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Abstract
In this paper, we study a high-order finite element approach to simulate an ultrahigh finesse Fabry–
Pérot superconducting open resonator for cavity quantum electrodynamics. Because of its high
quality factor,finding a numerically converged value of the damping time requires an extremely high
spatial resolution. Therefore, the use of high-order simulation techniques appears appropriate. This
paper considers idealizedmirrors (no surface roughness and perfect geometry, just to cite a few
hypotheses), and shows that under these assumptions, a damping timemuch higher thanwhat is
available in experimentalmeasurements could be achieved. In addition, this work shows that both
high-order discretizations of the governing equations and high-order representations of the curved
geometry aremandatory for the computation of the damping time of such cavities.

1. Introduction

In 2012, SergeHaroche andDavid JeffreyWinelandwere jointly awarded theNobel prize in physics for ground-
breaking experimental methods that enablemeasuring andmanipulation of individual quantum systems [1].
Basically, they succeeded in building devices where quantumparticles (such as photons or ions) can be trapped
[2]. A few years before, in 2007, SergeHaroche and his coworkers were able to record the birth and death of a
photon in a cavity [3, 4], by using an ultrahighfinesse Fabry–Pérot superconducting resonator [5]. This open
cavity consists of two superconducting (niobium at 0.8 K) toroidalmirrors (see figure 1)with an extremely high
manufacturing precision, as shown on the geometrical parameters of table 1.

The cavity is resonant at 51.1 GHz with ameasured damping time of approximately 130 ms. Simply put, this
high damping timemeans that, if a photon appears inside the cavity, it will somehow bounce back and forth for a
very long timewithout interferingwith the outsideworld. By taking advantage of the extremely long lifetime of
the photon inside the cavity, SergeHaroche and his coworkers were then able to record the birth, life and death
of a photon.

In 2014, attempts weremade tomodel the photon cavity, by using the classical time-harmonicMaxwell
equationswith the finite element (FE)method and a quasimodal analysis [6]. In particular, by analyzing the
eigenmodes of the cavity, the resonance frequency as well as the damping time can be recovered. In their paper,
the authorswere able to compute the resonance frequency of the cavity, but did not reach a numerically
converged value for the damping timewith respect to the FEmesh density. The purpose of this paper is to
compute the damping time of the photon cavity by using a high-order FEmethod. In addition, by studying an
idealized setup, the performance limits of the cavity are assessed. To the best of our knowledge, the following
analysis with high-order techniques is performed for the first time.

This paper is organized as follow. First, in section 2, it is explained how classical electromagnetic numerical
computations, exploiting the FEmethod and a perfectlymatched layer (PML), can be used to estimate the
lifetime of a photon in an open cavity. Furthermore, the use of a high-order FE approach ismotivated. Then, in
section 3, the numerical setup is presented. The paper continues with some numerical results in section 4.
Section 5 discusses the computational bottleneck introduced by thememory scaling. In order to push further

OPEN ACCESS

RECEIVED

19December 2017

REVISED

1March 2018

ACCEPTED FOR PUBLICATION

15March 2018

PUBLISHED

27April 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aab6fd
https://orcid.org/0000-0001-6825-0530
https://orcid.org/0000-0001-6825-0530
mailto:marsic@temf.tu-darmstadt.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aab6fd&domain=pdf&date_stamp=2018-04-27
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aab6fd&domain=pdf&date_stamp=2018-04-27
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


our analysis of the cavity, a two-dimensional setup presenting the same limitations regarding the lifetime is
studied in section 6. Finally, conclusions are formulated in section 7.

2. Computation of the lifetime of a single photon: PMLs andhigh-order FEmethods

One of the fundamental problem in computational electromagnetism is to treat open problems, i.e. enforcing an
outgoingwave condition. In 1994, Bérenger [7, 8] introduced the PML in the framework of thefinite difference
time-domainmethod. Thismethod turned out to be extremely efficient and became very popular. It appeared to
be equally efficient in the time-harmonic case and it was soon realized that it could be introduced as a complex-
valued change of coordinates [9]. It was also applied to the eigenmodes computation of open structures [10] and
is indeed a powerful theoretical tool to define the concept of resonance.

Despite the fact that, in that time, it was an innovative technique in computational electromagnetism, this
concept wasfirst introduced as a theoretical tool, named analytical dilation, in quantummechanics [11, 12].
From a technical point of view, this technique is well adapted to electrodynamics, since, by using the concept of
transformation optics [13–15], the change of coordinates can be encapsulated in thematerial characteristics: the
relative electric permittivity er and the relativemagnetic permeabilitymr .

