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Abstract
Weconsider a particularly simple exactly solvablemodel for a qubit coupled to sequentially nested
environments. The purpose is to exemplify the coherence conserving effect of a central system, that
has been reported as a result of increasing the coupling between near and far environment. The
paradigmatic example is the Jaynes–CummingsHamiltonian, whichwe introduce into a
Kossakowski–Lindbladmaster equation using alternatively the lowering operator of the oscillator or
its number operator as Lindblad operators. The harmonic oscillator is regarded as the near
environment of the qubit, while effects of a far environment are accounted for by the two options for
the dissipative part of themaster equation. The exact solution allows us to cover the entire range of
coupling strength from the perturbative regime to strong coupling analytically. The coherence
conserving effect of the coupling to the far environment is confirmed throughout.

1. Introduction

Decoherence was and is not only a central theme of physics, but it is also a central problem for any practical
implementation of quantum computation and quantum information schemes [1]. The source of decoherence is
the surrounding environment towhich the systemunder investigation couples invariably. Dynamical
decoupling is awell established technique to isolate a physical systemor to tailor a desiredHamiltonian
evolution [2, 3]. Other dynamical controlmethods exploit the quantumZeno effect to slow downdecoherence
processes [4–6]. In these techniques, one of the requirements is a periodic driving ormeasurement of the system.
A natural question is whether intrinsic decaymechanisms of the environment can enhance the coherence of a
central system. Recent studies have considered the coherence loss of a ‘near’ environment to stabilize the
coherence of a central quantum system. This reaches from the limit of very fast decoherence of the near
environment [7–11], whichmay actually lead in some limit to a protected subspace for the central system, all the
way to perturbative treatments where all couplings are small [8, 9]. The great benefit in this approach is that one
does not require to control the systemdynamically. Numerical results for spin systems [10] and randommatrix
environments [8] seem to support such improvement throughout the range of coupling strength. In all cases
there seem to exist options to improve the persistence of coherence of the central system considerably if it is
already quite good to start with. Indeed it so seems, that weak coupling of the central system to the near
environment is the only prerequisite for thismethod to beworkable. The results are positive and interesting but
a little counter intuitive.

Under such conditions an exactly solvable example is usually very enlightening and that is what we are going
to present.Wewill use a fairly new technique to obtain exact solutions of the correspondingKossakowski–
Lindbladmaster equation [24].We shall thus deepen the understanding of the role of nested environments for
decoherence and simultaneously provide a non-trivial application of a new technique to solve open quantum
problems.Our study focuses on two versions of a paradigmatic, simple, and exactly solvablemodel in quantum
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optics: a Jaynes–Cummings (JC)model with dephasing and a damped JCmodel. The dephasing and the
dampingmechanisms are assumed to act solely on the cavitymode. The role of the central system is played by a
two-level atomwhich is coupled to a singlemode of an optical cavity acting as the near environment.
Decoherence of the cavity is taken into account tomimic the effects of a far environment.We assume that the
two types of decoherencemechanisms in the cavity which can be described in terms of aMarkovianmaster
equation inKossakowski–Lindblad form [12, 13]. In afirst approachwe consider a dephasingmodel, with the
number operator as Lindblad operator. Thismay not be very realistic, but it will turn out to bemost illustrative
due to its simple analytical treatment and the absence of competing effects: the Liouville operator can be
expressed in terms of disconnected 4×4matrices. In a second case, photon losses are considered by choosing
the annihilation operator as Lindblad operator. This case has deep roots in the field and can be connected to the
standard setting in theHaroche experiment [14] and according toGarraway’s pseudomode theory [15–17], it is
equivalent to a two-level atom interactingwith a continuumofmodes.

The simple fact that we do get exact solutions in special but non-trivial situations for the decay of coherence
of a rather complicated system is of great interest, as it will allow us to gain insight in possiblemechanisms
leading to protection of coherence in nested environments, that previous to this workwere numerically detected
and analytically derived for extreme situations.

We shall start by briefly defining themodel and then proceed to discuss the simpler case, where the Lindblad
operator is the number operator of the harmonicmode.Next, wewill address the case of photon losses in the
cavity inwhich the annihilation operator of the oscillator is considered as Lindblad operator. Finally, we shall
discuss towhat extent our considerationsmay shed light into known numerical and randommatrix results
[8–10], and discuss in whatways the basic result can be used to help control coherence.

