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Abstract. Random Boolean networks (RBNs) were introduced in 1969 by
Kauffman as a model for gene regulation. By combining analytical arguments and
efficient numerical simulations, we evaluate the properties of relevant components
of critical RBNs independently of update scheme. As known from previous study,
the number of relevant components grows logarithmically with network size. We
find that in most networks all relevant nodes with more than one relevant input
sit in the same component, while all other relevant components are simple loops.
As the proportion of nonfrozen nodes with two relevant inputs increases, the
number of relevant components decreases and the size and complexity of the
largest complex component grows. We evaluate the probability distribution of
different types of complex components in an ensemble of networks and confirm
that it becomes independent of network size in the limit of large network size. In
this limit, we determine analytically the frequencies of occurrence of complex
components with different topologies.
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1. Introduction

Random Boolean networks (RBNs) are often used as generic models for the dynamics of complex
systems of interacting entities, such as social and economic networks, neural networks, and gene
or protein interaction networks [1]. The simplest and most widely studied of these models was
introduced in 1969 by Kauffman [2] as a model for gene regulation. The system consists of
N nodes, each of which receives input from K randomly chosen other nodes. The network is
updated synchronously, the state of a node at time step t being a Boolean function of the states of
the K input nodes at the previous time step, t − 1. The Boolean update functions are randomly
assigned to every node in the network, and together with the connectivity pattern they define the
realization of the network. For any initial condition, the network eventually settles on a periodic
attractor. Of special interest are critical networks, which lie at the boundary between a frozen
phase and a chaotic phase [3]–[5]. In the frozen phase, a perturbation at one node propagates
during one time step on an average to less than one node, and the attractor lengths remain finite
in the limit N → ∞. In the chaotic phase, the difference between two almost identical states
increases exponentially fast, because a perturbation propagates on an average to more than one
node during one time step [6].

During the last few years, great progress has been made in the understanding of critical
networks with K = 2 inputs per node, see [7]–[15]. They contain three classes of nodes, which
behave differently on attractors. Firstly, there are nodes that are frozen on the same value on every
attractor. Such nodes give a constant input to other nodes and are otherwise irrelevant. They form
the frozen core of the network. Secondly, there are nodes without outputs and nodes whose outputs
go only to irrelevant nodes. Though they may fluctuate, they are also classified as irrelevant
since they do not influence the number and periods of attractors. Thirdly, there are relevant
nodes, which belong to the nonfrozen nodes and lie on directed loops built of links between
relevant nodes, or they connect such loops by chains of relevant nodes. These nodes determine
completely the number and period of attractors. A connected set of relevant nodes is called a
relevant component. The relevant subnetwork consists of the disjoint relevant components. The
nonfrozen nodes that are not relevant sit on trees rooted in the relevant components. Numerical
simulations and analytical estimation in [8] showed that the number of nonfrozen nodes scales
in the limit N → ∞ as N2/3 and the number of relevant nodes as N1/3. An analytical study of the
distribution of attractor lengths in the limit of big network size in [9] is shown in [12] to contain the
same result. The corresponding probability distributions for the number of nonfrozen and relevant
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nodes in terms of scaling functions have been obtained in [13, 14] by means of combination
of analytical calculations and numerical simulations. One application of analytical approach
developed in [15] extends the findings of [8] and gives slightly better numerical approximations
for the scaling functions. In [13], it was additionally shown that the number of nonfrozen nodes
with two relevant inputs scales as N1/3, and that the number of relevant nodes with two relevant
inputs remains finite in the limit N → ∞. Probability distributions for these two quantities were
also given. From these results it follows that just a few components are complex and include
relevant nodes with two relevant inputs, while most relevant components are simple loops whose
number is proportional to ln

√
N̄nf for large networks, N̄nf being the mean number of nonfrozen

nodes. The nonfrozen part of a critical K = 2 network is much like a critical network with K = 1
inputs per node and only the two nontrivial Boolean functions ‘copy’ and ‘invert’. All N nodes
in those networks are nonfrozen, and the relevant nodes are arranged in simple loops. The mean
number of relevant nodes is proportional to

√
N [15, 16], the mean number of loops equals

ln
√

N for large networks, the number of loops of length l is Poisson distributed with mean 1/l

for l � √
N [12], the asymptotic probability distribution for the number of relevant nodes is [13]

p0(Nrel) = Nrel

N
e−N2

rel/2N.

