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Abstract. Boiling heat transfer is still hard to model and to predict. Among all kinds of
studies on boiling processes, the estimation of the local heat fluxes on the boiling surface
is fundamental. From the mathematical point of view, it belongs to the class of inverse
heat conduction problems (IHCPs) which cannot be solved straightforwardly. In this paper,
we estimate the local boiling heat flux by solving a three-dimensional (3D) transient IHCP
using the measured temperature field from a single-bubble nucleate boiling experiment. The
considered IHCP is formulated as a mathematical optimization problem and solved by the
conjugate gradient (CG) method.

1. Introduction
Although many investigations of boiling phenomena have been conducted during the past
decades, boiling heat transfer is still not fully understood. Boiling heat flux has been considered
to be correlated with many different parameters, e.g. superheat, nucleate site density or bubble
diameter in the nucleate boiling and average vapor fraction or vapor velocity in transition
boiling [1]. Dhir and Liaw [2] have developed a unifying framework for nucleate and transition
boiling on base of a macroscopic geometry model of ”vapor stems”. On the mesoscale, single
bubbles growing on a heated plate or emerging out of the closed film in film boiling have been
studied in detail [3, 4, 5]. On the microscale, the microlayer theory proposed by Stephan and
Hammer [6] predicts that most of the heat during boiling is transferred in the micro-region of
the three-phase contact line by evaporation. Most of the existing approaches have not been fully
validated yet because of the lacking of experimental and theoretical evidence. It is not completely
clear yet which parameters dominate boiling heat transfer. An adequate understanding of the
various physical effects can only be obtained if high resolution measurement techniques and
corresponding data processing methods are employed.

In this paper, we consider boiling experiments at a single artificial nucleation site which have
been conducted at TU Darmstadt [7]. As shown in Fig. 1(a), single bubbles are generated
on top of a metallic foil heater (1), which is mounted onto a copper plate (3) with a circular
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opening (4) in the middle. The plate is fixed onto a base plate (5). Electrodes (2) are enclosed
in an insolating frame (9) and pressed from both sides with grub screws (10) against the foil to
guarantee a good electric contact. Through the opening (4) and an IR transparent substrate
(6) the bottom side of the heating foil is optically accessible. Since in this experiment nucleate
boiling must be avoided at any potential sites other than the artificial one in the center of
the foil, the entire outer assembly is cooled down some degrees below saturation temperature
using coolant bores (11) in the base plate (5). Ports for coolant (12) and electric current (8)
are placed at the bottom side. Different types of artificial nucleation sites were examined. The
experimental results in [7] were carried out on a 50 µm thick stainless steel foil with a bore whole
of about 25 µm diameter. A scanning electron microscope (SEM) picture of the nucleation site
is shown in Fig. 1(b). The temperature field at the back side of the heater was observed with
a high-speed infrared camera. The total measurement uncertainty of the IR sensor is about 0.5
K. At a resolution of 152×144 pixels, a frame rate of 987 Hz could be applied. The resulting
pixel size conforms to a square of 16×16 microns.

Figure 1. (a) Cross sectional view of the foil heater (adopted from [7]), (b) Nucleation site
produced by laser beam at IMM (adopted from [7]), (c) Schematic representation of the 3D
heating foil.

In [7], the local boiling heat flux was computed using a two-dimensional (2D) heat conduction
model together with a filter-based inversion algorithm. In this work, we consider the estimation
of the local heat flux at the boiling surface using the solution approach presented in [8], where
the spatial domain is modelled in 3D. A 3D domain is chosen because the origin of the signal
is an event of about 1 µm lateral extension with an amplitude of 106 W/m2. Thus, a vertical
temperature gradient (in z-direction) can not be neglected. Estimation of the heat flux on the
boiling boundary from a measured temperature field on the back of the thin heater belongs to
the class of IHCPs [9], which are ill-posed in the sense of Hadamard [10]. In particular, the
stability condition is violated. Namely, small perturbation in the data leads to large deviations
of estimated quantities. Regularization strategies are often applied to obtain useful solutions for
IHCPs [11, 12].