2. Themodel

The JCmodel describes the interaction between a two-level atomwith onemode of the electromagnetic field
inside an optical cavity [18]. TheHamiltonian in the interaction picture with respect to the electromagnetic field
energy is given by ( = 1)

ds s s s= + ++ - + -( ) ( )†H g a a , 1

where s are the raising and lowering operators of the two-level atom acting on theHilbert space =at
2,

while a and †a are the cavitymode creation and annihilation operators that act on the Fock space
 = =+ ℓ( )Fcav

2 [23]. The completeHilbert space is therefore the tensor product of the compositeHilbert
spaces  = Äat cav. The parameter g is the interaction strength between the two-level atom and the cavity,
while δ is the detuning of the atomic transition frequency from the frequency of themode. A general state of the
system can be represented by the densitymatrix ρ that is an operator acting on. ItsHamiltonian dynamics is
governed by the vonNeumann equation r r= -˙ [ ]Hi , .We introduce decoherence effects in the systemby
adding the action on ρ of the generator [ ]A defined in Lindblad form as

 r r r r= - +[ ] ( ) ( )† † †A A A A A A A
1

2
. 2

The Lindblad operatorA could in principle be chosen to act on the compositeHilbert space, as in the case of
more realisticmodels that consider combined decaymechanisms in Lindblad form [21, 22]. However, in this
workwe restrict ourselves to operatorsA acting solely on theHilbert space of the cavitycav. The aim is to treat
the two-level atom as a central system, the cavity as a near environment and the effects of a far environment
described by the Lindblad operators. Themodel an its connection to the nested environment description is
shown infigure 1. In the next two sections wewill consider first a dephasing and then a photon loss operator.

3.Dephasing of the cavity

Let us start our discussion by considering a situation that involves a dephasingmechanism in the cavity but
without any loss of excitations. The dynamics of amodel that includes this effect can be described by the
followingmaster equation

 r r r g r= = - +˙ [ ] [ ] ( )†H a ai , 3d

depending on the dissipator of equation (2) andwith the Lindblad operator = †A a a. An important property of
the Liouville operator d is that it conserves the number of excitations of the operator s s+ + -

†a a . Therefore, if
one considers initial states of the form - ñ = ñ Ä - ñ∣ ∣ ∣n ne, 1 e 1 , that is an excited atomand -n 1photons
in the cavity, the time dependent densitymatrix of the system can be expressed as

2
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r = ñá + ñá - + - ñá + - ñá -( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )t v n n v n n v n n v n ng, g, g, e, 1 e, 1 g, e, 1 e, 1 . 41 2 3 4

The time dependent coefficients are solution of the differential equation =
 
v̇ Lv , where =

 ( )v v v v v, , ,1 2 3 4 is a
column vector and L is amatrix that can be obtained from the Liouvillian d and has the explicit form

g d
g d

=

-
- + -

- - -
-

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )L

g n g n

g n g n

g n g

g n g n

0 i i 0

i i 0 i

i 0 i i

0 i i 0

. 5

Actually, thematrix L is one ofmany disconnected blocks that form the Liouvillan d [24]. As it is a 4×4
matrix, the eigenvalues of L can always be calculated in closed form as shown in appendix A.However, we focus
our attention to the resonant case as it captures the qualitative essence of the dynamics wewant to describe and
the resulting equations can bewritten in compact form.Deviations from this condition do not present a
qualitative change in the long time behavior that we are interested. Therefore, in the resonant case, i.e., d = 0,
the four eigenvalues of L are given by

g g
h

= = - = -
-




( )( )l l l0, ,
1 1

2
, 6n n

0 1

wherewe have introduced the dimensionless parameter

h g= ( )g n16 . 7n
2 2

This parameter hn can be seen as a rescaled interaction strength between atomand cavity, that tends to zero for
increasing values of γwhenever the values of g and the photon number n arefinite. Aswe are particularly
interested in the coupled dynamics in this limiting case (g  g n, ), we analyze the eigenvalues by expanding
them in terms of hn which leads to the expression

g gh h= - - +
 [ ] ( )( )l

1 1

2

1

4
. 8n

n n
2

It follows from this expansion that the eigenvalues of L, which are also eigenvalues of the Liouville operator d,
are insensitive to the coupling strength for sufficiently large values of the dephasing parameter γ. This is already
an indication that the atomic system is ‘protected’ from the presence of the cavity by the dephasingmechanism.