The number and period of attractors of a network is given by the number and length of
attractors of its relevant subnetwork. These are obtained by combining the attractors of the
individual relevant components. If all relevant components were simple loops, it would already
follow that the number and length of attractors increases with system size faster than any power
law [12, 17]. Complex components make the number of attractors even larger, since they possess
themselves exponential numbers and periods of attractors [18]. Therefore, complex components
are important for the understanding of dynamics of large RBNs.

Complex components are of interest also for other reasons. As shown in [19], Boolean
network models can be appropriate models for the dynamics of genetic regulatory systems.
Specialized functional blocks should play an important role in such models, and functional blocks
can be modelled as complex components, when dynamics can be treated as Boolean. Since the
deterministic parallel update rule used in many Boolean network models is not biologically
realistic, other, and in particular stochastic, updating schemes have been investigated [11, 20].
While they affect the number of attractors, they do not influence the classification in frozen,
nonfrozen, and relevant nodes. The relevant components and the position of critical line in the
phase diagram [5, 6] of Boolean networks are the same for all update rules [10]. Components
and motifs (smaller units of nodes) play an important role at determining whether an attractor is
robust with respect to stochastic fluctuations [21].

Because of their importance for the dynamics of Boolean networks, we study in this paper
complex relevant components of RBNs with K = 2. Future study will have to move on to more
realistic network structures. In the following, we will first summarize previous results for relevant
nodes and the components formed by them, which is the basis of our computer simulations and
analytical considerations. Then, in section 3 we will argue that most networks have not more than
one complex relevant component. In section 4, we list all possible complex components with one
and two nodes with two relevant inputs and calculate their frequencies of occurrences. In section 5,
we classify complex components and discuss their probability distribution both analytically and
by using numerical simulations. The probability distribution for the total number of relevant
components is evaluated in section 6. A summary of our findings is given in section 7.
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2. Previous results for relevant nodes and relevant components

The analytical calculations and numerical simulations performed in the subsequent sections are
based on methods and results presented in [13]. We summarize here those results of [13] that
will be used later.

Critical RBNs with K = 2 inputs per node are obtained not only when all possible Boolean
functions are chosen with equal probability, but also when different classes of Boolean functions
are assigned different weights, provided that the proportion β of constant functions (for which the
output value does not depend on the input values) equals the proportion of reversible Boolean
function (for which the output changes whenever any input value changes). The remaining
Boolean functions are canalizing. By γ, we denote the probability of choosing a canalizing
function that yields one value for three different input values combinations and once the other
output value. The remaining proportion 1 − 2β − γ of functions are those that respond only to
one input. The results cited in the following depend on the parameters β and γ .

The starting point for the determination of the probability distribution for the number of
nonfrozen nodes was in [13] to introduce a stochastic process, which finds the frozen core of
nodes frozen on all attractors. This process was initiated with nodes having frozen functions, it
then identified iteratively nodes which become frozen due to receiving inputs from frozen nodes.
Later, only nonfrozen nodes and their connections were considered. The idea for identification
of relevant nodes was to first identify nodes without outputs as irrelevant nodes and then to
determine iteratively all other nodes whose outputs go only to irrelevant nodes. These nodes are
also irrelevant.