Itmay seemparadoxical to use concepts from classical physics to compute the lifetime of a single photon.
However, the fact that similar techniques, analytical dilation and PML, can be used to compute resonances of
open systems, electrons in the first case and electromagnetic waves in the second case, is not a coincidence.
Indeed, electromagnetic fields can be considered cautiously as thewave functions of photons [16–18]. In this
case, theMaxwell equations are the Schrödinger equations of the photon (relativistic nullmass spin one case in
theWigner classification [19]). In summary, a classical electrodynamics computation is legitimate to estimate
the lifetime of a single photon.

The next step is to set up a proper discretization of theMaxwell operator. In this paper, we use the FE
method. It has been proved [20, 21] that edge elements, respecting the de Rham complex at the discrete level,
provide a correct approach to tackle electromagnetic eigenvalue problems and the so-called spuriousmodes. In
the present cavity quantum electrodynamics (QED)problemwith an extremely high quality factor, we need a
very accurate computation of the complex-valued eigenfrequency and especially of its imaginary part. For this
purpose, high-ordermesh elements and high-order FE shape functions [22] are used. As demonstrated
hereafter, high-ordermesh elements aremandatory for the representation of the toroidalmirror, since they
alleviate the artificial roughness present in straightmesh elements. Furthermore, high-order FE shape functions
are known to substantially improve the precision of high-frequency simulations, by reducing the impact of the
pollution effect [23, 24]. A previous attempt [6] has shown encouraging results, but pointed out the need of high-
order elements for the proper numerical convergence of the damping time, as shown infigure 2. From these
results, it can be directly seen that the computed damping time depends strongly on themesh density, although
this effect is not observed for the resonance frequency.

Figure 1.Picture of the twomirrors developed in [5] (usedwith the kind permission ofMichel Brune, Laboratoire Kastler Brossel,
Paris, France).

Table 1.Geometry of themirrors in ( )mm .

Diameter Radius of curvature Maximumdeviation Distance between apexes

50 40.6 (major) 3×10−4 (peak-to-valley) 27.57

39.4 (minor)
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Sincewe are looking for resonances associated to complex-valued eigenfrequencies, we are led to solve a
non-Hermitian eigenvalue problem. Indeed, the equivalentmaterials introduced tomodel the unboundedness
of the domain (the PML) are non-Hermitian and destroy theHermitian nature of the initial lossless problem.
Unfortunately, it is well known that these problems are hard to solve [25].Moreover, the FE discretization leads
to very large sparsematrices, but, over the last few years, powerful algorithms implemented in open source
libraries have been developed [26, 27]. Formally, the complex-valued resonance angular frequency is defined as:

w p
t

= +
⎛
⎝⎜

⎞
⎠⎟f2 i

1
,Cavity

2
Cavity

Cavity

2

where fCavity is the cavity resonance frequency, tCavity the damping time and i the imaginary unit.

All these elements together led us to the proposed numericalmodel for the computation of the lifetime of a
photon in aQEDcavity.

3. Computational setup

In this work, we used a homemade high-order FE code4, which takes advantage of an efficient assembly
technique, as described in [28]. Indeed, quite oftenwith high-order techniques, the computational bottleneck is
found to be the assembly of the discrete operator itself. It is worthmentioning that the discrete high-order FE
spaces used are those proposed in [22]. Regarding the eigenvalue solver, the developed tool relies on the SLEPc
library5 [26, 27].When an LUdecomposition has to be carried out (see section 3.5), theMUMPS6 [29, 30] library
is called, and is configured for parallel analysis with the ParMETIS7 [31] reordering.

Among the eigenvalues in the 51.1 GHz region of the spectrum, we expect tofind onewith a high ratio
between the real and imaginary parts. This eigenvalue corresponds then to amodewhere the cavity exhibits a
large damping time (or equivalently, a high quality factor): the photon ‘trapping’mode. Our objective is tofind a
numerically converged damping time: i.e. quasi-independent to both an increase of the FE discretization order
and themesh size.

Before going any further, one last pointmust be raised. Since themirrors are toroidal, the cavity actually
exhibits two resonantmodes: one for each radius. They are both TEM900modes near 51.1 GHz and are
separated by 1.26 MHz [5, 32]. In the following, thesemodeswill be referred to as polarization 1 and 2.

3.1. Geometry
Let us nowdiscuss the geometry considered for the simulations. In order to reduce the number of unknowns,
only one quarter of a singlemirror ismodeled, as shown infigure 3. Furthermore, the air surrounding the
quartermirror is represented by a rectangular parallelepiped, as shown infigure 4(a). As discussed in section 2, a

Figure 2.Numerical convergence of the resonance frequency and damping time performed in [6] (themirrormesh density is labeled
in number ofmesh elements per wavelengthλ).

4
Available from theGmsh repository (http://gitlab.onelab.info/gmsh/small_fem); let us note that this software is a general purpose FE

library, and not a dedicated solver for our cavity problem.
5
Available at: http://slepc.upv.es

6
Available at: http://mumps-solver.org

7
ParMETIS is a graph partitioner, used byMUMPS forminimizing thefill-in, by reordering thematrix terms; ParMETIS is available at:

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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PML is added tomodel the surrounding space, as depicted infigure 4(b). As a first guess, the PML thickness is
taken as1λ (where l  5.9 mm is thewavelength at 51.1 GHz), and its distance from themirror is also set to
1λ.More details on the PML can be found in sections 2 and 3.4.