Nowwe turn our attention to the dynamical properties of the atomic sub-system. By solving the differential
equation and tracing over the photonic degree of freedom, one can evaluate the atomic densitymatrix which is
diagonal in this case and is given by

r = - ñá + + ñá( ) [ ( )]∣ ∣ [ ( )]∣ ∣ ( )t h t h t
1

2
1 g g

1

2
1 e e , 9n nat

werewe have considered the complex function

h
h g

h
h g

=
+

+
++ -

+ -

( ) ( )( ) ( )

( ) ( )

h t
l l

e

2 4

e

2 4
. 10n

n
l t

n
n

n
l t

n
n

n n

In the limit of h  0n (g  g n, ), thefirst term tends to 1while the second tends to zero. This can be noted by
taking into account the formof 

( )l n in equation (8) and of hn in equation (7). Therefore, in this limiting case the
probability offinding the atom in the excited state

Figure 1. (a) Sketch of the nested environment setting: a central system couples to a near environmentwith strength g. The near
environment interacts with the far environment with an effective coupling parameter either γ orκ. (b) Sketch of the Jaynes–
Cummingsmodel: a two-level atom (central system) interacts with an optical cavity (near environment)with interaction strength g.
The cavity presents either dephasing at rate γ or photon losses at rateκ (to a far environment).
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s s r= =
+

+ -( ) { ( )} ( ) ( )p t t
h t

Tr
1

2
11n

e at

freezes at unit value. One can also consider purity of the atomic state. For this quantity onefinds

r
h

h

h

= = +
+ +

-

=  -

g

g h

- + -

 - -

( ) { ( )}
( ) ( )

( )

( ) ( ) ( )( )

P t t
f t f t

f t

Tr
1

2

e

4 1
,

1

2
1 1 e . 12

n
t

n n

n

n n
t

at
2

2 1 1 n

In the limit of vanishing rescaled interaction strength hn the purity tends to one, as it can be noted
that = h 

( )f tlim 1 1
n0n

.
Infigure 2we have plotted the purity P(t) and atomic excitation probability ( )p te for different values of the

dephasing parameter γ. The stationary state of the atomic sub-system is the totallymixed state. This explains the
drop of purity as a function of time and the asymptotic value 1/2 of the excitation probability. However, the
basic effect is evident, for increasing values of γ the purity and excitation probability have a slower decay. Closer
inspection shows that the two quantities are, in this case, closely related as ( )p te has to take the value 1/2 for
purity to reach theminimal value of 1/2.

We close this section by pointing out that the expressions in equation (6) are valid for any value of the
parameters as long as d = 0. However note that when h > 1n , the eigenvalues are complex and therefore the
imaginary part gives rise to oscillations in the dynamics, as corroborated by the green (dotted) curves infigure 2,
where h = 161 . This behavior shows that for small values of γ or comparable with g n , the cavity influences the
evolution of the atom through theHamiltonian interaction in equation (1).

4. Photon losses

Amore common and realistic scenario is the case of photon losses from the cavity. This effect can be
incorporated by describing the dynamics in terms of theKossakowski–Lindbladmaster equation

 r r r k r= = - +˙ [ ] [ ] ( )H ai , . 13l

Herewe have used again the dissipator defined in equation (2), but in this case we have considered the Lindblad
operatorA=awhich describes the dampingmechanismdue to photon losses in the cavity. The diagonalization
of the Liouville operator l in equation (13) allows to evaluate the time evolution of any given initial state. It was
noted in [24] that this procedure can be based on the diagonalization of the non-HermitianHamiltonian

k= - †K H a ai 2which has the following eigenvalues

e
d k k d k

c=
+ -

+
+

- +( ) ( )( ) n2 i i2

4

2 i

4
1 1 , 14j

n j
n

with j= 1, 2 for >n 0, j=1 for n=0, andwherewe have introduced the rescaled interaction strength

c d k= +( ) ( )g n16 2 i . 15n
2 2

In fact, the eigenvalues of l are given by the simple addition of two eigenvalues ofK, i.e.,