The results were the following: if we denote with Nnf the number of nonfrozen nodes and
define the scaling variable

y = Nnf

(N/β)2/3
, (1)

the probability distribution for the number of nonfrozen nodes depends for large N only on y

and is very well approximated by the expression

G(y) � e−y3/2(1 − 0.5
√

y + 3y)/(4
√

y). (2)

Most of these nonfrozen nodes have only one relevant input, and the number of nonfrozen nodes
with two relevant inputs N2 is distributed according to

f(a) = 2

3a1/3(1 + γ/β)2/3
G

[(
a

1 + γ/β

)2/3
]

, (3)

with a = N2/
√

Nnf .
If we denote by Nrel the number of relevant nodes and define the scaling variable

z = Nrel(
N

β+γ

)1/3 , (4)
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the probability distribution for the number of relevant nodes depends for large N only on z and
is given by

P(z) =
∫ ∞

0
da

f(a)

a1/3
Ca

( z

a1/3

)
. (5)

Ca(t) is the probability that a random walk that starts at the origin at time t = 0 and that steps
to the right with a rate t and to the left with a rate a leaves the origin for the last time at t. The
function P(z) decays exponentially for large z, and its shape depends on the parameters β and γ

through their combination 1 + γ/β. P(z) becomes broader as this combination increases.
Most relevant nodes have one relevant input. The full ensemble probability P̃(m; z) for (4)

to be in the range (z, z + dz), while m of the relevant nodes have two relevant inputs, depends
again on β and γ and is given by the expression

P̃(m; z) =
∫ ∞

0
da

f(a)

a1/3
Ca

( z

a1/3

) Pr(m|za−1/3)Pl(m|za−1/3)∑
k Pr(k|za−1/3)Pl(k|za−1/3)

, (6)

with

Pr(m|t) = 1

m!
e−t2/2

(
t2

2

)m

(7)

and

Pl(m|t) = 1

m!
e−at(at)m (8)

being the probability distributions of steps to the right and left of the mentioned random walk.
An important observation is that P̃(m; z) does not depend on N in the limit of large network
size. The mean number of relevant nodes with two relevant inputs is therefore finite in this limit.

The underlying stochastic processes can be implemented directly on the computer in order
to obtain the number of relevant nodes Nrel and the number of relevant nodes with two relevant
inputs m, without the need for elaborate direct simulations of network dynamics. By randomly
connecting the relevant nodes obtained in a simulation run, we generate a network from the
ensemble of relevant subnetworks. There, a finite fraction ε of relevant nodes are arranged in
simple loops. Simple loops of length l appear [13] with probability

P(l) = 1/l for l < lc with lc ∼ Nrel (9)

in the limit Nrel → ∞. The other (1 − ε)Nrel relevant nodes sit on complex components
containing nodes with two relevant inputs.

3. Number of complex relevant components

We argue in the following that most relevant nodes with two relevant inputs reside in one
component. We calculate the probability that this is not the case and show it to be small and to
decrease as 1/m for large m.
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We neglect the cases where one relevant node has two relevant inputs and two relevant
outputs, as well as where a node has more than two relevant outputs. The probability for such
nodes vanishes in the limit of large network size. Then, the number of relevant nodes with two
relevant outputs is identical to the number of relevant nodes with two relevant inputs m.

In the following, we first fix the value of m. Later, we will perform summations over m

using its probability distribution p(m). For a given m, the ensemble of relevant networks can
be constructed by connecting the 2m nodes with two relevant inputs or two relevant outputs
amongst one another, each realization of connections appearing with equal probability, and by
subsequently inserting the nodes with one relevant input into the existing connections. The
probability that the m nodes are not in the same component is thus the probability that the 2m

nodes do not form a fully connected directed graph. We denote this probability by Gm, the
corresponding number of possible connections of the 2m nodes is Nm = (3m)!Gm. The strategy
for calculating Nm is the following. For some connection of the 2m nodes, which does not lead
to a fully connected graph, the whole graph consists of two or more fully connected independent
subgraphs. We consider all possible partitioning in such connected subgraphs, each partitioning
contributing to Nm. The last contribution in the overall sum comes from a partitioning in m

connected pairs of nodes, one with two inputs and one output and one with two outputs and one
input. For a partitioning, the m nodes with two relevant inputs are arranged in ni groups, each
with i nodes, so that m = ∑

i ini and
∑

i ni > 1. For a given partitioning, we count the number
of ways to construct it, paying attention to avoid double counting. The general formula reads

Nm = (m!)2
∑

partitions{ni|i}

∏
i

((3i)! − Ni)
ni

ni!(i!)2ni
, (10)

with Nm = (3m)! Gm,

since there are ((3i)! − Ni) ways to obtain a connected subgraph with 2i nodes. The sum is over
all nontrivial partitions of m nodes in ni groups of i nodes. We get G1 = 0, G2 = 0.1, G3 = 0.1,
G4 ≈ 0.08, G5 ≈ 0.07.