Thefinal geometry is depicted infigure 4(b), andwas generated by theOpenCASCADE8 engine. This library
was driven using the python9 interface provided byGmsh10 [33]. Finally, the computational domain ismeshed
using theGmshmesh engine. Since our objective is to use high-order FE discretizations, curvedmesh elements
aremandatory [34], not only to achieve a precise representation of the curvedmirror, but also to keep the
number ofmesh elements to an acceptable value.

3.2. Eigenvalue problem
Our objective is tofind the eigenvalues of the photon cavity. In otherwords, we need tofind every possible value
of the angular frequencyω, such that

m e
w- = W-⎧

⎨⎪
⎩⎪

( )e e
c

curl curl 0 on ,

boundary conditions of section 3.3,

r
r1 2

0
2

holds, where c0 is the speed of light in vacuum, e the electric field, andwhereΩ is the computational domain (i.e.
the quartermirror surrounded by the PML). To clarify the presentation, the treatment of the boundary
conditions is discussed in the next subsection.

Figure 3.Geometry of themirrors.

Figure 4.Computational domain.

8
Available at: http://opencascade.com

9
Available at: http://python.org

10
Gmsh is a three-dimensional FEmesh generator with built-in pre- and post-processing facilities; available at: http://gmsh.info
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From a FE point of view, this eigenvalue problemwrites [35]:
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where W( )V curl,0 is afinite-dimensional subspace (of sizeN) of W( )H curl,0 , the space of square integrable
functionswith a square integrable curl (these function are also commonly referred to as edge elements). The
electrical field e is then approximated by:

å= Î W
=
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( )e e ea V curl, ,
j

N

j j j
0

1

0

where the coefficients aj are unknown. Thus, the (generalized) eigenvalue problemwrites:

w w= ( )Ba Cafind every , such that . 1k k k k
2 2

By identifying the terms in equation (1), we have:

• the vector = -[ ]a aa , ...,k k k N
T

,0 , 1 containing the degrees of freedom for e;

• thematrix ò m= W
W

-( ) ( ) · ( )e ei jB curl curl, d ;r j i
1

• thematrix ò= We
W ( )( ) ·e ei jC , d

c j i
r

0
2 .

In this paper, the eigenvalue problem(1) is solved by theKrylov–Schur algorithm [36, 37] from the SLEPc
library [26, 27]. The relative tolerance of the eigenvalue solver is set to 10−15.

3.3. Boundary conditions
Asmotivated above, only one quarter of a singlemirror ismodeled. To simulate the actual configuration,
appropriate boundary conditions have to be imposed on the geometry offigure 4(b). Inwhat follows, n is the
unit vector outwardly oriented normal toΩ.

(i) A zero tangentialmagnetic field on theOxy-plane:

m´ =- e Oxyn curl 0 on .r
1

(ii) Depending onwhether polarization 1 or 2 is considered.

Polarization 1: a zero tangentialmagneticfield on theOxz-plane, and a zero tangential electricfield on theOyz-plane:

m´ =
´ ´ =

-⎧⎨⎩
e

e

Oxz

Oyz

n curl 0

n n 0

on ,

on .
r

1

Polarization 2: a zero tangentialmagneticfield on theOyz-plane, and a zero tangential electricfield on theOxz-plane:

m
´ ´ =
´ =-

⎧⎨⎩
e

e

Oxz

Oyz

n n 0

n curl 0

on ,

on .r
1

(iii) A zero tangential electric field on the outer boundary of the PML:

´ ´ = ¶Wen n 0 on .PML

Moreover, since themirror ismade of superconductingmaterial, we assume that it has a zero resistivity:

´ ´ = ¶Wen n 0 on .Mirror
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For simplicity, we also consider the frame of themirror to have a zero resistivity:

´ ´ = ¶Wen n 0 on .Frame

3.4. Perfectlymatched layer
Let us now specify the PMLused for the considered simulations. Sincewe chose a parallelepiped to surround the
mirror, it is a natural choice to use aCartesian PML [7, 8]. A PML is usually described by its damping functions
σx(x),σy(y) andσz(z). In this paper, we chose the following hyperbolic profiles:
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whereΔX (orΔY, orΔZ) is the thickness of the PML in the x (or y, or z) direction, andwhereXmax (orYmax, or
Zmax) is the distance between the center of themirror and the PML in the x (or y, or z) direction. These profiles
are inspired from [38], where a

aD
c0 (withαä{X,Y,Z}) term is added to remove the jumpbetween the truncated

domain and the PML.
From these damping profiles, it is then possible to compute an equivalent relative electrical permittivity and

relativemagnetic permeability in the PMLdomain:
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where g = - s
w

1 ii
i for all iä{x, y, z}.

