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Abstract. Intense heavy ion beams from the Gesellschaft für Schwerio-
nenforschung (GSI-Darmstadt) accelerator facilities are investigated for their
potential to drive inertial fusion targets and are currently used to generate and
probe high-energy-density (HED) matter. The existing heavy ion synchrotron
facility SIS-18 delivers intense uranium beam pulses for experiments with up
to 4 × 109 ions per bunch at a charge state of q = 73+. Higher intensities are
potentially available at lower charge states, when related loss mechanisms can
be overcome. We have observed intensity-dependent beam losses in SIS-18. The
origin of these beam losses is attributed to processes changing the charge state of
ions, which is predominantly due to collisions with rest gas atoms. The resulting
change in the mass over charge ratio m/q leads to modified trajectories in disper-
sive beam transport elements, and finally to the loss of the particle at the vacuum
tube wall. At the impact position secondary particles are produced by ion-induced
desorption and as a result the pressure in the vacuum tube is increased locally.
This local rise in pressure in turn leads to increased charge changing processes
starting an avalanche process that may eventually lead to a complete loss of the
beam during a few turns in the synchrotron. In this paper, we discuss a method to
control the problem of desorbed gases with specifically designed beam catchers
at critical positions. We have further developed a program package to calculate
the most important beam loss mechanisms and to couple them to the dynamic
vacuum problem. The basis of this simulation is an ion–optics routine where
relevant atomic processes and the effects of dynamic vacuum are implemented.
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1. Introduction

The success of nuclear and particle physics of the past decades is intimately connected to
the impressive development of accelerator physics and accelerator technology, which was
striving forever increasing particle energies. A new trend is, however, observable. A number
of applications call for very high beam intensities and beam power. One of these research fields
is Inertial Fusion Energy (IFE), and an accelerator driver for this purpose may well be viewed
as the ultimate challenge for accelerator physics, since the Inertial Confinement Fusion (ICF)
scenario requires a total energy of a few MJ to be delivered into a beam spot of millimetre size,
within a time range of approximately 10 ns.

Today heavy ion driven fusion in many respects is still a field of basic science issues. Existing
accelerator facilities, which are predominantly built for nuclear and particle physics are used to
address key issues of ion driven fusion (see [1]–[3]). The Gesellschaft für Schwerionenforschung
(GSI) accelerator is one example for this concept [4]. Recently a proposal to build a new machine
at GSI for antiproton and ion research has been approved [5]. Figure 1 shows the new accelerator
together with the existing machine. The new accelerator consists of a heavy ion synchrotron,
which actually is composed of two rings which are capable to produce ion beams with a magnetic
rigidity of 100 and 300 Tm.

The new accelerator facility relies on the existing SIS-18 synchrotron as an injector.
Currently most experiments which call for highest intensities are performed with a uranium
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Figure 1. Layout of the new accelerator facility at GSI.

ion beam at a charge state of 73+. In a recent experiment to study properties of high-energy-
density (HED) matter, a total number of 4 × 109 particles were transported to the target area in a
bunch of approximately 120 ns focused to a sub-millimetre spot. Even higher intensities will be
available using uranium ions with a charge state of q = 28+, and it is planned to fill the SIS-18
synchrotron up to the space charge limit of about 2 × 1011 particles at the injection energy of
11.4 MeV u−1.

To prove the feasibility, experiments at the SIS-18 were conducted to test high intensity
uranium operation with low charge states. During these, a varying number of U28+-particles
up to 7.4 × 109 were injected and stored at the injection energy of 11.4 MeV u−1. The results
(see figure 2) showed extremely fast and intensity-dependent particle losses. Fast pressure
measurements, conducted at the same time, revealed a very dynamic behaviour of the residual
gas pressure. These effects were observed at intensities far below the space charge limit of the
machine. An explanation of these observations is the charge change of the beam particles, which
influence the vacuum in connection with ion-stimulated desorption.

Therefore, a quantitative description of the observed effects, which affect the life time
of intermediate charged ion beams need to include calculation of the interaction of the beam
particles with rest gas molecules/atoms and particle trajectories with aperture limits in the ring
structure. In the following, these effects and a method to reduce the losses are summarized.
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Figure 2. Measured intensity of a stored U28+-beam in the SIS-18.

Figure 3. Beam loss processes and interaction with the residual gas in an
accelerator.