To estimate the asymptotic behaviour for large m, we note that the largest contribution
for large m comes from the partitioning in one connected pair and a fully connected rest. We
approximate Gm by the contribution from a partitioning in one connected pair and an arbitrarily
connected rest: 6m2(3(m − 1))!/(3m)! → 2/(9m) for large m. We conclude that all nodes with
two relevant inputs are usually gathered in one complex component, even for small values of m.

4. Relative frequencies of topologically different components

The complex relevant components have nontrivial dynamics and can be associated with functional
blocks in real genetic networks. So far, we characterized relevant complex components by the
number of nodes with two relevant inputs found in them. Now, we want to consider the topology
of such complex components. That is only possible for small values of m, for larger m one
could look at a subset of all complex components, defined on some additional grounds. There
seems to be no simple procedure to classify the different complex components according to
their dynamics.

We consider two complex components as different if they possess a different topology.
Components with the same topology but with different numbers of nodes in the different chains
of relevant nodes with one relevant input, have similar dynamics, their main difference being
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Figure 1. Schematic representation of the two topologically different relevant
complex components with one node with two relevant inputs. Arcs stand for one
link or a chain of nodes with one relevant input. Each crossing of arcs marks a
node with two relevant inputs or outputs. Arrowheads depict the inputs of nodes
with two relevant inputs; they appear only where they are important to distinguish
the complex component. The first component appears in a network twice as often
as the second one.

different time delays along chains of nodes. From our study of simple examples of complex
components in [18], we know that changing the length of these chains does not change the
types of attractors and the asymptotic dependence of the mean number and length of these
attractors on the component size. Therefore, we restrict ourselves to consider all possible different
interconnections of relevant nodes with two relevant inputs with relevant nodes with two relevant
outputs, i.e., the different topologies, irrespective of the lengths of the chains between them.

We first consider complex components with one node with two relevant inputs, that is the
case m = 1. The two different possibilities to construct these components were studied in [18]
and are schematically shown in figure 1. In our simulations, the relative probability of obtaining
two simple loops with a chain of nodes between them in a relevant network is 2/3, and the
relative probability of obtaining a simple loop with an extra link is 1/3. For small values of m,
these relative frequencies of the different possible complex components can easily be determined
exactly. One has simply to count the number of different ways to connect the nodes with two
relevant inputs or outputs out of the total number (3m)! leading to the considered component. For
the case of figure 1, the number of ways to construct the two components are 4 and 2 respectively.

The same counting of ways to construct complex components for m = 2 leads to the table
presented in figure 2, whereas one has to be aware of misleading equivalent ways to represent the
same component. To get the corresponding relative frequencies of occurrence one has to divide
the multiplicity in figure 2 by 6!. The first three rows in the figure correspond to distributing
nodes with two relevant inputs or outputs over more than one relevant component, compare
discussion in section 3. The dynamical behaviour of the components in figure 2 can be studied
in detail similarly to [18], if required. It is by analogy clear, though, that one would get many
exponentially long attractors with increasing system size.

5. Distribution of complex components

The findings of section 3 together with the results from [13] cited in section 2 enable us to evaluate
the mean number of relevant nodes with two relevant inputs, the probability distribution for the
number of relevant nodes with two relevant inputs, and the mean number of relevant complex
components per network with a given number of nodes with two relevant inputs.
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Figure 2. All possible topologically different components with m = 2, together
with their multiplicities (number of ways to construct them). Arcs stand for one
link or a chain of nodes with one relevant input. Each crossing of arcs marks a
node with two relevant inputs or outputs. • represent exactly one node. Arrows
depict the inputs of nodes with two relevant inputs, they appear only where they
are important to distinguish the complex component.
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Figure 3. The mean number of nodes with two relevant inputs for β = 1/8 as
function of the network size N. The averaging was performed over 104 network
realizations.