In Section 2, we first give the mathematical formulation for the IHCP considered. An
optimization-based solution method is then presented in Section 3. To validate and assess
the performance of the solution method, a simulation case study is presented in Section 4. In
Section 5, we show the estimation results with real measurement data from [7]. Conclusions and
an outlook will be given in the final section.

2. The inverse heat conduction problem
We consider the 3D domain Ω shown in Fig. 1(c) with boundary ∂Ω = ΓH ∪ ΓB ∪ ΓR, where
ΓH , ΓB and ΓR denote the heated, the boiling and the adiabatic boundaries of Ω, respectively.
The linear heat conduction problem for the temperature T (x, t) is given by
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∂T (x, t)
∂t

= a∆T (x, t), (x, t) ∈ Ω× [0, tf ], (1)

T (x, 0) = T0(x), x ∈ Ω, (2)

−λ
∂T (x, t)

∂n
= qh(x, t), (x, t) ∈ ΓH × [0, tf ], (3)

−λ
∂T (x, t)

∂n
= qb(x, t), (x, t) ∈ ΓB × [0, tf ], (4)

−λ
∂T (x, t)

∂n
= 0, (x, t) ∈ ΓR × [0, tf ], (5)

where λ and a are the known constant thermal conductivity and diffusivity coefficients. T0, qh

and qb are the initial and boundary conditions, respectively. The final time is denoted by tf and
the outer normal on the boundaries is denoted by n.

The considered inverse heat conduction problem corresponds to the estimation of the unknown
heat flux qb at the boiling surface ΓB from the measured temperature field Tm on the back of
the thin heater ΓH given the model governed by eqs. (1)–(5).

3. The solution method
The solution of the inverse problem is obtained from minimizing the objective functional

J(qb) :=
∫ tf

0

∫

ΓH

[T (x, t; qb)− Tm(x, t)]2dxdt, (6)

where T (x, t; qb) denotes temperatures determined from the solution of problem (1)–(5) for a
certain qb.

The CG method is used to solve the optimization problem (6) by setting up an iteration
sequence for the unknown function qb(x, t) [8, 13]. An estimate q̂b

k+1 of qb at iteration k is
computed from

q̂b
k+1(x, t) = q̂b

k(x, t)− µkP k(x, t), for k = 0, 1, 2, ... (7)

We choose q̂b
0 = 0, P 0 = ∇J0 as initial guesses. P k(x, t) is the conjugate search direction which

is updated at each iteration by

P k(x, t) = ∇Jk(x, t) + γkP k−1(x, t), (8)

where the conjugate coefficient γk is determined from

γk =

∫ tf
0

∫
ΓB

[∇Jk]2dxdt
∫ tf
0

∫
ΓB

[∇Jk−1]2dxdt
. (9)

Thus, at each iteration step, we need to evaluate the gradient ∇Jk and the search step length
µk. The gradient is obtained from

∇Jk(x, t)|ΓB
= [−a

λ
· ψ(x, t)]|ΓB

, (10)

where the adjoint variable ψ satisfies the adjoint equations

∂ψ(x, t)
∂t

= −a∆ψ(x, t), (x, t) ∈ Ω× [0, tf ], (11)

ψ(x, tf ) = 0, x ∈ Ω, (12)

−λ
∂ψ(x, t)

∂n
= 2[T (x, t; q̂b

k)− Tm(x, t)], (x, t) ∈ ΓH × [0, tf ], (13)

−λ
∂ψ(x, t)

∂n
= 0, (x, t) ∈ ΓB ∪ ΓR × [0, tf ]. (14)
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The search step length µk is computed by

µk =

∫ tf
0

∫
ΓH

[T (x, t; q̂b
k)− Tm(x, t)]S(x, t)dxdt

∫ tf
0

∫
ΓH

[S(x, t)]2dxdt
, (15)

where S is obtained from the following sensitivity equations

∂S(x, t)
∂t

= a∆S(x, t), (x, t) ∈ Ω× [0, tf ], (16)

S(x, 0) = 0, x ∈ Ω, (17)

−λ
∂S

∂n
(x, t) = P k(x, t), (x, t) ∈ ΓB × [0, tf ], (18)

−λ
∂S

∂n
(x, t) = 0, (x, t) ∈ ΓH ∪ ΓR × [0, tf ]. (19)

The problem (11)–(14) is a final-time value problem. By introducing a new time variable
t′ = tf − t, it can be transformed to a standard initial value problem. The arising direct, adjoint
and sensitivity partial differential equations (PDEs) in each optimization iteration are solved
using the software package DROPS [14].

