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Abstract. We investigate the influence of a deterministic but non-synchronous
update on random Boolean networks, with a focus on critical networks. Knowing
that ‘relevant components’ determine the number and length of attractors, we
focus on such relevant components and calculate how the length and number of
attractors on these components are modified by delays at one or more nodes.
The main findings are that attractors decrease in number when there are more
delays and that periods may become very long when delay times are not integer
multiples of the basic update step.
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1. Introduction

Random Boolean networks (RBN) are widely used as models for complex systems that
consist of interconnected units that influence each other and have two states (‘on’ and ‘off’).
Kauffman [1, 2] used them as a simple model for gene regulation, but they can also be applied
in a social and economic context [3, 4], for neural networks and protein networks [5]. Recently it
was shown that the idealized representation of genes as Boolean units is sufficient to understand
the essential dynamics of certain real gene regulation networks. In these cases, one need not
include rate equations for the concentrations of the molecules involved in the processes in order
to identify the sequence of steps taken by such a system [6]–[8].

A RBN is a directed graph consisting ofN nodes andkN links between them. The nodes
have valuesσi ∈ {0, 1} and receive input fromk other nodes, which are chosen at random when
the network is constructed. Each nodei has an update functionfi , which assigns to each of
the 2k states of itsk input nodes an output 1 or 0. The update function of each node is chosen
at random among all 22

k
possible update functions. All nodes are usually updated in parallel

according to the rule

σi (t + 1) = fi ({σ j (t)}). (1)

The assignment of connections and functions to each node remains fixed throughout the whole
time evolution, the model is therefore referred to as ‘quenched’ [9].
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The dynamics follows a trajectoryEσ(t) ≡ {σ1(t), . . . , σN(t)} in configuration space which
eventually leads to a periodically repeating sequence of configurations, called acycle, as the
state space is finite and the dynamics is discrete. Such a cycle is called anattractor if there is a
set of transient states leading to it; these constitute thebasin of attraction.

The dynamics can be classified [9] according to the way information spreads through the
network.

1. In the frozen phase, all nodes apart from a small number (that remains finite in the limit
of infinite system size) assume a constant value after a transient time. If in the stationary
state the value of one node is changed, this perturbation propagates during one time step
on average to less than one other node.

2. In the chaotic phaseinitially similar configurations diverge exponentially. Attractors are
usually long, and a non-vanishing proportion of all nodes keep changing their state even
after long times.

Critical networks are at the boundary between the frozen and chaotic phase [9] and neighboring
configurations diverge only algebraically with time. Whether a network is frozen, critical or
chaotic depends on the value ofk and on the probabilities assigned to the different types of
update functions. When all update functions are chosen with the same probability, networks
with k < 2 are frozen, networks withk = 2 are critical and networks withk > 2 are chaotic [10].

The usual synchronous way of updating is not very realistic [11] as natural systems are
rarely controlled by an external clock. It is known that properties of attractors for synchronous
dynamics can differ from those for asynchronous dynamics. This is generally known for cellular
automata, where part of the self-organization is closely tied to the synchronous updating [12].
Also for RBNs, the dynamics changes considerably when other updating schemes are chosen.
For instance, when small stochastic deviations from synchronous update are introduced, only
part of the attractors survive [13, 14]. For an update rule where the next node to be updated is
determined at random, the number of attractors becomes a power law of the network size [15],
in contrast to the superpolynamially large attractor numbers found for parallel update [16].

In contrast to stochastic updating schemes,deterministicupdating schemes that are not
fully synchronous have been investigated less. In [17], different asynchronous updating schemes
are compared numerically for small network sizes with the conclusion that ‘the number of
attractors does not depend too much in the synchroncity of the updates, as they depend on their
determinism’. One obvious way to implement such an updating scheme would be to assign
a time delay to each link between two nodes. This can be motivated biologically, since the
expression of genes is not an instantaneous process, but the transcription of DNA and transport
of enzymes may take from milliseconds up to a few seconds. However, a network with different
delay times can be mapped on a network with synchronous update by introducing a chain of
nodes with unit delay times between nodes with longer delays. For this reason, we want to
focus in this paper on a different type of asynchronous deterministic networks, namely on
those with a ‘quenched randomness’ in updating times. This means that some nodes are less
frequently updated than others. Such networks represent an intermediate step between parallel
and fully stochastic updating rules. Quenched randomness in update intervals can be motivated
by the necessity for each node to have arefractory time, i.e. a time during which a node cannot
respond to an input signal because it is still processing or recovering from the previous input
signal. While a realistic implementation of update delays and refractory times would lead to
more complex rules, using fixed update intervals for each node is an instructive and important
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step in the investigation of not fully synchronous networks. To each nodei we assign a delay
time τi . The valueσi of nodei is updated in time intervalsτi , and each node must be assigned
an initial ‘phase’ϕi < τi (i.e. the time until the first update). The model is referred to as a
deterministic random Boolean network (DRBN). The system is deterministic as the succession
of network statesEσ(t) is entirely defined by the initial conditionEσ(0) and the initial phases{ϕi }.
The case of parallel update, the so-called classical RBN (CRBN), is a special DRBN with all
τi ≡ 1, ϕi ≡ 0. The size of the state space� changes from|�|CRBN = 2N to |�|DRBN =