Let us first evaluate the number of relevant nodes with two relevant inputs. Using the
equations cited in section 2, we can write its probability distribution as

p(m) =
∫ ∞

0
P̃(m; z) dz = 1

(m!)2

∫ ∞

0
dz

(z3/2)mP(z)

I0(
√

2z3)
, (11)

where In(z) denotes the modified Bessel function of the first kind and satisfies the relations
I0(x) = ∑∞

m=0(
xm

2mm!)
2 and I1(x) = 2/x

∑∞
m=0 m( xm

2mm!)
2.

The mean number of nodes with two relevant inputs is then finite and is given by

m̄ = 1

2

∫ ∞

0
dz

√
2z3 I1(

√
2z3)

I0(
√

2z3)
P(z) dz. (12)

The integral converges since P(z) decreases exponentially for large z (compare [13]), and the
rest of the integrand grows faster than linearly but slower than quadratically with z. Figure 3
shows results of computer simulations for the values of m̄. With increasing N, they approach a
constant value.

For further convenience, we introduce the notation κ = 1 + γ/β. The dependence of m̄ and
p(m) on the model parameters β and γ is fully determined by the dependence of P(z) on κ.
Since P(z) becomes broader for larger κ (therefore assuming smaller values at small z), see [13],
m̄ increases with κ. This means that increasing κ leads to more relevant nodes with two relevant
inputs. We will look at the dependence of p(m) on κ in more detail later.
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Figure 4. Simulation results for the number cm(nm) of components per network
with nm nodes with two relevant inputs (dotted lines). Simulation results for the
probability distribution p(m) for the number m of nodes with two relevant inputs
per network (solid lines). Theoretical prediction for the probability distribution
p(m) (dashed line). The model parameters used are β = 1/8 and γ = 0 (◦, 	
) or
γ = 1/4 (♦) orγ = 1/2 (�).All simulations were run with 8000 different network
realizations and results were averaged afterwards. Network size was N ∼ 107

(dotted lines), N ∼ 105 (solid lines). Approximation Pfit
γ=0(z) = 0.62 e−0.65z was

used to obtain the dashed curve.

We turn to the discussion of the connection between p(m) and the number of components
with a given number of nodes with two relevant inputs. From section 3, we know that, except for
a small correction, most nodes with two relevant inputs reside in one complex component.
Therefore, the fraction of number of networks, where we find a given value of m, will
simultaneously be the fraction of number of networks where we find complex components (one
complex component) with this number of nodes with two relevant inputs. In figure 4, the dotted
lines represent the mean number cm of components per network with a given number nm of nodes
with two relevant inputs, obtained in our computer simulations by counting the number of such
components in the generated network ensemble for different model parameters. To verify that the
relevant nodes with two relevant inputs usually sit in the same component, we also evaluated
the probability distribution p(m) numerically (solid lines in figure 4). For m > 1 and nm > 1,
the difference between the solid and the corresponding dotted lines in figure 4 is mainly due to
statistical fluctuations. They become larger for larger networks, we therefore used comparatively
small networks with N ∼ 105 to obtain the solid lines. In the rare network realizations with two
complex relevant components (appearing more often with increasing m̄) the smaller complex
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Figure 5. The number of relevant complex components with m nodes with two
relevant inputs is constant for large networks. In the figure,◦ , ♦ and � correspond
to model parameters β = 1/8 and γ = 0, 1/4, 1/2 respectively. All simulations
were run with 8000 different network realizations.

component has mostly one relevant node with two relevant inputs (m = 1), see the data points
for m = nm = 1 in figure 4. Finally, we calculated p(m) analytically with (11). The theoretical
dashed curve in figure 4 agrees well with the simulation results. We only calculated analytical
results for γ = 0. That the number of components with a given value of m is indeed independent
of the system size is shown in figure 5.