4. Simulation case study
In this section, a simulation case study involving a ring-shaped boiling heat flux is set up. We
consider the 3D domain Ω := 1× 1× 0.05 mm3. The material properties are chosen the same as
those of the heating foil used in the experiment [7], where the density ρ = 7900 kg/m3, specific
heat c = 520 J/kgK and thermal conductivity λ = 14.5 W/mK result in a thermal diffusivity of
a = 3.53×10−6 m2/s. The initial and known boundary conditions are T0 = 55◦C and qh = 5000
W/m2, respectively. The simulation time interval is 0 ≤ t ≤ 0.05 s. A one-step implicit Euler
scheme with a step size τ = 0.001 s is used for time discretization.

Figure 2. The exact heat flux qex
b at different time instants.

The exact heat flux (in W/mm2) is defined as qex
b (x, y, t) = α(t) · β(x, y), (x, y, t) ∈

ΓB×[0, 0.05], where α(t) = 0.1sin(100π(t−0.02))+0.1 for 0.015 ≤ t ≤ 0.035, zero otherwise, and
β(x, y) = 0.5sin(5π(0.3 −

√
(x− 0.5)2 + (y − 0.5)2)) + 0.5 for

√
(x− 0.5)2 + (y − 0.5)2 ≤ 0.4,

zero otherwise. Fig. 2 shows this heat flux function at some time instants.
A uniform space discretization with piece-wise linear finite elements on a tetrahedral grid

is employed. 101 × 101 unknowns in the x–y-plane and only six unknowns in the z-direction
are used. After investigating the effect of the discretization in the z-direction for six and more
unknowns on the temperature profile, only negligible differences have been observed. Hence, we
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conclude that such a coarse grid is already appropriate for the resolution of the temperature
changes in z-direction.

The exact temperature T ex
m is computed from the solution of the direct problem with known

qex
b on ΓB. The perturbed data are constructed by adding an artificial measurement error ω

to T ex
m . The perturbed measurement Tm is given by Tm = T ex

m + σω, where σ is the standard
deviation of the measurement error. ω is generated from a zero mean normal distribution with
variance one. Here we choose a measurement error of approximately 10%, which corresponds to
σ = 0.115.

Figure 3. (a) L-curve for estimation with perturbed measurements with error level σ = 0.115,
(b) L-curve for the experimental data.

Due to the ill-posedness of the considered IHCP, the estimation quality will decrease if too
many optimization iterations are applied, whereas the residual is getting smaller. Here we apply
the L-curve criterion [15, 16] to find the best termination index. The L-curve shown in Fig. 3(a)
is a parameterized plot of the residual (6) against the solution norm

||q̂b
k||2 :=

∫ tf

0

∫

ΓB

[q̂b
k(x, t)]2dxdt. (20)

The best termination index is found at the maximum curvature of L-curve.

Figure 4. Temporal evolution of estimated heat fluxes along the 2D line with y = 0.5 mm for
different numbers of optimization iterations kiter.
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Since qex
b is symmetric in space (see Fig. 2), it is sufficient to show the estimation results

along the 2D line where y = 0.5 mm. From the estimation results shown in Fig. 4, we observe
for a low number of CG iterations, e.g. kiter = 30, the local extrema of the estimated heat fluxes
have not yet been well-estimated. Before the best termination index, the overall estimation
quality is improving as the number of optimization iterations increases. The estimated heat flux
for the best termination index, kiter = 75, is very close to the exact one. For higher iterations,
the estimated heat flux quickly starts to oscillate and not any more approaches the exact one.
This phenomenon can be observed by the estimation results obtained for kiter = 150 (see Fig.
4). Such effect is due to the ill-posedness of the considered IHCP.