*l e e= - -( ) ( )( ) ( ) ( )i , 16j k
n m

j
n

k
m

,
,

Figure 2. Left (right)plot: atomic purityP(t) (excited state population ( )p te ) as a function of time in units of g1 for different value of
the cavity’s dephasing parameter γ. The initial state is an excited atomand an empty cavity subject to the dynamics of equation (3).
Dotted (green) line g =g 1, dotted–dashed (gray) line g =g 10, dashed (blue) line g =g 100, and full (black) line g =g 1000.
Detuning is d =g 0.Note: the purityP(t) is plotted in the range ofminimum tomaximumpurity ([ ]0.5, 1 ).
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with Î { }k 1, 2 for Î +m and k=1 form=0 (as for j and n) [24]. Therefore, analyzing the eigenvalues ofK
in equation (14) implies doing the same for the Liouvillian l. The formof the solution is similar to the
eigenvalues of equation (6) and an analogous expansion to the one in equation (8) can be performed. In this way
one is able to analyze the eigenvalues in terms of an expansion in powers of cn that appears in the radical of
equation (14). This procedure leads to the following expression

e
k d k

d c c= - +
+

+
-

+
⎛
⎝⎜

⎞
⎠⎟

( ) [ ] ( )( ) n
i

2

2 i

2

1

4
, 17j

n
j

j

n n,2
2

where di,2 is the Kronecker delta, j= 1, 2 for >n 0, and j=1 for n=0.Note that the parameter cn tends to
zerowith increasing values ofκ if g, n and δ remain finite. It follows from the expansion in equation (17) that the
eigenvalues of the Liouville operator l are insensitive to the coupling strength for sufficiently large values of the
photon decay rateκ. In this case we also get an indication that the atomic system is ‘protected’ from the cavity,
this time due to photon losses. The result holds for arbitrary values of excitation number n and in this case for all
the eigenvalues of the Liouville operator l as they are a sumof two eigenvalues of equation (14). In this example
involving photon losses, the detuning can also be taken into account thanks to the simple diagonalization of l

that breaks down to the diagonalization of 2×2matrices.
Let us now study the dynamical features of the atomic sub-system.Using the approaches of [24, 25], it is

possible to evaluate the eigensystemof l and in turn to calculate the time evolution of, in principle, any given
initial condition. For the sake of simplicity, we consider the case where only one excitation is present in the
system.Details of the calculations can be found in appendix B.We assume an arbitrary pure state of the atom
and an empty cavity in the Fock state ñ∣0 . The initial condition is then given by

Y ñ = ñ + ñ Ä ñ∣ ( ∣ ∣ ) ∣ ( )c cg e 0 . 180 g e

The corresponding reduced densitymatrix of the atomic sub-system for this particular initial state is found to be

* * *r = - ñá + ñá + ñá + ñá( ) ( ∣ ( )∣ )∣ ∣ ∣ ( )∣ ∣ ∣ ( )∣ ∣ ( )∣ ∣ ( )t c f t c f t c c f t c c f t1 g g e e e g g e 19at e
2

e
2

e g e g

with the complex function

k e
k e

=
+ +
+ +

e e- -
( ) ( )

( )
( )

( )

( )

( ) ( )

f t
g

g

4 e i 2 e

4 i 2
. 20

t t2 i
1
1 2 i

2
1
1 2

2
1

1
1

It can be seen that =c
d

¥
-( )f tlim e ti

0
, as from equation (17) it follows that in this limit the eigenvalues of the

non-HermitianHamiltonianK tend to: e k -( ) i 21
1 and e d( )

2
1 . Therefore, for large values of the damping

parameterκwith respect to g, the atom evolves freely under the influence of the freeHamiltonian ds s+ -. This
can be noted from equation (19) or by evaluating the population of the atomic excited state

s s r= =+ -( ) { ( )} ∣ ( )∣ ( )p t t c f tTr . 21e at e
2

By tracing the square of the atomic densitymatrix one canfind that the atomic purity as a function of time is
given by the expression

= + -( ) ∣ ∣ ∣ ( )∣ (∣ ( )∣ ) ( )P t c f t f t1 2 1 . 22e
4 2 2

The formofP(t)makes evident that the atom remains pure for longer times asκ increases with respect to g and
remains completely pure in the limit c  00 (k  g ).

Figure 3 shows the purity P(t) and excited state population ( )p te of the atomas a function of time for
different values of the decay parameterκ. The asymptotic behavior is explained by the knowledge of the steady
state, which is the atom in the ground state and an empty cavity. The reason for this is the photon losses that
drain all excitations in the system. The asymptotic steady state is actually a pure state which explains the re-
emergence of the purity for large values of the interaction time. The excitation probability drops to zero to never
revive also in accordancewith the steady state involving the atom in the ground state. The important feature is,
however, that all of this happens at larger time scales with increasing values of the photon lossesκ. Thismeans
that very strong coupling of the cavity to its environment protects the atomic state. In the limit this state is
frozen, i.e we again find a quantumZeno effect.