We now complete our understanding of simulation results in figure 4 and extract some
data that is needed in the next section 6. For m = 0, the solid lines represent the fraction of
networks without nodes with two relevant inputs. We will use the results for these fractions 0.51,
0.32, 0.27 in figure 6. Network realizations without relevant nodes with two relevant inputs are
indistinguishable from networks in the model with K = 1. In this context we want to mention
that the fraction of ‘frozen’ networks without relevant nodes ∼(β/N)1/3 is negligible in the limit
N → ∞, whereas limz→0 P(z) 
= 0. The dotted curves at nm = 0 represent the number of simple
loops per network. For γ = 0, 0.25, 0.5 this number is 5.1, 4.4, 3.7 respectively. These values
will be shown to be in good agreement with those calculated from analytical arguments in the
next section, see figure 6.
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Figure 6. Left panel: probability distribution for the number of relevant
components per network. Results were averaged over 104 network realizations for
the following model parameters: β = 1/8; γ = 0, 1/4, 1/2; N = 223 ≈ 8 × 106

for γ 
= 1/2 and N = 222 for γ = 1/2. Obtained in simulations results for mean
numbers of components for γ = 0, 1/4, 1/2 are 5.7, 5.1, 4.5 respectively. Using
results of simulations or analytical results for p(m), see section 5 for details,
and (17) we get 5.5, 4.5, 3.6. The agreement between theoretical estimation and
simulations is satisfactory. Half maximal widths of the simulation curves are
5.3, 5.0, 4.6 compared to values 4.43, 4.43, 4.32, determined from (14), whereby
m̄-dependence has been ignored. Right panel: number of simple loop components
per network in K = 2 critical RBNs for the same sets of model parameters and
numerical simulation parameters as in the left panel. Our simulation results for
the mean number of simple loop components in the largest considered networks
for γ = 0, 1/4, 1/2 are 5.1, 4.4, 3.7 respectively. From the estimation (17) we get
5.0, 4.2, 3.3, since all nodes with two relevant inputs are assumed to reside in one
complex component as explained in the main text.

Let us conclude this section by discussing the dependence of p(m) on the parameter κ. For
fixed κ, p(m) is a monotonously decreasing function, which is flatter for larger κ. For fixed m,
the value p(m) as function of κ has a maximum, the position of which moves to larger κ with
increasing m. We see an indication of this in figures 4 and 5, where the data points for κ = 1
are not the highest ones when m is larger than 4. Stronger support comes from an analysis of
Equation (11). The integrand apart from P(z) has one global maximum, which shifts to larger
values of z as m increases. The function P(z) is monotonically decreasing, being flatter and
starting at a smaller value for larger κ.
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From these properties of the two contributions to the integrand, we find immediately that
the value p(m) at a given m as function of κ has a maximum, which moves to larger κ with
increasing m. For very large κ, the function P(z) in (11) can be approximated [13] by its value
P(z = 0) = √

2π/(4κ1/3) for not too large m, revealing how p(m) decreases with increasing κ.
From these considerations it follows that complex components with a small number of nodes
with two relevant inputs will appear with smaller probability if we increase κ, while complex
components with larger m ∼ m̄ occur more often.

6. Total number of relevant components

We build the relevant components by first ignoring one input of each nonfrozen node that has two
inputs. The second inputs will be connected later. We thus first build a K = 1 critical network
from the nonfrozen nodes, many properties of which are known from the literature. In particular,
all nonfrozen nodes will at this stage be arranged in

C � 1/2[ln(2Nnf) + γE] (13)

simple loops and trees rooted in loops [22]. γE ≈ 0.577 is the Euler–Mascheroni constant. The
width of the distribution of the number of loops is asymptotically [22]

σ2 = C − π2/8. (14)

Equations (13) and (14) are valid for fixed values of Nnf . If we insert for Nnf the mean value
N̄nf ≈ 0.62(N/β)2/3 (see (2) here or equation (12) in [13]), we get C̄ ≈ 6.4 for N = 223. If we
use the full probability distribution for the number of nonfrozen nodes Nnf and the number of
simple loops C, we obtain the following formula for the mean number of simple loops:

C̄(N) �
N∑

µ=1

µ

N∑
L=1

1

L!