5. Estimation results with experimental data
In the considered experiment [7], the thin heater has a thickness of 50 µm and the measurement
section has a spatial resolution of 152× 144 pixel with a pixel size of 16× 16 µm. We define the
3D computational domain Ω := 2.416×2.288×0.05 mm3. The space discretization of the model
considers the same resolution as the measurement data. This results in 152× 144 unknowns in
the x–y-plane. Based on the investigation in the simulation case study, we use six unknowns for
the space discretization in z-direction. 50 time frames of temperature measurements are taken
with a sampling frequency of 987 Hz. This translates to a time step size of τ ≈ 1.013 ms for the
time discretization.

The initial temperature distribution T0 is assumed to be constant across the foil thickness. A
calculated input heat flux qh = 5356 W/m2 is applied. The measurement was conducted with a
constant heating current of 12.36 A. Since there is an unknown voltage drop at the electrodes, the
heat flux was calculated using the electric resistance of the heating foil with ρ = 0.7 Ohm·mm/m
for the first estimations. It has to be mentioned that for more quantitative interpretations, the
temperature coefficient must be taken into account. The material properties have already been
mentioned in the simulation case study.

The measured temperature distribution (in K) on the x–y-plane at time frames 23-30 is
depicted in Fig. 5 which correspond to a single bubble cycle, as confirmed by simultaneous
imaging with a high speed camera. The noise of the scanner is 0.13 K (95% of the values are in
this range). The signal has an amplitude of about 1.5 K. Thus, the signal to noise ratio is around
11.5. A cold region in the temperature distribution at frame 23 is the result of the activity of
an earlier bubble. Frames 24-30 correspond to the period where the new bubble grows and
starts to depart from the contact surface. We see that the size of the cold spot first increases in
magnitude at frames 24-27 (bubble grows) and then has little change at frames 28-30 (bubble
starts to depart from the surface).

The best estimated surface boiling heat fluxes (in W/m2) are shown in Fig. 6. The
estimations are obtained after kiter = 24 CG iterations, determined from the maximum curvature
point of the L-curve (see Fig. 3(b)). From these estimation results, it is apparent that the boiling
heat flux undergoes a significant change during the single bubble cycle and a ring-shaped region
of the local heat flux is observed. The peak value of the estimated heat fluxes is nearly 30 times
larger than their average value. These estimation results confirm those obtained in [7], which
were computed using an approximate 2D heat conduction model. This may be explained by the
small thickness of the heating foil.

Near the surface boundary and in the center of boiling surface at time frames 29-30, we
observe an estimate of negative heat fluxes. This result may be explained in different ways. The
negative heat flux estimates might be an artefact of the numerical computation, which results
from the fact that the presented solution method intends to yield a smooth approximation for
the unknown boiling heat flux. In case that the unknown heat flux function is non-smooth, non-
differentiable or even non-continuous at some temporal and spatial positions, small oscillated
estimates around these positions will appear and this may lead to negative estimated heat fluxes.
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Alternatively, because the heat flux calculation is also sensitive to the electric heat input, an
underestimated input heat flux qh may lead to negative estimated boiling heat fluxes. Thus, for
more reliable interpretation, the error of the heat flux calculation should be included.

Figure 5. The measured temperature field on the back side of the heater

Figure 6. The best estimated surface boiling heat flux at time frames 23-30.

6. Conclusions
We have successfully applied an optimization-based solution approach to estimate the local
boiling heat flux in a single-bubble nucleate boiling experiment from the high resolution
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measured temperature field taken on the back side of the thin heater. The presented estimation
results are computed on a spatially and temporally discretized model with high resolution.
Altogether 152 × 144 × 50 = 1094400 spatial and temporal parameters have been used to
estimate the unknown boiling heat flux function. From the estimation results, we have observed
that the boiling heat flux in most of the surface region undergoes little change. Although the
computation cost using the finely discretized model is acceptable, the large number of parameters
used for estimation which undergo little change are redundant. Future work will be devoted to
reduce the number of parameters by applying a solution strategy which adaptively discretizes
the computation domain during the estimation process. Reducing the number of estimation
parameters is expected to not only improve the computation efficiency, but also contribute to
a better regularization of the estimated quantities. Besides, since the input heat flux qh is also
crucial for the estimation of unknown boiling heat flux qb, a sensitivity study to the calculation
errors on qh will be performed in order to evaluate the error on qb.
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