2. Beam loss mechanisms

Particles of the circulating beam (projectiles) in the vacuum of a ring accelerator undergo several
effects, which affect their storage time in the ring (see figure 3). The projectile ionization and
eventually radioactive decay leads to a change of the particle’s m/q ratio. In dispersive beam
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transport elements, this results in a strong deviation of the trajectory in comparison to the reference
ion. Similar to Coulomb scattering, this will lead usually to an impact at the vacuum tube or
acceptance defining devices (depending on the machine’s acceptance). For simplification, we do
not take into account intra beam scattering, resonances caused by magnet errors or space charge
effects at the moment.

All mentioned effects may lead to particles hitting the vacuum tube with high energies and
therefore initiate there desorption of secondary particles which are loosely bound to the surface
(the binding energy is usually a few eV). Two cases of ion-stimulated desorption have to be
considered:

1. Ion impact under grazing incidence of the projectile ion with high projectile energy
(�1MeV).

2. Impact of ionized rest gas molecules under nearly perpendicular angle of incidence with
low energies (acceleration by the beam potential to a few keV).

The produced local gas cloud can be ionized and repeat the last process, but this is neglected
due to simplification. Continuous pumping and outgassing of metal surfaces is resulting in
an equilibrium vacuum pressure for all rest gas components. In the following, the effects are
described in detail.

2.1. Projectile ionization

The heavy and fast beam ions are ionized by collisions with residual gas particles (which
are virtually at rest). The charge exchange can occur either as electron loss or electron
capture. The cross-sections for these effects in the typical energy range of modern accelerators
(MeV u−1 . . . GeV u−1) have been measured only for a few ion species. For higher (but still
non relativistic) energies, Olson et al [6] have calculated charge exchange cross-sections for
U28+ in the order of 1 × 1016 . . . 1 × 10−20 cm2 atom−1. If one sums over all charge exchange
cross-sections of all rest gas components, the charge exchange rate �PI is given by

�PI = βc
∑

i

niσi(E, q), (1)

where β is the relativistic factor, c the speed of light, ni the particle density of the rest gas
component i and σi is the projectile energy (E) and charge state (q)-dependent charge exchange
cross-section. The accelerator’s momentum acceptance may be large enough, that particles with
charge exchange survive several turns (this is the case especially in a storage ring or a synchrotron
with a high tune).

2.2. Single Coulomb scattering by rest gas particles

Beam particles can be scattered by collisions with rest gas particles. Under the assumption, that
bound electrons do not contribute to scattering, but to the energy loss [7], Madsen [8] has found
that the beam loss rate for single Coulomb scattering �CS can be described as

�CS = 2πZ2r2
pcnsc

A2γ2β3

(〈βx〉
εacc,x

+
〈βy〉
εacc,y

)
, (2)
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where rp = 1.535 × 10−18 m is the classical proton radius, 〈β〉 is the average beta function and
εacc the acceptance of the accelerator. A is the mass number and Z the nuclear charge number of
the ion. Finally, nsc is the Coulomb scattering density, which is given by

nsc =
∑

i

Z2
i · ni, (3)

where n is the particle density and Z the nuclear charge number of a particular vacuum
component i. The loss rate for intermediate charged ions by Coulomb scattering in the typical
energy range of an accelerator (MeV u−1 . . . GeV u−1) is three to four orders of magnitude lower
compared to the loss rate by projectile ionization.

2.3. Radioactive decay

When accelerating radioactive nuclei for nuclear structure or neutrino experiments, e.g. a β-decay
changes the charge state and momentum of a projectile ion. At high energies, the momentum
over charge ratio �p/�q deviation of the daughter product, caused by the energy change, is
much smaller than the deviation caused by the charge state change. The loss rate by radioactive
decay �β is a purely statistical process and described by

�β = 1

γτ
= ln(2)

γt1/2
, (4)

where t1/2 is the half-life time of the radioactive particle and γ the relativistic factor.

2.4. Summary of the loss mechanisms

If we summarize the above mentioned loss mechanisms, we find the total loss rate of the primary
beam (projectile) �P in the vacuum to be

�P = �CS(ni, β) + �PI(ni, β) + �β(β). (5)

This equation can be rewritten in order to derive the time-dependent number of primary beam
particles N (eventually consisting of different charge states j):

Ṅj = −Nj · �P(ni, β). (6)

If one considers only static vacuum conditions (ni = const.), the solution of (6) would be an
exponential decay of the particle number. In order to make the calculation realistic, we have to
introduce a dynamic vacuum behaviour in the next section.