∏
i 2 · τi ,

when allτi are integers.
The outline of the rest of this paper is the following: first, we review the concept of relevant

components (section2). This shows that the most frequent relevant components are simple
loops, and less frequent are collections of loops with additional links within and between them.
In the subsequent sections, we therefore study simple loops with one delayed node, simple
loops with several delayed nodes, two loops with a cross-link and one delayed node and a loop
with one additional link and a delayed node (sections3–6). In the conclusion, we discuss the
consequences of our findings for the entire network, which is composed of several relevant
components.

2. Relevant components

It has proven useful to classify the nodes of a RBN according to their behavior on attractors [16],
[18]–[23].

1. The state offrozen nodesbecomes constant after some time. Interestingly, the nodes
that become frozen are the same nodes most of the time, and they constitute thefrozen
core. The frozen core is identified by starting from nodes with constant functions and by
iteratively identifying nodes that become frozen due to frozen inputs. Networks without
frozen functions can also develop a frozen core [24], however, the mechanism is different.
In critical networks, the frozen core comprises all but a proportion∼N−1/3 of nodes.

2. Relevant nodesare non-frozen and have different dynamics on different attractors, and they
influence at least one relevant node [25]. They determine the attractors, and the number of
relevant nodes scales in critical networks asN1/3 [22].

3. Finally, there are theirrelevant nodeswhich are not frozen but are slaved by the relevant
nodes.

The non-frozen nodes of critical networks essentially form ak = 1 network. This means
that typically all but one input of a non-frozen node are frozen. In critical networks, relevant
nodes are arranged inO(ln N)components, most of which are simpleloops. Typically, there is
only one component that is not a simple loop but hasµ nodes with two relevant inputs [26].
There exist two possible components withµ = 1, and then more complicated components with
µ > 1. If µ = 1, there are either two loops with a cross-link or a loop with an additional link,
see figure2. Two loops with a cross-link occur twice as often as a loop with an additional
link [26].

It is important to realize that the classification of nodes into frozen, relevant and non-frozen
irrelevant nodes is independent of the updating scheme. To which class a node belongs, depends
only on the topology of the network and on the functions assigned to the nodes. The update
time of a node does not influence the question whether a node freezes if some of its inputs are
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Figure 1. The two possible simple loops. The dashed lines depict a⊕-coupling,
the solid lines a	-coupling. The left one is an odd, the right one an even loop.

frozen. For this reason, the relevant nodes determine the long-term dynamics of RBNs for the
Nay updating scheme. The dynamics of the outgoing trees is slaved by the relevant parts, and
the frozen nodes are obviously irrelevant. Thus, we will in the following study the properties
of the relevant components. What we learn about their dynamics can directly be applied to the
dynamics of the entire network.

3. Loops with one delayed node

The simplest relevant component is a loop consisting of nodes withk = 1 incoming edges and
Boolean functions which either copy (⊕) or invert (	) the previous node’s value. A constant
function within a loop will freeze the whole loop, and can therefore not occur in relevant
loops. A loop withn inversions can be mapped bijectively on to one with(n − 2) inversions
by replacing two	 with two ⊕ and by inverting the values of all nodes between these two
couplings. It is therefore sufficient to distinguish loops with an even or an odd number of
inversions, and we call them ‘even’ and ‘odd’ loops, respectively. When discussing even loops,
we consider loops with only⊕-functions. Irrespective of the updating scheme, there are two
fixed points for such an even loop, namelyEσ ∈ {E0, E1}. To odd loops we assign one	-function,
the connection to a node with this function is called ‘twisted’. In contrast to the even loop it has
no fixed points. For synchronous update, the shortest attractor of an odd loop has period 2, with
alternating 1s and 0s. If no node is delayed, expressions for the number of attractors for loops
consisting of a prime number of nodes can easily be written down, because the pattern of zeros
and ones traveling around the loop is repeated only after one (even loop) or two (odd loop) full
rotations (except if we have an even loop at one of its fixed points or an odd loop on the cycle of
period 2). The number of cycles on an even loop ofN nodes is then 2 +(2N