[
L

µ

] N∑
Nnf=1

(N/β)−2/3G
[
Nnf(N/β)−2/3

] (
Nnf

L

)
LL!

NL+1
nf

, (15)

which is a combination of exact results (II.C16)1 and (II.C17)2 for the ensemble of K = 1
networks from [22], and of (2). We designed a program to effectively evaluate (15) numerically.
For the above-mentioned system size N = 223, we get C̄ = 6.13. We use this value in the
following discussion. Note that using mean values instead of full probability distributions gives
good estimations of the order of magnitude in the present context.

Now we estimate the number of components out of the C̄ simple loop components on
which the relevant nodes with two relevant inputs and the nodes with two relevant outputs sit. By
assuming that all of them will end up on the same complex component when the second inputs
will be connected, we obtain our desired result for the mean number of relevant components. In
the following, we approximate the mean value of some functions by the functions of the mean
values, so that the results (16) and (17) are valid approximately.

Because of (9), the mean number of components with loops of lengths from logarithmically
constant intervals will be constant. If l1 and l2 denote the lower and upper boundary of an interval,

1 For a fixed Nnf the distribution for the number L of nodes on loops: P(L) = Nnf !L / NL+1
nf / (Nnf − L)!.

2 For a fixed Nnf the joined distribution for L and the number µ of loops: P(µ, L) = [L

µ
]/L!.

New Journal of Physics 8 (2006) 228 (http://www.njp.org/)

http://www.njp.org/


14 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

there is on an average one loop in an interval of logarithmic size l2/l1 = e. We consider such
intervals with the upper boundaries l2 equal to e, e2, and so on. For two neighbouring intervals,
the factor between the numbers of nodes on the loops is e on an average. Since for an interval the
total number of nodes on the loops and on their trees is proportional to the number of nodes on
the loops, the factor between the total numbers of nodes in two neighbouring intervals is also e.
With this assumption, the proportion of nodes in the pth largest component is λe−(p−1), with
λ = 1 − 1/e ≈ 0.632. We assumed that e−C̄ � 1. The value λ = 1 − 1/e is not far from the
numerically determined value λ ≈ 0.624 for the proportion of nodes in the largest component in
ensembles of K = 1 networks with any large but fixed number of nonfrozen nodes. Let us now
turn to the m relevant nodes with two relevant inputs, with one input being ignored. The number of
nodes with two relevant inputs or two relevant outputs in the largest nonfrozen component is then
of the order 2mλ, and the smaller components will contain 2mλ/e, 2mλ/e2, . . . , 1 nodes with two
relevant inputs. For the purpose of estimation, we neglect further the fact that the distribution of
the number of nodes with two relevant inputs p(m) depends [13] on the number of relevant nodes
and, therefore, correlates with the number of nonfrozen nodes on the loops. The total number
n(m) of nonfrozen components with nodes with two relevant inputs (one of them is cut off) is
consequently obtained from the condition 2mλe−(n(m)−1) = 1 for m � 1. For m = 1, this gives
n(1) � 1.234. The exact result n(1) = 4/3 is within 10% of this estimate. To explain the exact
result for fixed m = 1, we consider all possible relevant components containing the one node
with two relevant inputs, which result after connecting the cut off input. They are represented in
figure 1. Clearly, the two relevant inputs could have been cut off with the same probability. As
explained in section 4, relative frequency of occurrence for the second component in figure 1 is
1/3, and cutting one input off the node with two inputs leads to one nonfrozen component. Such
components have therefore resulted from one nonfrozen component. For the first component in
figure 1, which appears with relative probability 2/3, cutting one input leads to two nonfrozen
components with probability 1/2. The mean number of K = 1 nonfrozen components connected
by the relevant node with two relevant inputs is then 1 ∗ 2/3 + 2 ∗ 1/3 = 4/3.