3. Accelerator vacuum

To complete the description of the interaction between the beam and the residual gas, one has to
take into account the target ionization and desorption process. Both are described in the following,
then we can complete the formalism with the dynamic vacuum calculation.
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3.1. Target ionization

The gas molecules (virtually at rest) can be ionized by the fast and heavy beam projectiles. This
results in a free electron and an ionized rest gas molecule, which can be accelerated to the vacuum
tube by the beam potential. There it will hit the vacuum tube under nearly perpendicular angle of
incidence at energies of a few keV or less (depending on the beam space charge potential). The
cross-section for the target ionization σB can be described by the well known Bethe formula [9]

σB = 4πa2
0

α2

β2

[
M2

i

(
ln

β2

1 − β2
− β2

)
+ Ci + γi

α2

β2

]
, (7)

where a0 is the classical Bohr atom radius and α the fine structure constant. Mi, Ci and γi are target
specific parameters, which were determined empirically in [9]. This formula is independent of
the projectile’s charge and mass. The sign of the charge state is only important at energies lower
than ≈2 MeV u−1. Then the collision is described in terms of the atoms as a whole, not only as
a Coulomb collision of the target electrons with the projectile.

For particles with charge states q > 1, Gillespie [10] found that the target ionization cross-
section σTI scales with

σTI = q2 exp

(
−λ|q|α

2

β2

)
σB, (8)

whereλ is an empirically determined target specific parameter. For common vacuum components,
one can find these parameters in [11]. The ionized-molecule production rate by target ionization
�TI is

�TI = βc
∑

i

niσTI,i(q). (9)

3.2. Ion impact-induced desorption

If particles with a trajectory modified by the above mentioned effects are not strongly focused
towards the beam axis, they will hit the vacuum tube under grazing incidence (or they will hit
acceptance limiting devices under nearly perpendicular angle of incidence). Molecules, attached
loosely to the wall’s surface are then desorbed at calculated rates of η � ≈ 5 × 103 . . . 30 × 103

molecules ion−1 [12]. Other calculations at the Relativistic Heavy Ion Collider (RHIC) at the
Brookhaven National Laboratory (BNL) [13] estimated desorption rates of up to η� ≈ 106 at
higher energies. Since this parameter is not well known and changes a lot with surface treatment,
it is left open and estimated by fitting to measurement results.

Ionized-rest gas molecules accelerated by the beam potential will hit the vacuum tube under
nearly perpendicular angle of incidence with energies of a few keV or less, as stated before. This
leads to moderate desorption rates in the range of η⊥ ≈ 1, . . . , 10 (see [14]).

The ion-stimulated desorption effect is not easily reducible by means of surface treatment
(e.g. an Ar-glow discharge-treated surface would contain a lot of Ar, which can easily
be desorbed). Investigations at the BNL [15] have shown that the desorption rate depends on
the electronic energy loss (dE/dx)2 of the ion in a given material. Since the physics behind the
desorption effect itself is not understood in all details, further investigations of the Ultra High
Vacuum (UHV) group at the desorption test stand at GSI have shown that blank, polished copper
or silicon surfaces have a very low desorption rate. No material with a zero desorption rate has
been found so far.
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NEG-coated
secondary chamber

Absorber
wedge

Circulating
ion beam

Figure 4. Design concept of a desorption gas controlling ion catcher.

3.3. Dynamic vacuum stabilization concepts

The new synchrotron design concept developed for the SIS-100 in the FAIR project is based
on residual gas pressure stabilization by means of a dedicated ion catcher system and strong
pumping of cold surfaces. A properly designed system of catchers must control most of the
ionized or scattered particles, before they reach the vacuum pipe and generate desorption gases.
Furthermore, the catcher system should not reduce the acceptance of the machine. This can be
achieved by a properly designed lattice cell and positioning of the catchers [16].

Investigations of the ion-stimulated desorption effect using Elastic Recoil Detection
Analysis (ERDA) technology are conducted at GSI. As mentioned before, no material with
a desorption rate of η ≈ 0 has been found. Thus a properly designed collimator should confine
the produced desorption gases, so that they are prevented from reaching the beam axis (and
produce more charge exchange there). Such a system was proposed in [17].

