cones and instability bubbles due to stiffness modification

Modification of the stiffness matrix induced by the elastic support or by the stationary spring
interacting with the rotating continua is typical in the models of rotating shafts [10, 11], computer
disc drives [20, 21], circular saws [25, 27, 29], disc brakes [24, 48], and turbine discs [39].

Assuming δ = 0 and ν = 0 in (11) we find that the eigenvalues of the system (5) with the
stiffness modification κK either are pure imaginary (Reλ = 0) and form a conical surface in the
(Ω, κ, Imλ)-space with the apex at the point (Ω0, 0, ω0), Fig. 2(a),

(

Imλ − ω0 −
κ

8

(

trKss

αωs
+

trKtt

βωt

)

− Ω − Ω0

2
(sε + tσ)

)2

= Rec (15)

or they are complex and in the (Ω, κ,Reλ)-space their real parts originate a cone (Reλ)2 = −Rec
with the apex at the point (Ω0, 0, 0), Fig. 2(c). In the (Ω, κ, Imλ)-space the corresponding
imaginary parts belong to the plane

Imλ = ω0 +
κ

8

(

trKss

αωs
+

trKtt

βωt

)

+
Ω − Ω0

2
(sε + tσ), (16)

which is attached to the cone (15) as shown in Fig. 2(b).
The existence of eigenvalues with non-zero real part depends on the sign of the product αβ.

It is negative only if the crossing in the Campbell diagram is formed by the eigenvalue branch
of the reflected wave and by that of either forward- or backward traveling wave. Otherwise,
αβ > 0. Due to the property ωs+1 − ωs > Ωcr

s the crossings of the reflected wave with the
forward- and backward traveling waves occur only in the supercritical speed range |Ω| ≥ Ωcr.
The crossings with αβ > 0 are situated in both the super- and subcritical (|Ω| < Ωcr) ranges.
Therefore, the eigenvalues with non-zero real part originate only near the supercritical crossings
of the eigenvalue branches λε

s and λσ
t with αβ < 0, when the parameters in the (Ω, κ)-plane are

in the sector Rec < 0 bounded by the straight lines Rec = 0

κ =
4(sε − tσ)(Ω − Ω0)

k2t−1,2t−1+k2t,2t

βωt
−k2s−1,2s−1+k2s,2s

αωs
±2

√

(εk2s−1,2t−1+σk2s,2t)2+(εk2s−1,2t−σk2s,2t−1)2

−αβωsωt

. (17)

Since for αβ < 0 the cones of the real parts (Reλ)2 = −Rec are near-horizontally oriented and
extended along the κ-axis in the (Ω, κ,Reλ)-space, their cross-sections by the planes κ = const
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are ellipses that are symmetrical with respect to the Ω-axis, as shown in Fig. 1(c) and in Fig. 2(c).
Since one-half of the ellipse corresponds to the eigenvalues with positive real parts, it is called
the bubble of instability [15]. Equation (17) is, therefore, a linear approximation to the boundary
of the domain of instability, which is divergence (parametric resonance) for Ω0 = Ωcr

s and flutter
(combination resonance) otherwise. The near-horizontal orientation of the corresponding cones
of imaginary parts (15) in the (Ω, κ, Imλ)-space explains deformation in the presence of the
perturbation κK of the crossings with αβ < 0 into the branches of a hyperbola connected by a
straight line in the Campbell diagram, see Fig. 1(b) and Fig. 2(b).

Near the crossings with αβ > 0 the perturbed eigenvalues are pure imaginary (stability). The
corresponding cones of imaginary parts (15) are near-vertically oriented in the (κ,Ω, Imλ)-space,
Fig. 2(a). In the plane κ = const this yields the avoided crossing [15], which is approximated
by a hyperbola shown by the bold lines in Fig. 2(a) (cf. Fig. 1(b)).