3.5. Spectral transform
In our cavity problem, it is not required to extract the entire spectrumof(1): indeed, only the TEM900mode is of
interest. Therefore, a spectral transform is used. The idea is tomodify the eigenvalue problem, so that the
eigenvalues around a given target are easier to compute [39]. In practice, the shift-and-invert transform [39, 40]
is used. That is, instead of solving(1), the following equivalent (from the eigenvalue point of view) problem is
solved:

s q- =-( )B C Ca a,k
1

whereσ is a well chosen shift andwhere q w s= - -( )k k
2 1. Since the resonance frequency of the cavity is known

to be =f 51.1 GHzCavity [5], the shiftσ is taken as:

s p= ´ = ´ -( )f2 1.0309 10 rad s .Cavity
2 23 2 2

It is worth noticing that the spectral transform involves an LUdecomposition of s-( )B C , which is handled by
theMUMPS library.

4. Three-dimensional high-order FE simulations

With all these tools in hand, let us nowdiscuss some three-dimensional high-order FE simulations. It is worth
mentioning that in the following results, some data aremissing because ofmemory limitations (see section 5).

4.1. Solution convergence:mesh density and FEdiscretization
Based on the computational setup presented previously, afirst set of simulations is run in order to assess the
numerical convergence of the computed solutions. In practice, five tetrahedralmeshes are generated, with 3 to 7
mesh elements per targetedwavelength (i.e. l  5.9 mm, asmentioned in section 3). In each case, themesh
exhibits a 3rd-order curvature. From the FE point of view, three discretizations are considered: order 3, order 4
and order 5. Each simulation is carried out with 120MPI11 processes. Depending on the problem size, these
processes are distributed between 5 and 120 computing nodes. On each node, 64GB ofmemory is available.

For each simulation, three eigenvalues are computed. In each case, only one eigenvalue exhibits a very large
damping time and is selected as the resonant one. Figure 5 depicts the numerical convergence of the computed
resonance frequencies and damping times for polarization 1.

11
Themessage passing interface (orMPI) is a standard describing amessage-passing system allowing computer processes to exchange data;

more details can be found at: http://mpi-forum.org/

6

New J. Phys. 20 (2018) 043058 NMarsic et al

http://mpi-forum.org/


For the resonance frequency, wemay conclude that convergence is achieved: the resonance frequency for
polarization 1 is found at 51.0847 GHz. However, for the damping time, convergence ismore delicate to assess.
Clearly, the 3rd-order simulations did not yet converge. The 4th- and 5th-order simulations seem to converge
toward a damping time around 5.6 s.More accurate discretizations would of course bewelcome, but, due to
memory limitations discussed in section 5, these data are not accessible. Nevertheless, a few indicators suggest
that the computed damping timewill remain in this range. First, the 4th- and 5th-order curves suddenly saturate
around 5.6 s. Secondly, at amesh density of 5mesh elements per wavelength, the damping time varies by only a
factor of 5%between the two highest-order solutions. Finally, a variation of only 1% is recorded between the
best 4th-order estimate and the 5th-order one.

Compared to the damping time of 130 ms determined experimentally, the computed one is 43 times higher.
Fourmajor idealizationsmade in ourmodel could explain this discrepancy. First, our geometry is ideal: the
mirrors are exactly toroidal and perfectly aligned. Secondly, ourmodel consists of only the twomirrorsfloating
alone in the void, whereas themirrors are surrounded by sophisticated equipment in the actual experiment [5],
that could introduce additional losses. Thirdly, the residual resistivity of the superconductingmaterial has not
been taken into account. Indeed, sincewe are not operating at absolute zero temperature, some carriers are not
in a superconducting state, leading thus to ohmic losses. Furthermore, it can be shown that these losses are
increasingwith the square of the frequency [41]. And finally, the roughness of the actualmirror is notmodeled.
Aswewill see in the following section, this has a dramatic effect on the value of the computed damping time. Let
us stress that these issues can be alleviated by technical improvements, while the open nature of the cavity, and
the associated computed losses, is an intrinsic property of the device.

To conclude, and for illustration purposes, figure 6 depicts the eigenmode associated to the cavity resonance.
For clarity, the vectorial electric field is shown only on theOxz- andOxy-planes. It can be directly noticed that
thismode exhibits a cylindrical symmetry around the z axis and 4.5 antinodes. Because of the boundary

Figure 5.Resonance frequencies and damping times: polarization 1 and 3rd-ordermesh elements.

Figure 6.Eigenmode associatedwith the polarization 1 resonance (field distribution plotted only on theOxz- andOxy-planes).

7
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condition on theOxy-plane, the total number of antinodes is doubled, confirming thus that polarization1 is a
TEM900mode.