In order to control the charge change-generated beam losses and the produced desorption
gases, one can consider a solution by a properly designed catcher system as shown in figure 4. It
uses a wedge-shaped beam absorber on which the desorption gases are produced at the side of the
wedge pointing away from the main beam. The desorption gases can be pumped away quickly
by a Non Evaporable Getter (NEG)-coated surface, before they reach the beam axis again. For
a successful installation, the positions of the beam impacts on to the vacuum chamber must be
known. The deviation of the m/q ratio of a particle with a different charge state q compared to
the reference ion with the charge state q0 is equivalent to a momentum deviation �p/p of

�p

p
= q0

q
− 1. (10)

The calculation of the impact position can be determined via linear beam optics, following the
description given in textbooks as [18, 19]. To each ion optical element, a transfer matrix is
assigned, which can be applied to particles with momentum deviation, too. Elements with higher
order effects (e.g. sextupoles) can be described by other algorithms (e.g. like a kick).

3.3.1. Efficiency of a catcher system. Under the assumption of a smooth pressure distribution,
the probability of charge exchange processes is distributed homogeneously over the accelerator’s
circumference. Figure 5 shows the predicted trajectories of the charge exchange U28+ → U29+
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Figure 5. Calculated trajectories of U28+ → U29+ in the horizontal plane
of SIS-18 section S02. Dipoles are cyan, quadrupoles in red/blue and the
U28+-envelope in yellow. Note the step in aperture in the RF cavity.
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Figure 6. Calculated impact distribution of U28+ → U29+ in SIS-18.

in one section of SIS-18, whereas figure 6 shows a histogram of the impact intensities along
the whole circumference. The peaks are situated after the dipoles in each lattice cell. In order to
reduce impacts on the wall efficiently, the catchers should be situated ‘upstream’ of the positions
with high impact probabilities.

For a detailed analysis of the quality of a catcher system, the number of particles hitting the
catchers Nc and the wall Nw defines the catching efficiency θ with

θ = Nc

Nw + Nc
. (11)
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Table 1. Vacuum parameters.

Parameter Unit

Equilibrium pressure p0 Pa
Equilibrium vacuum components pi,0 %
Components of the desorption gas Di %
Effective pumping speed S m3 s−1

Temperature T K

Generally, the catching efficiency turns out to be a function of the beam emittance as well as a
function of the machine’s acceptance, the beam energy and the position of the catchers.

3.4. Dynamic vacuum calculation

The key parameters for the calculation of the residual gas pressure dynamics in synchrotrons or
storage rings are summarized in table 1. The dependence of the pumping speed on the residual
gas pressure is neglected for the moment. Other parameters such as volume, surface, etc. can be
extracted from the lattice and catcher geometry. It is sufficient to assume an averaged pressure
because all mentioned loss mechanisms are linear in pressure.

Finally, the time-dependent density of each vacuum component i is given by

ṅi = −Ṅj[η� ,i (1 − θ(E, q)) + ηc,iθ(E, q)] + η⊥,i�TI(ni, β) + Qi,o − Qi,p, (12)

where ηc is the desorption rate of the catcher system, Qo the outgassing rate and Qp the effective
pumping rate of the vacuum system.

Equations (6) and (12) describe a system of coupled differential equations, which is in
general not easily solvable (β and E are time dependent during acceleration). However, solving
this system by numerical methods (e.g. by Euler’s method with a time increment �t = Tturn) is
comparably easy.

All above mentioned loss mechanisms are linear in pressure; therefore it is correct to neglect
the spatial dependency. This is not the case for the calculation of the catching efficiency because
the vacuum pressure and therefore the charge exchange process is not uniformly distributed
along the circumference. To consider this effect, one has to calculate a spatially resolved pressure
profile, which is described in the following.

3.5. Spatially resolved pressure calculation

For an exact estimation of the catcher efficiency, a longitudinal resolved pressure distribution is
needed. Only a few vacuum calculation codes do exist for the pressure range of interest (UHV,
i.e. p < 1 × 10−7 mbar), e.g. VAKTRAK [20] or VAKDYN [21]. Most of them add vacuum
conductance values for a given lattice. As shown in [22], this assumption is wrong in some cases.
The algorithms become numerically unstable at extreme pumping speeds, very low pressures or
very small conductance values. To overcome these problems, the Monte Carlo algorithm given
in [23] is summarized as follows.

The vacuum pressure in ring accelerators is typically in the regime of molecular flow, e.g.
the typical dimensions of vacuum tubes d is small compared to the mean free path length of rest
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gas molecules λ � d. One can calculate the pressure distribution by using the convenient way
of describing an ion–optics lattice by n short elements.