We close this section by commenting on previous findings related this part of our work. Similar studies have
been considered for a high finesse cavity coupled to a leaky cavity, werefirst numerical results where given by
Imamoğlu [19] followed by analytical investigations ofNemes [20]. A two-level atom coupled to the continuum
ofmodeswas investigated byKofman andKurizki [4], who found analytical results for the decay of the excited
state population including interruptions of the unitary dynamics in linewith the quantumZeno effect. In all
these three cases [4, 19, 20], the authorsfind systematically that increasing the leakage of the cavity slows the
decay of the central system.Note this is truewith orwithout interruptions of the unitary evolutions, i.e., with or
without repeatedmeasurements. This implies that the obstruction of the decay in the atomby increasing
leakiness of the cavity is not due to a quantumZeno effect although it is enhanced by it (see figure 1 in [4]).

5
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5. Conclusions

With the dephasing Lindblad operatorwe have a very simple example, wherewe can see the entire development
of decoherence as a function of time for different parameters. The scaling behavior is readily established andwe
see, that the same equation describes the improvement of decoherence from the perturbative all theway to the
strong coupling regime, as could be hoped from the rather general analytic results implicit in [7–9]. Yet in the
perturbative regime forκ it seemed that for chaotic environments in the Fermi golden rule regime, i.e. with
exponential coherence decay, the effect of the far environment was no longer noticeable. The latter effect is not
seen in our system, wherewe always have a preserving effect of the coherence in the central system.

For the case of loss, the fact that we always return to a pure state is trivial, as the vacuum is the steady state, but
the fact that the initial decoherence slows down aswe increase the coupling to the far environment is non-trivial.
We thus see, that while the same equation governs the system, the qualitative explanation using the quantum
Zeno effect will only describe the strong coupling limit, as for weak couplingwe have complete decoherence and
later recoherence while there is a transition to another state. This becomesmost clearly visible at the opposite
end of the coupling range. Herewe see oscillations both in the occupation number and in purity. The unitary
Hamiltonianwhich causes an oscillation of the excitation between the spin and the oscillator is effective. For
stronger coupling this dynamics loses importance until we reach a total freeze of dynamics including purity; this
is in agreementwith thefindings of [8]. There the protection of coherence by decoherence of the environment
was shown in aweak coupling regime by linear response considerations, which also preclude a quantumZeno
effect.

Thus our two simplemodels go a longway toward explainingwhat is going on in thematter of decoherence
of a near environment protecting the central system. Yet, as is to be expected, some aspects ofmore realistic
systems are not covered by themodel behavior.
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AppendixA. Eigenvalues of L

In this appendixwe present the exact eigenvalues of the 4×4matrix L in equation (5). The eigenvalues are also
roots of the fourth order characteristic polynomial of L:

g g d g= + + + + +( ) ( ( ) ) ( )Q z z g n g n z z z4 4 2 . A.12 2 2 2 2 3

One of the solutions, namely =( )Q 0 0, can be immediately identified by inspection of equation (A.1). The rest
of the eigenvalues are roots of the third order polynomial ( )Q z z . Using the solution of the cubic equation in
[26], the four zeros ofQ(z) and eigenvalues of L can bewritten as

Figure 3. Left (right)plot: atomic purityP(t) (excited state population ( )p te ) as a function of time in units of g1 for different values of
the cavity decay rateκ. The initial state is an excited atomand an empty cavity subject to the dynamics of equation (13). Dotted (green)
line k =g 1, dotted–dashed (gray) line k =g 10, dashed (blue) line k =g 100, and full (black) line k =g 1000. Detuning is
d =g 0.8. Note: the purityP(t) is plotted in the range ofminimum tomaximumpurity ([ ]0.5, 1 ).
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wherewe have introduced the following definitions

g d
g
g d

=-
- -

=
+ -

= + +( ) ( )

q
g n

r
g n

s r q r

3 12

9
,

9 18

27
,

. A.3

2 2 2 2 2 2

3 2 1 3

For the sake of simplicity we restrict our discussion to the case d = 0 in themain text.