4.2. Polarization 2
In the previous convergence test, only polarization1was considered. Let us now focus on polarization2. Based
on the previous simulations, only the 4th- and 5th-order FE solutions are considered. Figure 7 depicts the
computed frequencies and damping times for polarization1 and2. In addition, the frequency difference
between the two polarizations is provided in table 2.

As for polarization 1, we can directly notice that the cavity resonance frequency has numerically converged 
to 51.0834 GHz. Moreover, we have reached a frequency difference of 1.26 MHz, which matches the 
difference measured experimentally [5, 32].

For the damping time, we get a result similar to polarization1: the computed damping seems to converge
toward a value around 8.1 s. Again, the computed damping time is significantly larger than themeasured one. It
is worth noticing that the damping time is larger for polarization 2 than for polarization 1. This phenomenon is
quite easy to explain, since polarization 2 is associated to the largest radius.

4.3.Mesh curvature
So far, the geometry has beenmeshedwith 3rd-ordermesh elements. Let us now analyze the impact of themesh
curvature on the simulations. To do so, only polarization1 is considered for simplicity.Moreover, we limit
ourselves to FE discretizations of order 4. As done previously, the geometry ismeshedwith a density of
tetrahedra varying between 3 and 7mesh elements per wavelength.However, this time, the geometrical order of
the elements ranges between 1 and 4. Figure 8 shows the computed frequencies and damping times.

By analyzing the data offigure 8, we can directly notice that the damping time does not converge with 1st-
ordermesh elements. On the other hand, there is no significant difference between simulations using high-order
meshes. Obviously, straightmesh elements fail to compute the cavity damping time. Since the shape of the
mirrors is curved, approximating it with 1st-order elements introduces some kind of numerical roughness on its
surface. This roughness does not significantly impact the resonance frequency.However, it can lead to unwanted
scattering, destroying the stability of thewave. This problemhas been noticed in the previous attempt to
simulate the photon cavity [6].

Figure 7.Resonance frequencies and damping times: 3rd-ordermesh elements, 4th- and 5th-order finite element discretizations.

Table 2. Frequency difference between polarization1
and2: 3rd-ordermesh elements, 4th- and 5th-order finite
element discretizations.

Frequency difference (MHz)

Mesh density l-( )1 FE order 4 FE order 5

3 1.2631 1.2638

4 1.2659 1.2638

5 1.2636 1.2639

6 1.2639 —

7 1.2639 —
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A last question remains: can the lack of curvature of the 1st-ordermesh elements be compensated by a better
mesh refinement of themirrors? To answer this question, let us setup the following simulations. Ameshwith 5
tetrahedra per wavelength is used everywhere in the computational domain, except on the surface of themirror,
where refinements of 5, 10 and 20 elements per wavelength are used. The geometrical order of themesh ranges
between 1 and 4, and a 4th-order FE discretization is used for the computations. Let us note that only
polarization1 is considered. The computed damping times are reported infigure 9.

Based on the results offigure 9, we can directly notice that increasing themesh density on the surface of the
mirror does not help to achieve convergence for the damping time, at least when straightmesh elements are
used. Thus, we can conclude that the damping time is highly sensitive to the numerical roughness introduced by
themesh. Therefore, using curvedmesh elements ismandatory to simulate the cavity in order to avoid this
virtual roughness.

4.4. Sensitivity of the solutionwith respect to the PML
Let us now study the sensitivity of the computed solutionwith respect to the parameters of the PML: its distance
from themirror and its thickness. For this analysis, the following setup is used:

• a tetrahedralmesh of order 4, with a density of 5mesh elements per wavelength;

• a FE discretization of order 4;

• a PML thickness ranging from0.25λ to 2λ;

• two distances between themirror and the PML, 1λ and 2λ.

The computed damping times are shown in figure 10. Themean resonance frequency and themaximum
deviation from thismean are given in table 3.

Figure 8.Resonance frequencies and damping times: polarization 1 and 4th-order finite element discretization.

Figure 9.Damping times: polarization 1, 5 tetrahedra per wavelength (except on themirror) and 4th-order finite element
discretization.
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Let us start by analyzing the results presented in table 3. Based on the available data, we can conclude that the
resonance frequency does not depend on the PMLparameters. On the contrary,figure 10 indicates that the
damping time is very sensitive to these parameters. Therefore, we cannot conclude that the damping time
convergedwith respect to the PML-to-mirror distance and the PML thickness, since the behavior is too
oscillatory. However, the variations of the damping time seem to remain bounded, which indicates that, even
though a larger PML (in termof PML-to-mirror distance and thickness) is preferred, the cavity damping lies in
the 5.4 s range.