The conical singularities of the eigenvalue surfaces in the Hamiltonian systems were known
already to Hamilton himself, who predicted the effect of conical refraction of light in birefringent
crystals [1, 38]. Later on, the conical singularities of eigenvalue surfaces were found in atomic,
nuclear, and molecular physics [6, 7, 22]. Nowadays they bear a name of the Hamilton’s diabolical
points [38]. The existence of the two different orientations of the eigenvalue cones is another
fundamental fact of stability theory of Hamiltonian systems established by MacKay in [15] and
based on the results of Krein, who introduced the notion of the signature of eigenvalues [14].

To evaluate the Krein signatures, we reduce the system (2) to the form ẏ = Ay, where

A =

(

−ΩG In

−P −ΩG

)

= J2nA
TJ2n, J2n =

(

0 −In

In 0

)

, y =

(

x

ẋ + ΩGx

)

. (18)

The Hamiltonian symmetry of the matrix A implies its self-adjointness in a Krein space with

the indefinite inner product [a,b] = b
T
J2na, a,b ∈ C

2n. The matrix A has the eigenvalues
λ±

s given by the formulas (5) with the eigenvectors

a++
s =

(

u+
s

λ+
s u+

s + ΩGu+
s

)

, a+−

s =

(

u−
s

λ−
s u−

s + ΩGu−
s

)

, (19)

where the vectors u±
s are determined by expressions (6). Since i[a++

s ,a++
s ] = i[a+−

s ,a+−
s ] =

4ωs > 0, the eigenvalues λ+
s and λ−

s of the forward and backward traveling waves acquire

positive Krein signature. The eigenvalues λ+
s and λ−

s of the reflected waves with i[a−+
s ,a−+

s ] =
i[a−−

s ,a−−
s ] = −4ωs < 0, have the opposite, negative Krein signature [14, 15, 17, 37]. The

signature of an eigenvalue in the Campbell diagram coincides with the sign of the doublet at
Ω = 0, from which it is branched, and does not change with the variation of Ω. This implies
αβ > 0 and near-vertically oriented cones of imaginary parts (15) at the crossings of eigenvalue
branches with the definite (positive) Krein signature and αβ < 0 and near-horizontally oriented
cones of imaginary parts (15) at the crossings with the mixed Krein signature [15].

The Krein signature coincides with the sign of the second derivative of the energy, which is
a non-degenerate definite quadratic form on the real invariant space associated to a complex
conjugate pair of simple pure imaginary non-zero eigenvalues [15]. Interaction of waves with
positive and negative energy is a well known mechanism of instability of the moving fluids and
plasmas [15, 18]; in rotor dynamics this yields flutter in the supercritical speed range, which is
known as the mass and stiffness instabilities [24, 39].

Therefore, in case when anisotropy of the stator is caused by the stiffness modification only,
the untwisting of the Campbell diagram is completely described by the one-parameter slices
of the two-parameter MacKay’s eigenvalue cones. Since there are only two possible spatial
orientations of the cones corresponding to either definite or mixed Krein signatures, all one has
to do to predict the untwisting of the Campbell diagram into avoided crossings or into bubbles
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of instability is to calculate the signatures of the appropriate eigenvalues of the isotropic rotor.
In the following, we develop the MacKay’s theory further and show that even in the presence
of non-Hamiltonian perturbations, all the observed peculiarities of the Campbell diagrams and
decay rate plots are the one-parameter slices of the eigenvalue surfaces near a limited number
of other singularities associated with the definite and mixed Krein signature of eigenvalues.

5. Double coffee-filter singularity near the crossings with definite Krein signature

Understanding the general rules of untwisting the Campbell diagrams of weakly anisotropic
rotor systems in the presence of dissipative and non-conservative perturbations is important
for the linear stability analysis and for the interpretation of the numerical data in both low-
and high-speed applications [39]. In the latter supercritical flutter and divergence instabilities
are easily excited just by the Hamiltonian perturbations like stiffness modification near the
crossings with the mixed Krein signature. Among the low-speed applications the untwisting
of the Campbell diagram is directly related to the onset of friction-induced oscillations in
brakes, clutches, paper calenders, and even in musical instruments like the glass harmonica
[9, 44, 45, 46, 47, 48, 51]. In contrast to the supercritical instabilities, the excitation of the
subcritical flutter near the crossings with the definite Krein signature by the Hamiltonian
perturbations only, is impossible. In this case the non-Hamiltonian dissipative and circulatory
forces are required for destabilization.