Taking all results together, we obtain the following estimate for the mean number of
nonfrozen components with relevant nodes with two relevant inputs

n̄ =
N∑

m=1

p(m)n(m) ≈
N∑

m=1

p(m) ln [2m(e − 1)]. (16)

We recall that (almost) all nodes with two relevant inputs are gathered in one complex component,
and with (16) we get an estimation for the mean number of relevant components, which is valid
for large networks:

CK=2
rel (N) ≈ C̄(N) −

N∑
m=1

p(m)(n(m) − 1) = C̄(N) − ln m − [1 − p(0)] ln(2λ). (17)

We support (17) by evaluating the number of relevant components in numerical simulations,
see figure 6. For comparison with (17), some results from section 5 have been used, see
figure 4 there.

The average number of complex components per network can be extracted from results
presented in figure 6 as the difference between the number of relevant components and the
number of simple loop components. For model parameters β = 1/8 and γ = 0, 1/4, 1/2 we get
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0.6, 0.7 and 0.8 complex components on average respectively. For the three cases, in section 5
we have seen that the probability to have no nodes with two relevant inputs in a network is 0.51,
0.32 and 0.27, so that the average number of complex components in the networks with complex
components (as opposed to all networks) evaluates to 1.2, 1.0 and 1.1 respectively, justifying
the assumption that there is usually no more than one complex component. Statistical errors of
simulation results consistently allow for errors in the first digit after the comma.

The difference between simulation results in figure 6 and the results from (17) is smaller
for smaller values of γ , where the approximations used to obtain (17) are intuitively better. An
estimation in the spirit of (16) and (17), which would take into account that the probability
for relevant nodes with two relevant inputs to be arranged in more than one relevant complex
component is small but greater than zero, would not change (16), but it would lead to slightly
smaller values ofCK=2

rel (N, β, γ) in (17).This observation partially explains the difference between
the simulation and the estimation results in figure 6.

7. Conclusions

In this paper, we have investigated the properties of relevant components of critical RBNs. We
used an efficient numerical method based on [13] to create a sufficiently large ensemble of
the relevant parts of sufficiently large networks in order to evaluate the number of relevant
components, the number of relevant nodes with two relevant inputs, and the number of
components with a given number of nodes with two relevant inputs. The results are in agreement
with theoretical predictions made in [13], and they are supplemented by additional analytical
results. Our main findings are the following:

(1) The number of relevant components increases logarithmically with the system size, and
usually only the largest relevant component is complex, i.e., is not a simple loop.

(2) For large network sizes, the number of relevant nodes with two relevant inputs and the
relative frequencies of different types of complex components become independent of the
network size.

(3) The relative frequency of topologically different complex components with the same number
of nodes with two relevant inputs can be obtained from simple combinatorial considerations.

(4) At constant network size, when the mean number of nonfrozen nodes with two relevant
inputs grows (that is, for larger κ = 1 + γ/β), the number of relevant components decreases
roughly by the mean value of the logarithm of the number of relevant nodes with two relevant
inputs, while the size of the largest relevant component and the number of nodes with two
relevant inputs in this component becomes larger.

Since the relevant part constitutes only a vanishing portion of the network (the fraction
N−2/3 of all nodes), and since the different relevant components change their state independently
of each other, the topology of considered types of networks is most likely very different from
the topology of real biological networks, such as genetic regulatory networks, where one would
expect that the majority of nodes is relevant or at least not always frozen, and that different parts
of the network are not decoupled from each other.

We considered networks with of the order of 106 nodes, which is far beyond the number of
genes in real regulatory circles. On the other hand, it might be more appropriate to identify the
genetic regulatory systems with the relevant nodes, their number being of the order of 100 in our
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simulations. From this point of view it is interesting to look at specialized complex components.
We have not addressed the question of the function of a complex component in biological context,
which has to be considered together with a suitable definition of the environment and together
with an appropriate choice of update rules. A lot of study still needs to be done before real genetic
regulatory and other biological networks can be modelled.
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