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Abstract
The chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled
oscillators, that displays a self-organized spatial pattern of coexisting coherence and incoherence. In
this paper, thefirst evidence of three-dimensional chimera states is reported for theKuramotomodel
of phase oscillators in 3D grid topologywith periodic boundary conditions. Systematic analysis of the
dependence of the spatiotemporal dynamics on the range and strength of coupling shows that there
are two principal classes of the chimera patterns which exist in large domains of the parameter space:
(I) oscillating and (II) spirally rotating. Characteristic examples from the first class include coherent as
well as incoherent balls, tubes, crosses, and layers in incoherent or coherent surrounding; the second
class includes scroll waves with incoherent, randomized rolls of differentmodality and dynamics.
Numerical simulations started fromvarious initial conditions indicate that the states are stable over
the integration time. Videos of the dynamics of the chimera states are presented in supplementary
material. It is concluded that three-dimensional chimera states, which are novel spatiotemporal
patterns involving the coexistence of coherent and incoherent domains, can represent one of the
inherent features of nature.

The chimera state represents one of themost fascinating discoveries in nonlinear science at the turn of the
century. A new class of self-organizing patterns has been revealed as natural solutions of complex,
homogeneous, and high dimensional dynamical systems of coupled oscillators, demonstrating the robust spatial
co-existence of coherence and incoherence. It was discovered and identifiedmore than a decade ago, in 2002, by
Kuramoto andBattogtokh [1] for amodel of identical but nonlocally coupled oscillators in the one-dimensional
complexGinzburg–Landau equation and its phase approximation, the Kuramotomodel. The phenomenonwas
characterized as the spontaneous occurrence of a global symmetry breakingmotion in the formof two
incongruent clusters, onemade of synchronized and phase locked oscillators and the othermade of
unsynchronized and drifting ones. A fully homogeneousmediumof identical elements was unexpectedly found
to be able to give rise to a specific symmetry breaking behavior, next to the previously often observed fully
synchronized or fully desynchronized behavior.

Two years after, in 2004, this phenomenonwas highlighted byAbrams and Strogatz in the famous paper [2]
and rapidly triggered thereafter a broad interest in the nonlinear dynamics community, confirming and
improving the understanding of such a striking solution for a diversity of homogeneous systems of coupled
oscillators and their perturbations. For now, chimera-like behavior has been reported in numerous theoretical
studies and observed in experiments fromdifferent fields, see review paper [3] and references therein. Such
behavior has the potential to facilitate understanding of self-organized coherent–incoherent patternswhich are
widespread in nature. Of importance, e.g., are turbulent-laminar patterns influid dynamics of shear and pipe
flows [4], bump states in neuroscience as spatially localized structures of persistent neuronal activity linked to
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workingmemory [5–7], or isolated desynchronization in power grid networks [8]. Inmedicine, a prospective
application is associatedwith viewing chimeras asmodels of spiral patterns formed on heart tissue during
ventricular tachycardia and fibrillation, which is one of the primary causes of sudden cardiac death in humans
[9–13]. See [3] for links to other possible applications of the chimera states.

Spatially extended processes in the real world are three-dimensional, and appropriate three-dimensional
models are required to explore them.Nevertheless,most studies in the chimerafield have been based on one-
dimensionalmodels and only a small part of themwas for the 2D case. Can chimera states exist in three
dimensions? If so, withwhat shapes and how robust are they? These principal questions havemotivated recent
research and results are reported in this paper.

An important prerequisite for obtaining chimera states is nonlocal coupling in the network. Indeed,models
which have the striking spatiotemporal behavior of a chimeramust not be locally coupled only. As PDEs imply
local coupling at infinitesimal distances, they are not suitable for chimeramodelling. To count the coupling non-
locality, amodel should contain an integral termwith a kernel imposing how the coupling spreads through the
space. Then, integro-differential equations can provide a suitable basis for theoretical and computational study
of the chimera states. Such an approachwas suggested, in [1] for the nonlocally coupled complexGinzburg–
Landau equationwhere the diffusion termwas replaced by an integral onewith an exponentially decaying
kernel. The phase approximation of the problem is now known as theKuramotomodel. After discretization it
has the form
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A year after, in 2003, this novel approachwas extended to the two-dimensional case. Spiral waveswith
randomized corewere identified for a class of three-component reaction-diffusion systems of biological
relevance and for the two-dimensional Ginzburg–Landau equationwith a nonlocal coupling term [14]. The
respective phase approximationmodel, which is a two-dimensional counterpart of equation (1), was analyzed in
[15]. It was argued that spiral patterns with an incoherent core can typically arise if some chemical components
involved are diffusion-free, then the coupling is imposed by amodified Bessel functionwhich is radially
symmetric and decayingwith the distance. This kind of space-temporal behavior, where the coherent region of a
pattern is spirally rotating around an incoherent core, constitutes the second class of chimera states, different
from those originally detected in [1]. In two dimensions, parameter regions for both chimera classes: (I)
oscillatingwithout rotation and (II) spirally rotatingwith an incoherent core, were obtained numerically and
derived analytically [16, 17].Moreover, it was found that they emerge in opposite corner parts of the parameter
space and thus chimeras of different classes cannot co-exist.