In general, dissipative, δD, and non-conservative, νN, perturbations unfold the MacKay’s
eigenvalue cones (15) and (Reλ)2 = −Rec into the surfaces Imλ(Ω, κ) and Reλ(Ω, κ), described
by the formulas (11). The new eigenvalue surfaces have singularities at the exceptional points
[30, 31, 32] that correspond to the double eigenvalues with the Jordan chain that born after the
splitting of the double semi-simple eigenvalue iω0 at Ω = Ω0. In some works numerical methods
were developed to find the coordinates of these singularities [16]. Perturbation of the Hamilton’s
diabolical points is another efficient way to locate the exceptional points [33, 34, 37, 44]. Indeed,
from the condition c = 0 we easily find their approximate locations in the (Ω, κ)-plane

Ω±

EP = Ω0 + κ±

EP

4ωsωtU − βωstrKtt + αωttrKss

4ωsωt(tσ − sε)
, κ±

EP = ±
√

X2 + αβ(Y 2 + Z2)

U2 + αβ(V 2 + W 2)
. (20)

The coefficients U , V , W and X, Y , Z in (20) are

U =
ReA2trKstJεσ − ReB2trKstIεσ

αωsImB1 − βωtImA1
, V =

trKstJεσ

2
√

ωsωt
, W =

trKstIεσ

2
√

ωsωt
,

X =
αωsImB1 − βωtImA1

4ωsωt
, Y =

ReA2

2
√

ωsωt
, Z =

ReB2

2
√

ωsωt
. (21)

According to (20), the crossings with the definite Krein signature (αβ > 0) always produce a pair
of the exceptional points. For example, for pure non-conservative (δ = 0) and pure dissipative
(ν = 0) perturbation of the doublets at Ω0 = 0, formulas (20) read

Ω±

EP,n = 0, κ±

EP,n = ± 2νn2s−1,2s

ρ1(Kss) − ρ2(Kss)
; Ω±

EP,d = ±δ
µ1(Dss) − µ2(Dss)

4s
, κ±

EP,d = 0,

(22)
where ρ1,2(Kss) are the eigenvalues of the block Kss of the matrix K and µ1,2(Dss) are the
eigenvalues of the block Dss of the matrix D [51]. In case of the mixed Krein signature (αβ < 0)
the exceptional points exist when the radicand in (20) is positive and does not exist otherwise.

Strong influence of the exceptional points on the stability and their relation to the Ziegler’s
destabilization paradox due to small damping is well recognized [8, 26, 40, 41, 42, 46]. In
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Figure 3. (a) The ‘double coffee filter’ singular surface Imλ(Ω, κ) with the exceptional points
(open circles) and branch cut (bold lines) as a result of the deformation of the MacKay’s cone
(dashed lines) by the mixed dissipative and circulatory perturbation at any crossing with the
definite Krein signature; (b) the corresponding ‘viaduct’ singular surface Reλ(Ω, κ).

numerous applications in rotor dynamics [20, 21, 24, 25, 27, 29, 39] as well as in hydrodynamics
[19], crystal optics [31], acoustics [28], and microwave billiards [30], the generalized crossing
scenario in the vicinity of the exceptional points has been observed (visible also in Fig. 1(e,f))
when at the same values of the parameters the imaginary parts of the eigenvalues cross, whereas
the real parts don’t and vice versa. In our setting, the conditions for coincidence of imaginary
parts of the eigenvalues (11) are Imc = 0 and Rec ≤ 0 and that for coincidence of the real
parts are Imc = 0 and Rec ≥ 0. Both real and imaginary parts of the eigenvalues coincide only
at the two exceptional points (Ω+

EP , κ+
EP ) and (Ω−

EP , κ−

EP ). The segment of the line Imc = 0
connecting the exceptional points is the projection of the branch cut of a singular eigenvalue
surface Imλ(Ω, κ). The adjacent parts of the line correspond to the branch cuts of the singular
eigenvalue surface Reλ(Ω, κ). Since simultaneous intersection of the different segments of the
line Imc = 0 in the (Ω, κ)-plane is not possible one observes the generalized crossing scenario
[30, 33, 34] in the planes (Ω, Imλ) and (Ω,Reλ) or (κ, Imλ) and (κ,Reλ).