− 2)/N and on an
odd loop it is 1 +(2N

− 2)/2N. If N is not prime, shorter cycle lengths exist, which are divisors
of N. Let us now introduce a delay in the loop. Let node 1 be the delayed node, i.e. we choose
a value 1< τ1 ≡ τ ∗

∈ N, while τi = 1 for i > 1. This means that one gene needs much longer
to be expressed than all the others. Since node 1 remains at the same value forτ ∗ time steps,
node 2 receivesτ ∗ times the same input, leading to blocks of sizeτ ∗ traveling around the loop.
When the head of a block arrives at nodeN, nodeN will have the value of this block forτ ∗ time
steps, and during one of these steps node 1 will be updated. In the following, we will consider
even and odd loops separately.
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3.1. Even loops

An even loop with one delayed node has two fixed points, just as the loop with no delayed node.
The other attractors are characterized by blocks of lengthτ ∗ traveling around the loop. Assume
node 1 is updated at time 0. A block with the value of node 1 will start traveling around the
loop, and the head of the block will arrive at nodeN at timeN − 1. The next update of node 1
will be at timeT = b(N − 1 +τ ∗)/τ ∗

c · τ ∗, where the Gaussian bracketsbxc denote the largest
integer less or equalx. The value of node 1 becomes the same as at time 0, and the same block
travels around the loop again. The same consideration can be made for all starting times that are
multiples ofτ ∗, leading to the result that the state of the loop is repeated everyT time steps.

After the transient timeN − 1, the loop has reached an attractor that containsξ = T/τ ∗

blocks, each of which either has only values 0 or values 1, and with the blocks that contains
node 1 andN being shorter than the other ones, ifN is not a multiple ofτ ∗. Every attractor
corresponds to a pattern of blocks traveling around the loop. We can now make use of the
results obtained for even loops without delays by replacing states of nodes with states of blocks.
If the number of blocks is a prime number,ξ ∈ P, the lengthA⊕ of the attractors is identical
to T ,

A⊕ = T =

⌊
N − 1 +τ ∗

τ ∗

⌋
τ ∗

= ξ · τ ∗, ∀ ξ ∈ P. (2)

For τ ∗ > N there is onlyξ = 1 block containing all node and the fixed points are the only
attractors.

The number of different attractors,ν⊕, can be calculated from the number of different
patterns, 2ξ . Including the 2 fixed points this leads to

ν⊕ =
2ξ

− 2

ξ
+ 2, ∀ ξ ∈ P. (3)

Forξ /∈ P the pattern of blocks can have a period that is a divisor ofξ , because the same pattern
can appear already after less time than a full rotation. Therefore the mean attractor length is
shorter. Since each pattern of blocks is part of an attractor, the number of attractors increases
compared to loops with a prime number of blocks.

3.2. Odd loops

Without loss of generality, we assign the twisted edge of the odd loop to be in front of the
delayed node. As in the synchronous case, there are no fixed-point attractors for odd loops. Let
again node 1 be delayed and updated at time 0. We can now proceed in the same way as for the
even loop by considering blocks. At timeT , node 1 will have the opposite state as the original
one. After time 2T , node 1 returns to its original state, which implies that the loop returns to
its original state after 2T time steps, if it is on an attractor. If all nodes are identical initially, a
single domain wall travels around the loop, and afterT time steps all nodes are again identical,
but with the opposite state. The shortest attractor has a period 2τ ∗, and it has alternating blocks.
If the number of blocksξ = T/τ ∗ is a prime number, all other attractors have the period 2T ,
and the number of different attractors is

ν	 =
2ξ

− 2

2ξ
+ 1 . (4)

If ξ /∈ P, the number of attractors increases as the length of some attractors is shorter. Ifτ ∗ > N,
there is only one attractor with period 2τ ∗.
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3.3. Non-integer delays