The calculation is launched by a particle, which is thermally desorbed out of a surface with
a cos-distribution around the surface normal. Then the path of the molecule under observation
is tracked by a simple raytracing algorithm, until it reaches a pump (or pumping surfaces,
respectively). The resulting path length is stored in a matrix 〈Sij〉, where each matrix element
describes the mean free path length of a molecule in a lattice element j, which was produced in
the lattice element i. For a Maxwell–Boltzmann–distribution the average reciprocal molecular
speed

〈
1
v

〉
is given by

〈
1

v

〉
= 4

πcG
, (13)

where cG is the average molecular speed, given by

cG =
√

8kBTG

πm
, (14)

where kB is the Boltzmann constant, TG the gas temperature and m the molecule’s mass.With (13),
the average residence time τ of a molecule in lattice element j, which was produced in lattice
element i is given by

〈τij〉 =
〈

1

v

〉
〈Sij〉 = 4

πcG
〈Sij〉. (15)

The absolute number of molecules in element j, which were produced by thermal outgassing
with the rate Ṅi in Element i, therefore is

Nij = Ṅi〈τij〉. (16)

Finally, the molecules do not interact with each other, so the number density in one element is
given by superposition of the thermal outgassing in all elements

nj = 1

Vj

∑
i

Ṅi〈τij〉. (17)

The calculation of the pressure profile is therefore reduced to a simple molecular raytracing
through the ion–optic elements. As the lattice is constant, one has to calculate the 〈Sij〉-matrix
only once, which is an advantage for repeated calculations. An example of the pressure profile
calculation by this algorithm is shown in figure 7. The thermal outgassing rate was assumed to
be Ṅ = 4 × 10−12 mbar l/(s cm2), which is a common value for stainless steel. The measured
data agrees quite well with the simulation in all but in two positions which is due to the fact that
the SIS-18 is not a closed ring, but has injection and extraction channels. These were excluded
from the calculation.
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Figure 7. Calculated longitudinal pressure profile in the SIS-18.

4. Synchrotron cycle

To complete the quantitative description, all characteristic phases of a synchrotron’s acceleration
cycle should be accounted for with their typical systematic losses. For example, the beam current
during a multi turn injection process is continuously rising, whereas it is rising stepwise in case
of a bunch to bucket stacking. Fast and slow extraction have other characteristic loss mechanisms
(such as systematic losses).

The different phases of a synchrotron cycle are shown in figure 8. During all these phases,
systematic losses can occur, especially at injection by filling an already occupied volume of the
phase space or mismatch during the RF-capture process.

5. Simulation code ‘STRAHLSIM’

All above mentioned effects like Coulomb scattering, projectile and target ionization,
radioactive decay, desorption, outgassing, pumping, longitudinally resolved pressure calculation,
acceleration cycle and the ion optics have been implemented in the program package
‘STRAHLSIM’. All parts of the program were written in the language C#. The Graphical User
Interface (GUI) runs on every PC with .NET Framework CLR installed (currently Windows or
Linux) and uses automatically all processors available.

For the most common vacuum components (H, C, N, O, Cl and Ar) and certain projectiles
(U10+ from [24], U28+ from [6], U73+ from [25], Pb54+ from [11] and Au32+ from [26]), calculated
or measured charge exchange cross-sections do exist in different energy ranges. These data
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Figure 8. Schematic plot of the beam intensity over a typical acceleration cycle
with various types of systematic beam losses.

are read into the program from a text file. Missing data in the energy dependence are inter-/
extrapolated via exponential functions from this data.

Presently implemented ion optical elements are drift spaces, dipoles (rectangular or bend,
both with edge angles), quadrupoles, combined function magnets (dipole and quadrupole),
sextupoles and wedge-shaped catchers. For all optical elements apertures can be defined (this is
not the case for the commonly used ion–optic codes MAD-X [27] and MIRKO [28]). Elliptical
or rectangular cross-sections (both with offsets relative to the optical axis) can be chosen.

The beam envelopes, calculated with ‘STRAHLSIM’ were compared and agree with the
codes MIRKO and WinAGILE [29]. All properties of each element can be directly changed
via the GUI. An import and export of WinAGILE, MIRKO and AML (Accelerator Markup
Language, a XML-structure [30]) data files is possible, to MAD-X file format only an export is
currently implemented.

Initial beam parameters are entered in x (horizontal) and y (vertical) direction as TWISS
parameters in the phase-space. At present, two distribution functions for the beam are supported
(both cut hard at the 2-σ k-v-edge): Bi-Gaussian and rectangular. The selected tune and incoherent
tune shift after injection can be displayed together with the systematic resonance lines in a simple
tune diagram.