For example, in case of pure non-conservative perturbation the real parts of the eigenvalues
developing near the doublets with the definite Krein signature at Ω0 = 0 cross each other in the
(Ω,Reλ)-plane at the points of the branch cuts κ2 > (κ±

EP,n)2

Reλ = ± 2νsn2s−1,2s

(ρ1(Kss) − ρ2(Kss))
√

κ2 − (κ±

EP,n)2
Ω + O(Ω3), (23)

whereas for κ2 < (κ±

EP,n)2 they avoid crossing

Reλ = ±ρ1(Kss) − ρ2(Kss)

4ωs

√

(κ±

EP,n)2 − κ2 + O(Ω2). (24)

At the exceptional points κ = κ±

EP,n the eigenvalue branches touch each other at the origin

Reλ = ±1

2

√

2νsn2s−1,2s

ωs
Ω + O(Ω3/2). (25)

The degenerate crossing (25) of the real parts has been observed in the model of a rotating
circular string passing through the eyelet with friction [25, 44].

7th International Conference on Modern Practice in Stress and Vibration Analysis IOP Publishing
Journal of Physics: Conference Series 181 (2009) 012023 doi:10.1088/1742-6596/181/1/012023

8



Similarly, pure dissipative perturbation of the doublets at Ω0 = 0 yields crossings of the real
parts at the branch cut Ω2 > (Ω±

EP,d)
2 in the (Reλ, κ)-plane and veering of the imaginary parts

Imλ = ωs±s
√

Ω2 − (Ω±

EP,d)
2+O(κ), Reλ = −δtrDss

4
± γ

16sωs

√

Ω2 − (Ω±

EP,d)
2
δκ+O(κ3), (26)

where γ = 2trKssDss − trKsstrDss. At the branch cut Ω2 < (Ω±

EP,d)
2 the imaginary parts cross

and the real parts avoid crossing

Imλ=ωs+
trKss

4ωs
κ± γ

16sωs

√

(Ω±

EP,d)
2 − Ω2

δκ+O(κ2), Reλ=−δtrDss

4
±s

√

(Ω±

EP,d)
2 − Ω2+O(κ2).

(27)
At Ω = Ω±

EP,d the crossings of both the real and imaginary parts are degenerate

Reλ = −δtrDss

4
± 1

4

√

−δκ
γ

ωs
+ O(κ3/2), Imλ = ωs ±

1

4

√

−δκ
γ

ωs
+

trKss

4ωs
κ + O(κ3/2). (28)

The evolving eigenvalue branches reconstruct the eigenvalue surfaces shown in Fig. 3. The
qualitative changes of the eigenvalue branches in the one-parameter slices of the surfaces from
the crossing to the avoided crossing due to variation of the parameters Ω and κ are caused by the
passage through the exceptional points, where the branches touch each other and the eigenvalue
surfaces have Whitney’s umbrella singularities. The surface of the imaginary parts shown in
Fig. 3(a) is formed by the two Whitney’s umbrellas with the handles (branch cuts) glued when
they are oriented toward each other. This singular surface is known in the physical literature on
wave propagation in anisotropic media as the double coffee filter [30, 31]. The viaduct singular
surface of the real parts results from the gluing of the roofs of two Whitney’s umbrellas when
their handles are oriented outwards, Fig. 3(b). The double coffee filter singularity is a result
of the deformation of the MacKay’s eigenvalue cone (shown by the dashed lines in Fig. 3(a))
by the dissipative and non-conservative perturbations. These perturbations foliate the plane
Reλ = 0 into the viaduct singular surface which has self-intersections along the two branch
cuts and an ellipse-shaped arch between the two exceptional points, Fig. 3(b). Both types of
singular surfaces appear when non-Hermitian perturbation of Hermitian matrices is considered
[13, 33, 34].