Let us now consider the case thatτ ∗ is not an integer, but a rational or a real number. Real
numbers can be approximated by a series of rational numbers, and we therefore consider the
caseτ ∗

= r/s with two incommensurate integersr and s, with r > s. During r time steps,
s blocks emerge from node 1, part of them of length

⌊
r
s

⌋
, part of them of length

⌊
r
s

⌋
+ 1. When

the first block reaches node 1, the same sequence of blocks will emerge again only if node 1 is
in the same phase at its next update as it was at its first update. Otherwise, the pattern of blocks
will be changed at each circulation around the loop, until it starts repeating again afters (or 2s
for an odd loop) circulations (or a divisor of it). It follows that for irrational values ofτ ∗ the
dynamics never become exactly periodic but are quasiperiodic. Of course, for valuesτ ∗ > N,
the only attractor is a fixed-point (for an even loop) or a state with only one domain wall (for an
odd loop).

4. Loops with multiple delayed nodes

Next, we consider loops with multiple delayed nodes and integer delay timesτi ∈ N>0. Loops
with rational valuesτi = r i /si can be mapped on those with integer values ofτi by measuring
time in units of the inverse of the least common multiple of allsi . In the following, we will first
look at two special cases before we focus on the general case where updates may occur in any
order.

4.1. Sequential update

We chooseτi ≡ N and update the nodes in the order in which they occur on the loop,
i.e. ϕi = i − 1 (connection-wise (cw) update) orϕi = N − i (counter-connectionwise (cc)
update).

For cw-update, all nodes of an even loop have the same value, after every node has been
updated once. Thus, we have two fixed-point attractors consisting of the two homogeneous
configurations,Eσ ∈ {E0, E1}. For an odd loop, the attractor has a single domain wall that travels
around the loop, and the period of the attractor is 2N.

For cc-update, nodej is updated before nodej − 1. Therefore,N update steps give
the same result as 1 update step in the case of parallel update, and the results of3 can be
taken over.

4.2. Same delay, different phases

We now choose againτi ≡ N, but we update the nodes in any order, i.e. the values ofϕi are some
permutation of the numbers 0 toN − 1. There are two classes of nodes, according to whether
a node is updated before or after its predecessor. Nodes that are updated after their predecessor
have afterN time steps the same state as their predecessor. Such nodes and their predecessor are
therefore part of the sameeffective node. The numberN∗ of effective nodes is identical to the
number of nodes that are updated after their predecessor. Let us give an example, for instance
N = 6 and the updating order

{ϕi } = {5, 0, 3, 1, 2, 4}.
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If we specify only whether a node is updated before (b) or after (a) its predecessor, this can be
written as

{a, b, a, b, a, a},

leading toN∗
= 2. Once we have identified the effective nodes, we can mapN time steps on

such a loop with sequential update on one time step on a loop of sizeN∗ with parallel update.
All results concerning attractor numbers and lengths obtained for loops with parallel update can
then be transferred to loops with sequential update.

4.3. Different delay times

We now consider the general case where the delaysτi and the phasesϕi can take any integer
value. In order to determine whether the initial state of a given node influences the attractor,
we proceed in the following way: we fix the state of this node, let us say, to 1, and we evaluate
to which nodes this 1 propagates with time. In order to make sure that later on all 1 s on the
loop will be due to this initial 1, we set all other nodes to 0 and choose an even loop. When
the chosen node is updated before its successor, the 1 is lost, and the initial state of this node
does not affect the attractor. If the node is updated after its successor, the 1 has moved to the
successor and is not yet lost. Next, we check whether the successor is updated before the 1 that
is now there can propagate further. During the course of time, the 1 may spread to become a
block of larger size, which continues to change its size with time. Now we consider the loop
at times which are a multiple ofτ ∗

= lcm(τi ). At these times, the phases of all nodes are the
same as at the beginning. We wait until either the original node has again state 1 or until all
1 s are gone. In the first case, the 1 will survive forever, and the initial state of the chosen node
will consequently affect the attractors. In the second case, the chosen node does not affect the
attractors.