The program is able to distribute the catchers automatically over longitudinal positions
(determined by the element’s name). The transverse position can be varied over a certain range
(in units of the beam width at place of the catchers).
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Figure 9. Measured and calculated number of U28+-particles and calculated
pressure in the SIS-18. Note: All parameters but the number of injected particles
were kept constant.

6. Benchmarking and applications

Originally, STRAHLSIM has been developed for the intermediate charge state, heavy ion beam
operation (e.g. U28+) in the SIS-18 and SIS-100 for the FAIR project. The verification of the
physics model was performed by comparing simulations with the experimental data mentioned
in the introduction. A very good agreement with the experimental data was achieved, as shown
in figure 9. The pressure rise due to injection losses is very large. However, meanwhile the code
was extended and applied to several other machines and projects elsewhere.

6.1. SIS-18 upgrade

The SIS-18 will be upgraded [31] for highest beam currents required for the FAIR project [5].
The dynamics of the residual gas pressure was simulated with STRAHLSIM. To minimize the
losses in SIS-18 during acceleration, simulation showed that beside the equilibrium pressure of
the XHV-system, the injection losses of the multi turn injection, a large distributed pumping
speed and an effective catcher system are most critical.

Especially the injection losses produce a very high pressure bump in the range of several
orders of magnitude during a few µs, which has to be pumped quickly. For this purpose, a NEG
coating of the dipole and quadrupole chambers is foreseen. This should deliver a distributed
pumping speed, which is a factor of 100 higher than the currently installed.

In addition, a dedicated catcher system for the U28+ operation will be installed to control
the charge change-generated beam losses at high current operation and confine the desorbed
gases.

6.2. SIS-100 lattice design

A new lattice design concept has been developed for the SIS-100 [32]. Each cell in the SIS-100
lattice has been designed as a charge separator for the charge state 29+ of the reference ion U28+

(see figure 10; a high fraction of U29+ is kept temporarily in the acceptance and will be scraped off
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Figure 10. Plot of the SIS-100 lattice in the horizontal plane showing catchers
and trajectories for U28+ → U29+.
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Figure 11. Trajectories in the horizontal plane of radioactive decay products
6He2+ →6 Li3+ (figure 11(a)) and 18Ne10+ →18 F9+ (figure 11(b)) in the proposed
PS replacement lattice G7.

a few turns later). The catchers are positioned that the acceptance of the machine is not affected.
It turned out that the commonly used FODO and triplet focusing structures are not well suited
for this kind of optimization, because a beam waist cannot be achieved at every position of good
separation of U29+.

6.3. Beta beams

Within the framework of the beta beams project [33], beam loss and pressure evolution
calculations for the CERN PS, SPS and the planned RCS were done. A new lattice for the
PS was proposed by the GSI study group [34] to generate a peaked-loss distribution of the
radioactive decay products with maximums in between the magnets (see figure 11). This was
done to protect the PS magnets from impact of the beta beam decay products.

In figure 12(a), the calculated time evolution of the stacking process and number of stored
and lost radioactive 6He2+ particles in the CERN PS is shown. It is shown in figure 12(b), that a
stabilization of the dynamic vacuum pressure to values below 1 × 10−8 mbar is possible with a
pumping speed enhancement of a factor 16.
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evolution in the CERN PS during operation with β-beams.
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Figure 13. Measured and calculated number of Au32+ particles and pressure
evolution in the AGS Booster.

6.4. AGS booster

The beam loss during the AGS booster operation with low charge state heavy ions (Au32+) was
calculated (STRAHLSIM simulation with measurements, see figure 13). It was shown that the
current operation with 5.7 × 109 Au32+ particles is at the intensity limit of that machine [35],
what is similar to the present operation of SIS-18 with U28+.

7. Summary and limitations

The program ‘STRAHLSIM’ was developed to simulate beam losses in synchrotrons, operated
at high intensities with intermediate charged heavy ions. The basic processes underlying these
beam losses are charge exchange and desorption effects, generating a dynamic vacuum behaviour.
Furthermore, the program has the ability to estimate the vacuum limited intensity border of current
machines and to find appropriate measures to overcome this limit.
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Nonlinear and collective effects such as space charge or resonances were not taken into
account so far. Due to a lack of experimental data, charge exchange cross-sections are extrapolated
and therefore uncertain at very high energies.
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