To conclude this subsection, it is alsoworthmentioning that two additional numerical experiments were
carried out. First, in addition to the boundary condition given in section 3.3 for the PMLboundary, we also
imposed:

m´ = ¶W- en curl 0 on .r
1

PML

Secondly, in addition to the PML equivalentmaterials given in section 3.4, we also tested the following constant
PMLparameter:

g g g= = = -( ) ( ) ( )x y z 1 i.x y z

In both cases, the same conclusions were drawn. Furthermore, ourfindings are also supported by additional
PML convergence results presented in section 6 for a two-dimensional setup. There, the numerical convergence
of the PML is clearly observed, and it is shown that a PML-to-mirror distance of 1λ, as well as a PML thickness of
1λ, already give numerically sharp results.

4.5. Simulation time
To conclude the analysis of our three-dimensional high-order computations, let us give some order of
magnitude about thewall clock time taken by the simulations. The smallest simulation (3mesh elements per
wavelengthwith a 3rd-order FE discretization) counted 517556 unknowns and took less than 1minute. It was
run using 5 computing nodes. On the other hand, the largest simulation (7mesh elements per wavelengthwith a
4th-order FE discretization) counted 11443760 unknowns and took less than 11 hours. It was run using 120
computing nodes.

5.Memory scaling

In order to increase the accuracy on the damping time of the previous computations, a highermesh resolution,
FE discretization order and/or PML size are needed.However, for now andwith the available computational
resources, it is not possible to increase the problem size, since thememory scaling limit of theMUMPS solver
seems to be reached.

Figure 10.Damping times: polarization1, 5mesh elements per wavelength, 4th-ordermesh elements and 4th-order finite element
discretization.

Table 3.Resonance frequency: polarization1, 5mesh elements perwavelength, 4th-order
mesh elements and 4th-orderfinite element discretization.

Distance PML-to-mirror l( ) Mean frequency (GHz) Maximumdeviation (GHz)

1 51.08468 2.5×10−6

2 51.08468 2.3×10−6
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It is worth noticing that thememory scaling problem is not specific to theMUMPS implementation, but
affects the entire family of direct solvers. Another approachwould be to use instead a preconditioned iterative
method.However, this technique is known to performpoorly for wave problems, at least with classical
preconditioners [42]. The design of good preconditioners for wave problems [43, 44] and ofmemory efficient
direct solvers [45] remains an activefield of research.

In the following of this section, two examples are discussed to illustrate thememory scaling performance.

5.1. Twofifth-order test cases
Let us look at the two simulations hereafter:

• FE discretization of order 5;

• mesh curvature of order 5;

• twomesh densities, 5 and 6mesh elements per wavelength;

• polarization1.

These two simulations led to, respectively, 8019588 and 13363722 unknowns. The test cases were launched on
120 computing nodes, with 64 GBofmemory available on each node. The smallest simulation ran successfully,
whereas the largest simulation failed because of amemory deficiency during the LU factorization stage. This
latter case was run againwith 240 nodes but failed for the same reason.

Let us now look at the peak virtualmemory allocated by each process for the problemwith 8019588
unknowns, as shown infigure 11. Statistics are available in table 4. From these data, we can see that thememory
usage is not uniformly distributed across the computing processes. On average, we use 17 GBwith a quite low
standard deviation.However, we have two spikes above 25.5 GB (i.e. 50% above themean). It is those spikes that
limit thememory scaling of our simulations.

5.2. Two fourth-order test cases
Let us take another example:

• FE discretization of order 4;

• tetrahedralmesh of order 4, with a density of 7mesh elements per wavelength;

• polarization1.

We ran this setup (11443760 unknowns) successfully on 120 and 240 computing nodes. The peak virtual
memory distribution is available infigure 12, and statistics are available in table 5.

Figure 11.Peak virtualmemory allocated per process: 8019588 unknowns, 5th-order case.

Table 4.Peak virtualmemory allocated: statistics (8019588 unknowns,
5th-order case).

Mean value Standard deviation Maximumvalue Minimumvalue

17 GB 3 GB 28 GB 13 GB
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From the above results, we have once again somememory spikes far above themean value. Let us focus only
on the two largest spikes: 46 GB (240 nodes) and 61 GB (120 nodes).We can directly notice that by increasing by
100% the total availablememory, the largest spike is decreased by only 25%, thus limiting the scaling
performance.

6. Further analysis with a similar two-dimensionalmodel

Aswe saw in the previous sections, thememory scaling is themain computational bottleneck of our simulations.
In order to push our analysis of the photon cavity further, we built a two-dimensionalmodel. Since themirrors
have different curvature radii, our cavity is inherently a three-dimensional structure, and thus cannot be
described in two-dimensions. One of the closest two-dimensional counterparts are infinitely long cylindrical
mirrors. Note that this is still an open structure and the very same numerical convergence challenges are
expected. Therefore, we consider in this section a similar, but not equivalent, model. An alternativemodel would
be to consider two sphericalmirrors with a two-dimensional axisymmetric approach.However, this strategy
does not exhibit any additional feature in termof open cavity resonances. Furthermore, the three-dimensional
sphericalmirrors exhibit a degeneratedmode, which is not the casewith the infinitely long cylindrical version.