If we repeat this procedure for every node, we will know the initial state of how many
nodesN∗ will affect the attractors. We only consider these ‘relevant’ nodes from now on, and
we consider them only at times that are multiples ofτ ∗. Let m be the number of relevant nodes
through which each block moves duringτ ∗ time steps. Ifm and N∗ have no common divisor,
we order theN∗ nodes in the sequence in which they are visited if the system is only considered
at times that are multiples ofτ ∗. Then we have mapped the task of finding the attractor number
and length on a loop of sizeN with any rational delay times of the task of finding the attractor
number and length in a loop of sizeN∗. If m andN∗ have a common divisorl , we can map our
system onl loops of lengthN∗/ l with parallel update and thus find the number and lengths of
attractors.

For irrational delay times, the mapping on integer delays cannot be performed.
Nevertheless, one can determine whether a 1 at a given node will eventually become a block
that is so large that it will never vanish. If all delays have irrational ratios, there will eventually
come a moment where all nodes are updated cw, and from then on there is only one block left.

5. Two loops with a cross-link

Now we consider a complex component consisting of a loop withN1 nodes connected to a
loop with N2 nodes, see figure2(a). The node6 is the one with two inputs and its input nodes
are labeledG1 andG2. The first loop is either odd or even, the second loop can without loss of
generality be chosen such that it has only⊕-couplings, except at6. We insert no nodes between
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N1 N2

(a)
G1

G2
Σ

L M

(b)

Figure 2. The complex components considered in this paper: (a) the-
component consists of a loop withN1 nodes connected to a loop withN2 nodes.
(b) the�-component is a loop ofN = L + M + 2 nodes having an additional link.

Table 1. Boolean functions used in the -component for node6. The second
letter in the label of the canalizing functions stands for ‘homogeneous’ or
‘inhomogeneous’.

Inputs Reversible Canalizing functions

G1 G2 frev fci fch

0 0 1 1 0
0 1 0 0 1
1 0 0 1 1
1 1 1 1 1

G1 and6, as a system withm nodes on the cross-link can be mapped on a system with a direct
link by connecting node numberm (counted clockwise fromG1) directly with node6.

We consider only the nontrivial cases where the coupling function of node6 is a function
that responds to both of its inputs. If we take into account that certain of these functions can be
mapped on to each other by inverting the states of all nodes or by inverting the states on the first
loop, we end up with three functions that are truly different. They are shown in table1.

In the following, the results by Kaufman and Drossel [26] for components under
synchronous update will be generalized to components with one delayed node.

5.1. Delayed node on first loop

If the first loop has a delayτ ∗, the value ofG1 can change only at times that are multiples ofτ ∗,
and the pattern of change is repeated after the attractor period of the first loop. If the first loop
is on a fixed-point, the second loop can be considered as an independent loop with a function at
6, which depends on the fixed-point value of the first loop. We therefore consider here the case
that the first loop is not on a fixed-point but provides a periodic input of periodp1 to 6, with
blocks of sizeτ ∗ of identical bits. The second loop then behaves like an independent loop where
the Boolean function at6 changes afterτ ∗ steps, and where the pattern of changes is repeated
periodically with periodp1.

If f6 = frev, the second loop switches between truth and negation, for the (in)homogeneous
canalizing functionfch( fci) the second loop changes between truth (negation) and constant value
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σ6 = 1. The attractor period is at most 2p1N2. More detailed results for possible attractors of
such a system under synchronous updating can be found in [26], the only difference being
that p1 is now related in a different way withN1. An interesting finding is that for the
homogeneous canalizing function, the second loop becomes frozen on the value 1 ifp1 and
N2 have no common divisor. Furthermore, for the inhomogeneous canalizing function, the first
loop enslaves the second loop and imposes its period on it, ifp1 andN2 have no common divisor.

5.2. Delayed node on second loop

We now proceed to the case where a single delayed node is on the second loop. The first loop
behaves in the same way as for simple (synchronously updated) CRBN-loops. We focus on the
sequence of values of the delayed node. We assign the delay to the node6: a system with the
delayed nodem nodes after6 can be transformed into a system with the delay at6 by rotating
the first loopm nodes counterclockwise.

Node 6 responds to the input fromG1 only every τ ∗ time steps. Let us denote with
p1 the period of the sequence of values ofG1 every τ ∗ time steps, which is the period of
the input sequence to6 generated by the first loop at those times where6 is updated. Let
ξ = b(N2 − 1 +τ ∗)/τ ∗

c denote the number of blocks of the second loop.
All results for the attractors on two loops with a cross-link and no delay can now taken

over by replacingN2 with ξ , by replacing nodes with blocks, and by takingτ ∗ as the time
unit. In particular, for a reversible functionf6, the largest period isp1ξτ ∗. A homogeneous
canalizing functionf6 freezes the second loop on the value 1 ifp1 and ξ have no common
divisor. Furthermore, for an inhomogeneous canalizing function, the first loop enslaves the
second loop and imposes its period (timesτ ∗) on it if p1 andξ have no common divisor.