Therefore, in a weakly non-Hamiltonian system (1) the fundamental qualitative effect of the
splitting of the doublets with the definite Krein signature is the origination of the double coffee
filter singular surface of the imaginary parts and the viaduct singular surface of the real parts.
Structural modification of the matrices of dissipative and non-conservative forces generically does
not change the type of the surfaces, preserving the exceptional points and the branch cuts.

6. Example. Rotating shaft

Simplest mechanical examples described by equations (1) and (2) are some two-degrees-of-
freedom models of rotating shafts [5, 10, 11, 39]. In [10] the shaft is modeled as the mass
m which is attached by two springs with the stiffness coefficients k1 and k2 = k1 + κ and two
dampers with the coefficients µ1 and µ2 to a coordinate system rotating at constant angular
velocity Ω, Fig. 4(a). A non-conservative positional force βr acts on the mass. With u and v
representing the displacements in the direction of the two rotating coordinate axes, respectively,
the system is governed by the equations [10]

mü + µ1u̇ − 2mΩv̇ + (k1 − mΩ2)u + βv = 0,

mv̈ + µ2v̇ + 2mΩu̇ + (k2 − mΩ2)v − βu = 0. (29)
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Figure 4. (a) A model of the rotating shaft; (b) four MacKay’s cones due to stiffness
modification (µ1 = 0, µ2 = 0, β = 0); (c) the viaduct singular surface created by the indefinite
damping (µ1 = −0.1, µ2 = 0.2) and circulatory force (β = 0.2).

In Fig. 4(b) we show the numerically found surface of frequencies for the shaft with m = 1
and k1 = 4 in the absence of damping and non-conservative forces. The surface has four conical
singularities corresponding to the double eigenvalues ±2i at Ω = 0 and to the double zero
eigenvalues at the critical speeds Ω = ±2. The cones in the subcritical speed range are near-
vertically oriented while those at the critical speeds are near-horizontal [15]. Consequently, for
small stiffness detuning κ the system is stable in the subcritical speed range and unstable by
divergence in the vicinity of the critical speeds, where the bubbles of instability in the decay rate
plots originate. Addition of the non-conservative forces with β = 0.2 and indefinite damping
with µ1 = −0.1 and µ2 = 0.2 yields deformation of the conical surfaces with the apexes at Ω = 0
into the double coffee-filters. The real parts form the viaduct singular surface shown in Fig. 4(c).

7. Conclusion

In the article we aimed at the finding of fundamental properties of a class of non-conservative
rotor systems that would unify different linearised models of rotating elastic continua in frictional
contact. We have found two types of singular eigenvalue surfaces that exist unavoidably in such
models and cannot be destroyed or qualitatively modified by generic changes in the matrices of
the system. The double coffee filter and the viaduct singular surface are the imaginary and the
real part of the unfolding of any double pure imaginary semi-simple eigenvalue at the crossing
of the Campbell diagram with the definite Krein signature. The structure of the perturbing
matrices determines only the details of the geometry of the surfaces, such as the coordinates
of the exceptional points and the spacial orientation of the branch cuts. It does not yield the
qualitative changes irrespective of whether the dissipative and circulatory perturbations are
applied separately or in a mixture. For practical applications this means that the behaviour of
eigenvalues is described in the same manner for different models of rotor-stator interaction. This
will help practitioners and engineers in the development of better models, in their comparison,
and in the interpretation of the data both from the numerical and physical experiments. On the
other hand, our qualitative results connect the problems of wave propagation in rotating continua
with that of electromagnetic and acoustic wave propagation in stationary anisotropic and chiral
media [32]. Therefore, the ideas and methods of the latter discipline can be used for more
refined investigation of the rotating elastic continua. The qualitative results, the perturbation
methodology and the revealed connection to the other physical disciplines can be employed for
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the improvement of the existing FEM codes aimed at the modeling and optimization of the
elements of rotating machinery.
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