The structure studied hereafter consists of two cylindricalmirrors in theOxz-plane, that extend to infinity
along the y axis. Themirrors have a radius of 40.6 mm (themajor radius of the three-dimensional cavity). By
applying symmetries, in analogy to the three-dimensional numerical setup, our two-dimensionalmodel consists
of only one half of a singlemirror. Again, PMLs are used tomodel the infinite domain, as depicted infigure 13.
Finally, let usmention that except from the changesmentioned above, the numerical parameters of the three-
dimensional cases are reused in the two-dimensional simulations.

6.1. Numerical convergence of the damping time
Since our two-dimensionalmodel exhibits fewer unknowns, let us first use largermesh densities compared to
the three-dimensional case, in order to assess the convergence of the damping time. Fromour previous analysis,
we found that 2nd-ordermesh elements were sufficient to represent the geometry precisely. Thus only this kind
of element is used. Themesh density varies between 5 and 40mesh elements per wavelength. For the FE
discretization, 3rd-, 4th- and 5th-order FE bases are considered. The PML is located at one targetedwavelength
of the structure, and its thickness is set to onewavelength. The computed resonance frequencies and damping
times are reported infigure 14.

This figure indicates that the computed resonance frequencies aremonotonously converging to
49.9804 MHz for increasingmesh densities and FE discretization orders. Regarding the computed damping
times, the calculated results are alsomonotonously converging to 7.2 s. This value is below the 8.1 s found for
the three-dimensional polarization 2 case. However, let us recall that this two-dimensional case ismodeling a
similar, but not equivalent, situation. Furthermore, it is worthmentioning that alreadywith 5mesh elements per

Figure 12.Peak virtualmemory allocated per process: 120 and 240 nodes, 11443760 unknowns, 4th-order case.

Table 5.Peak virtualmemory allocated: statistics (120 and 240 nodes, 11443760
unknowns, 4th-order case).

Nodes Mean value Standard deviation Maximumvalue Minimumvalue

120 28 GB 7 GB 61 GB 17 GB

240 19 GB 7 GB 46 GB 13 GB
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wavelength, with a 4th- or a 5th-order FE discretization, numerically valid damping times are computed. This
observation agrees with the analysis performed for the three-dimensional case, and is an additional indicator
that the results presented in the sections 4.1 and 4.2 are numerically valid. Finally, it is worth noticing that for
both two- and three-dimensional situations, the computed damping time is well above the 130 ms found
experimentally. This comforts us in our assumption that the discrepancy between the simulations and the
experimental data has to be attributed to our idealizations, rather than in numerical convergence problems.

6.2. Sensitivity of the solutionwith respect to the PML
Let us now analyze the sensitivity of the results with respect to a variation of the PML thickness and position. In
this numerical experiment, the following parameters are used: amesh density of 5mesh elements per
wavelength, 4th-ordermesh elements and a 5th-order FE discretization. Based on the previous analysis, we
know that these parameters are sufficiently accurate. In this numerical experiment, both the PML thickness and
position (with respect to themirror) are taken equal and in the l l l l l l{ }1 , 2 , 4 , 8 , 16 , 32 set. This parameter
sweep leads to the results presented in figure 15 and table 6.

Based on these data, we can conclude that both the computed resonance frequencies and the damping times
are not significantly impacted by a change of the PMLparameter. It is however interesting to notice that, as
expected, the damping time ismore sensitive to a PML variation as compared to the resonance frequency. Again,
the numerical stability of the results obtained for this two-dimensional case, with a large PMLparameter sweep,
comforts us that our three-dimensional simulations are correct. In particular, we can directly notice that
numerically valid results can be obtainedwith a PML-to-mirror distance, as well as a PML thickness, of 1λ.

6.3. Comparisonwith afirst-orderfinite element simulation
For this numerical experiment, we compared a 1st-order FEmethodwith our high-order simulations. Figure 16
depicts the computed frequencies and damping times for amesh density ranging from5 to 320 straightmesh
elements perwavelength. As expected (based on our three-dimensional analysis), the virtual roughness

Figure 13.Two-dimensional geometry used for the simulations (with PML).

Figure 14.Two-dimensional resonance frequencies and damping timeswith high-order discretizations.
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introduced by the straightmesh significantly impacts the numerical results. Indeed, we need at least 160mesh
elements perwavelength to reach a value close to the expected value of 7.2 s.

It is worth noticing that the largest simulation setup leads to 20363036 unknowns, corresponding to a linear
systemwith twice the size of the largest three-dimensional case. Nevertheless, this simulation does not suffer the
samememory limitations. This phenomenon is easily explained by the better non-zero structure of thematrices
of the two-dimensional computations, resulting in a lowerfill-in.