5.3. General case

Now we consider the case of multiple (integer) delays on both loops. Let the first loop have
a periodp1 and the second loop (if even and decoupled from the first loop) a periodp2. The
general system of two interconnected loops without any delay has been studied in [26]. There, it
was shown that the attractor length lies betweenp1 and 2p1N2/g, whereg = lcm(p1, N2). We
can conclude that now the attractor length lies betweenp1 and 2p1 p2/g, whereg is the greatest
common divisor ofp1 and p2.

For a homogeneous canalizing functionf6 = fch, the second loop is frozen ifp1 and p2

are incommensurable. The longest attractors occur for reversible functions,f6 = frev.

6. Loop with one additional link

The other complex component with one node with two inputs is a loop withN = L + M + 2
nodes and one additional link. We call again the node with two inputs6 and its inputsG1 and
G2, see figure2(b). The link fromG2 to 6 can be treated as a direct link: a system withn < L
nodes in the additional link can be mapped on to a system with a direct link by connecting
node(M + 1 +n) to 6 (if we neglect delays). We consider five update functions at6, compare
table2 (we now use the common decimal representation as identifiers for the functions). The
other canalizing or reversible functions yield the same result, one only has to invert the output
values of the truth table. Without loss of generality, all other functions in the loop are copy
functions.
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Table 2. Boolean functions used in the�-component for node6. The names
for the functions are the decimal representation of the corresponding column
of outputs, for instance 1× 20 + 0× 21 + 1× 22 + 1× 23

= 13. Function f9 is
reversible and the other functions are canalizing.

G1 G2 f1 f2 f13 f14 f9

0 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1

Let there be one delayed node in the component. We distinguish two cases according to the
position of the node with update periodτ ∗ > 1.

1. The delayed node lies on the firstM + 1 nodes (includingG1). Without loss of generality
the delay can be shifted to node6.

2. The delayed node is in the chain of nodes betweenG1 and6 and can then be shifted toG2.

In the first case, the component can be reduced to a network of effective nodes by looking
at the network only everyτ ∗ time steps. Each effective node corresponds to a block ofτ ∗ nodes
which are at the same state fort modτ ∗

= 0. The results for the synchronous case (as studied
in [26], section4) hold for the effective variables̃N, M̃ , dxe denotes the smallest integer greater
or equal tox:

Ñ =

⌈
N

τ ∗

⌉
, M̃ =

⌈
M + 2

τ ∗

⌉
− 2. (5)

In the following we will study the second case, whereG2 is the delayed node.

6.1. Canalizing function at6

If there is a canalizing function at6, we can classify the attractors in at least two types. In the
following we will present analytical considerations for these types of attractors and compare the
analytical predictions with the numerical results.

The first type of attractors is obtained by requiring thatG2 does never have its canalizing
value at the moment when6 is updated. (The canalizing value is 0 forf13 and f2 and 1 for f1

and f14.) In this case, the loop consisting of theM + 2 nodes from6 to G1 is an even loop for
f13 and f14 and an odd loop forf1 and f2. Just before node6 is updated, the state of nodeG2

and the state of all nodes that will innτ ∗ time steps determine the state ofG2 must have a value
such that6 never has its canalizing value (n is any positive integer). For functionsf13 and f14,
this condition fixes the entire component at the same value ifM + 2 andτ ∗ have no common
divisor. If their greatest common divisorg is larger than 1, only the value of everygth node on
the loop of lengthM + 2 is fixed by this condition. The number of attractors of the first type is
therefore that of an even loop with(M + 2)(g− 1) nodes and with no delays. For functionsf1

and f2, the condition thatG2 does never have its canalizing value can only be satisfied ifτ ∗/g is
even. The number of attractors of the first type is then that of an odd loop with(M + 2)(g− 1)
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Figure 3. Results of the exhaustive state space search for the�-component with
small system size,N < 20. The upper panel shows the mean attractor number
〈ν〉 in dependence of the system sizeN while the lower shows the mean attractor
length〈A〉 for fixed delayτ ∗ and for all functionsf6 ∈ {1, 2, 9, 13, 14}. In both
cases the average was taken over all possible realizations which corresponds to
an average over allL for a single delayed node. To keep the diagrams concise
only some delays have been plotted.

nodes and with no delays. Compared to a component with no delays, this new type of attractors
increases the mean attractor length if the canalizing function isf14. Without delays, only very
short attractors (apart from two fixed points) can occur [26] for f14, and the increase in attractor
length for valuesτ ∗ > 1 is clearly visible in the exhaustive state space search shown in figure3.