Appendix B. Eigensystemof l

Herewe present details of the calculations using the eigensystemof the l. The non-HermitianHamiltonian
k= - †K H a ai 2 can be diagonalized in blocks in the basis ñ{∣ }n j, with the states

ñ = ñ Ä ñ
ñ= - ñ Ä ñ >

∣ ∣ ∣
∣ ∣ ∣ ( )
n n n

n n n

, 1 g , 0

, 2 1 e , 0. B.1

The number state ñ∣n describes a situation of n photons in the cavity, while ñ∣e and ñ∣g stands for the excited and
ground state of the atom. The explicit formof the blocks ofK is given by

=
- k

d k- -

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )( )

( )K
g n

g n

i
, B.2n

n

n
2

2 i 1

2

for >n 0 and =( )K 00 . The eigenvalues are given in equation (14). The diagonalization of thematrices ( )K n can
be accomplishedwith the transformation ( ) ( ) ( )R H Rn n n , with

q q
q q

=
-⎛

⎝⎜
⎞
⎠⎟ ( )( )R

cos sin
sin cos

, B.3n n n

n n

with q e k= +[( ) ]( ) n g narctan 2 i 2n
n

1 . The right and left eigenvectors ofK are given by

å åñ = ñ á = á
= =

∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( )r R n k q R n k, , , B.4j
n

j
k j
n

j
n

j
k j
n

1

2

,
1

2

,

for >n 0 and the singlet ñ∣0, 1 for n=0. It has been shown in [24] that the full eigensystemof the Liouville
operator l in equation (13) can be constructed from the eigensystem of the non-HermitianHamiltonianK.
With the knowledge of the full set of right (left) eigenvectors rlˆ (rl ) (labeledwith the corresponding eigenvalue
λ), one is able to evaluate the time evolution of any given initial condition r0 as

 år r r r r= =
l

l
l

l( ) { } ˆ ( )†t e Tr e . B.5t t
0 0

l

For initial states Y ñáY∣ ∣0 0 of equation (18), the only contribution to (B.5) is given by the following set of 7 right
eigenvectors of l

r r r= ñá = ñá = ñá - á ñ ñáˆ ∣ ∣ ˆ ∣ ∣ ˆ ∣ ∣ ∣ ∣ ∣ ( )( ) ( ) ( )r r r r r0, 1 0, 1 , 0, 1 , 0, 1 0, 1 . B.6j j j k j k k j1,1
0,0

,1
1,0 1

,
1,1 1 1 1 1

The corresponding left eigenvectors are r = ( )
1,1

0,0 , r = ñá + ∣ ∣( ) q 0, 1 ...j j,1
1,0 1 and r = ñá + ∣ ∣( ) q q ...j k j k,

0,1 1 1 , where the

dots indicate a series of terms thatwe omit as they do not contribute to initial states describing one excitation in
the system. The corresponding eigenvalues are l =( ) 01,1

0,0 , l e= -( ) ( )ij j,1
1,0 1 and *l e e= - -( )( ) ( ) ( )ij k j k,

1,1 1 1 .With this
subset of the eigensystem, it is possible towrite the time evolution of the initial state in equation (18) as

å år r r r r= ñá + á ñ + á ñ +l l

= =

( ) ∣ ∣ ∣ ∣ ˆ ( ∣ ∣ ˆ ) ( )( ) ( )( ) ( )
t q q q0, 1 0, 1 e 0, 1 e H.c. , B.7

j k
j k

t
j k

j
j

t
j

, 1

2
1

0
1

,
1,1

1

2
1

0 ,1
1,0

j k j,
1,1

,1
1,0

with r = Y ñáY∣ ∣0 0 0 . From equations (18) and (B.4) it follows that á Y ñ =∣ ( )q c Rj j
1

0 e 2,
1 and *áY ñ =∣ c0, 10 g . By taking

this into account and tracing over the photonic degrees of freedomonfinds the reduced densitymatrix of the
atomic system

* *å år = ñá + ñá + + ñá - ñál l

= =

( ) ∣ ∣ ( ( ) ∣ ∣ ) ∣ ∣ ( ) (∣ ∣ ∣ ∣) ( )( ) ( ) ( )( ) ( )
t c c R c R Rg g e e g H.c. e e e g g . B.8

j
j

t

j k
j k

t
at

1

2

e g 2,
1 2

e
2

, 1

2

2,
1

2,
1 2j j k,1

1,0
,
1,1
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Finally, the expression in equation (19) is obtained by identifying that

å= e

=

-( ) ( )( ) ( )
f t R e . B.9

j
j

t

1

2

2,
1 i j

1
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