6.4. Simulation time
In this section, let us compare the computation time taken by differentmesh densities and FE discretization
orders. The results are summarized in table 7. As can be noticed directly, the computation time can be reduced
by increasing the FE discretization order and decreasing themesh density at the same time (while keeping the
accuracy constant). This leads to a reduction of the number of unknowns, and thus a decrease of the
computation time.

Figure 15.Two-dimensional resonance frequencies and damping times for a sweep of the PMLparameters (both thickness and
position are taken equal): 5mesh elements perwavelength, 4th-ordermesh and a 5th-order FE discretization.

Table 6.Two-dimensional resonance frequencies and damping times for
a sweep of the PMLparameters (both thickness and position are taken
equal): 5mesh elements per wavelength, 4th-ordermesh and a 5th-order
FE discretization.

Moment Resonance frequency (GHz) Damping time (s)

Mean value 49.9804 7.15

Standard deviation 2.27×10−10 1.46×10−3

Figure 16.Two-dimensional resonance frequencies and damping timeswith a 1st-order FEmethod on straightmeshes.
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6.5.Othermodes
For this last part of our two-dimensional simulations, we computed the resonance frequency and the associated
damping time for the other ‘trapping’modes of the cavity. Based on our previous convergence analysis, we chose
to use a 5th-order FE discretization. Themesh exhibits a density of 10mesh elements per targetedwavelength
and a 2nd-order curvature. It is worth stressing that, since the resonance frequencies are different for eachmode,
themeshes are also different. This is also the case for the actual length of the PML and its distance to themirror.
Let us also note that because of the symmetry conditions, only the oddmodes were computed.

By analyzing the results displayed infigure 17, we can directly notice the linear dependence of the resonance
frequency on themode number. This can be also observed for the damping time in a logarithmic scale, with the
notable exception of the transition between the 7th and the 9thmodes, where the slope suddenly decreases. It is
worth noticing that, after a deeper investigation, this phenomenon does not seem to come froma numerical
problem. Finally, let us recall that in our simulations, the surface resistivity of the superconductingmirrors was
neglected.However, this parameter is expected to limit the damping time increase with themode number, since
it growswith the frequency [41].

7. Conclusion

In this paper, we simulated the photon cavity designed by SergeHaroche and his coworkers, for recording the
birth and death of a photon, by using the classical electromagnetic theory, PMLs, and the finite elementmethod.
This problemhas already been treated in the literature with straight tetrahedralmeshes and a second-order finite
element discretization. Unfortunately, the authors were not able to compute the damping time, because of its
high sensitivity with respect to themesh refinement.

In this work, we improved the computations substantially, by using curvedmesh elements combinedwith
finite element discretizations of high orders.We demonstrated that they aremandatory for tackling the
computation of the damping time of the photon cavity, since they alleviate both the virtual roughness
introduced by themesh and the pollution effect impacting time-harmonic wave problems.We also showed that
computing the damping time of the cavity is computationally demanding, and pushes the direct solvers and
modern computing facilities to their limits. Nevertheless, a satisfactory convergence studywas performed in two
steps. First, the convergence of the damping time has been established on the basis of a few points in a three-
dimensional setup. Then, a two-dimensionalmodel, exhibiting the same behavior as its three-dimensional
counterpart, has been studied. By enabling finer discretizations, this additional analysis consolidated the

Table 7.Computation time for different parameters with the two-dimensionalmodel.

Order

FE (–) Mesh (–) Mesh density l-( )1 Unknowns (–) Comp. time (s) Damping (s)

1 1 320 20363036 2682 7.43

2 2 40 799443 81 7.17

3 2 20 371588 46 7.16

4 2 10 148445 23 7.16

5 2 5 56532 11 7.15

Figure 17.Photon trappingmodes calculated for the two-dimensionalmodel.
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numerical validity of the three-dimensionalmodel. Furthermore, thanks to the two-dimensionalmodel, we
showed that a classicalfirst-order finite element approach requires at least 160mesh elements per targeted
wavelength in order to reach a sufficient accuracy, whereas afifth-order discretization gives the same accuracy
with only 5 second-ordermesh elements per wavelength.

The computed damping times, with either a three- or a two-dimensional approach, are significantly higher
than the one found experimentally: the simulations suggests a damping time of about 5.6 s or 8.1 s, depending
on the polarization, whereas the experiment shows a damping time in the 0.1 s range. This discrepancy is
explained by the simplificationsmade in ourmodel: we indeed focused only on the losses introduced by the
open nature of the cavity. Among these idealizations, (i)we considered perfectly aligned and exactly toroidal
mirrors; (ii)we assumed that the twomirrors are floating alone in the void; (iii)we neglected the residual
resistivity of the superconductingmaterial; (iv)wedid not consider the surface roughness. It is worth noticing
that these issues can be alleviated, e.g. by technological improvements inmanufacturing andmaterial science.
On the other hand, the open nature of the cavity is intrinsic to the device.
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