On all other attractors,G2 has at least sometimes its canalizing value. The second type
of attractors referred to above is obtained ifM + 2 is a multiple ofτ ∗. Again, we can derive
properties of these attractors from analytical considerations: if the loop ofM + 2 sites consists
of blocks of sizeτ ∗, the dynamics can be mapped on that of an effective component with
Ñ =

⌈
N
τ ∗

⌉
nodes and withM̃ =

M + 2
τ ∗ − 2 with no delay but time steps of lengthτ ∗, and the

results of [26] can be taken over. In addition to attractors consisting only of homogeneous
blocks, further attractors can be constructed by realizing that only one bit in each block is the
one that triggers nodeG2. The value of bits that do not trigger nodeG2 does only matter when
the block reachesG1: if at this moment6 is not canalized byG2, an inhomogeneous block will
not be homogenized, but copied or inverted to node6. An inhomogeneous block can therefore
survive forever if the blocks that are atG2 at the moment where the inhomogeneous block is at
G1 do not have their canalizing value. However, this implies that these non-canalizing blocks
are copied to6 from G1, which is only possible forf13. Indeed, from [26] we know that a
period M̃ + 2 of attractors on the effective component is only possible for this function, unless
Ñ has special values.

Finally, let us look for nontrivial attractors that can occur even ifM + 2 andτ ∗ have no
common divisor. Let us choose the functionf2. An isolated block of sizeτ ∗ of 1 s in the initial
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state will survive forever since there will be a 0 atG1 while this block is atG2. In fact, there
exist a multitude of such attractors where there is a 0 at the right position at distanceL behind
a block of 1 s. This explains why the number of attractors found numerically forτ ∗ > 1 in the
exhaustive state space search shown in figure3 is larger for f2 than for the other canalizing
functions. The length of these attractors can be larger thanN + τ ∗

− 1, as can also be seen in
figure3.

6.2. Function f9 at 6

f9 is a reversible function, i.e. if one of the inputs changes its value the output changes, too. If
there are no delays, the dynamics is reversible and therefore all states are on cycles. There is
1 fixed point Eσ = E1. A striking feature of the synchronous case is that cycles of the order 2N

exist [26].
The exhaustive numerical attractor search suggests that the maximal attractor length can

be approximated byτ ∗ times the maximal attractor length in the non-delayed case for oddτ ∗.

7. Conclusion

In this paper, we studied the influence of a deterministic but non-synchronous update on a
critical Kauffman network by introducing node-based delays. The dynamics of critical networks
can be derived from the dynamics on its relevant components, most of which are simple loops
and some of which have a few nodes with two inputs. For this reason, we have studied in
this paper the three simplest types of relevant components. Not surprisingly, delays typically
increase the attractor lengths and reduce the attractor numbers. New types of attractors emerge
in the presence of delays. The basins of attraction are naturally larger and thus the path to the
attractor becomes more robust. If all delays are randomly chosen real numbers, loops are most
likely to be frozen or on a single attractor. Similarly, more complex components with real delays
should have far less attractors than for parallel update.

The attractors of the entire network are obtained from the attractors of the relevant
components by the usual considerations [22]: the number of relevant components is of the order
of lnN and usually only the largest component (if any) is more complex than a simple loop. The
length of an attractor of the entire network is the least common multiple of the attractor lengths
on the components. The attractor number of the network is at least as large as the product of
the attractor numbers of the components. The main conclusions obtained for components and
summarized above can therefore by generalized to the entire network.

It will be interesting to see how these results are affected when nonrandom networks, such
as real gene regulation networks, are considered. Clearly, they are not updated in parallel. Some
networks, such as in budding yeast [7] appear to be very robust with respect to the introduction
of delays. This means that their choice of connections and functions is such that the update
sequence does not matter much. It remains to be seen if this is a general feature of all those
networks that can be described by using a Boolean idealization.
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