A powerful tool for understanding the complex chimera dynamics is the thermodynamic limit N → ∞,
with themacroscopic coupling range r R N= tending to a constant. In this case, exact equations are obtained
for chimera states which are stationary solutionswith importantmacroscopic properties, such as the size and
shape of the coherent/incoherent regions and the averaged frequencies of individual oscillators. This approach
was proposed in the original papers [1, 2] (1D case) and [14, 15] (2D case) and developed later on bymany
authors, see [18–21] and [3] formore references. The thermodynamic limit approach can be apparently
extended on the considered 3D case, but this paper is focused on the diversity of 3D chimera states in thefinite-
dimensional Kuramotomodel.

The new term chimera state itself was suggested in [2] where equation (1)was analyzedwith a cosine
coupling function G x A A x( , ) 1 cos 2cos π= + . The case of amultimodal cosine coupling functionwas
analyzed recently in [22, 23]. Topologically, the simplest formof nonlocal coupling causing chimeras is given by
a step function G x r r( , ) 1 2step = , if x r∣ ∣ ⩽ , and= 0 otherwise. It was introduced in the chimera study in [24],
and is nowwidely used bymany authors. Here r is a new control parameter—consistent with the radius of
coupling—defined such that each oscillator iφ is coupledwith equal strength to all its nearest neighbors within
radius r and not coupled beyond. Since the pioneeringworks [1, 2, 14, 15], chimera states have been reported
and thoroughly studiedwith differentmodels, network configurations, and coupling schemes. Themain
attention has been paid to a ring of oscillators, see [20–37] and to the case of two and three groups of oscillators
[18, 38–40]. Robustness of the chimera states was examined fromdifferent viewpoints [41–43] and confirmed
by recent experiments in various fields including chemistry [44–46], optical andmicroelectronic systems [47–
50], andmechanics [51, 52]. Two-dimensional networks have been analyzed for an infinite plane [14, 15, 19], a
periodic square topologically (equivalent to aT2-torus) [16, 17, 45], and for the surface of a unit sphere S2 [53].
2D type (I) chimeras have been obtained in the formof stripes and spots, both coherent and incoherent [16, 17].
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Similar to the 1Dcase [32], they emerge in the right-upper part of the (r,α)-parameter regionof interest, namely,
r0 0.5< < and 0 2α π< < . Spiralwave chimeras, i.e. of type (II), do not have 1Danalogues. Theyfill up the

opposite, left-downpart of the parameter plane. As a result, (r,α)-parameter domains for the type (I) and type (II)
chimeras are not intersecting, i.e., 2Dchimeras of the twoprincipal classes (I) and (II) cannot co-exist [16].

In this paper, a detailed numerical study of the chimera phenomenon, based on nonlocally coupled
Kuramoto phase oscillators placed uniformly in a three-dim cubewith periodic boundary conditions, is
presented. A variety of striking spatiotemporal patterns of both types are detailed and the (r, α)-parameter
regions for their existence are stated. The robustness of the three-dimensional chimera patterns is supported by
the fact that they are obtained in numerical experiments with randomly chosen initial conditions. The
corresponding videos (see supplemental data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-
resolution/) provide visual confirmation. Numerical simulationwas based on the Runge–Kutta solverDOPRI5
that has been integrated into software for large nonlinear dynamical networks [54], allowing for parallelized
simulationswith different sets of parameters and initial conditions. The simulationswere performed on a
computer cluster ‘chimera’ (http://nll.biomed.kiev.ua/cluster) andUkrainianGrid Infrastructure providing
distributed cluster resources and the parallel software [55]. Themain bifurcation diagram infigure 1 below is a
result of long-time parallel simulations (over a period ofmore than one year) of themodel using random
searches followed by a standard continuation procedure.

The dynamical systemof concern is governed by aKuramoto-like network ofN3 identical oscillators
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where ijkφ are phase variables, indexes i j k, , are periodicmodNwhich induces a 3D torus structure on the

array. The coupling is assumed to be long-ranged and isotropic: each oscillator ijkφ is coupledwith equal

strengthK to all its nearest neighbors i j kφ ′ ′ ′within a range P, i.e. to those oscillators falling in the ball-like

neighborhood
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where the distances i i j j,′ − ′ − , and k k′ − are calculated regarding the periodic boundary conditions of the
network.

Figure 1.Parameter regions of 3D chimera states for equation (2). Snapshots of respective chimera types are shown in the insets.
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Without loss of generality, it is put in equation (2) 0ω = andK = 1. The phase lag parameter α is assumed to
belong to the attractive coupling range from0 to 2π 5 (cr also [32]). The second control parameter in themodel
(2) is the coupling radius r P N= . It varies from r N1= (local coupling) to r 0.5= (close to global coupling).
Chimera states in theKuramotomodel arise at intermediate values of coupling radius, between N1 and 0.5,
referred to as nonlocal coupling [2, 24, 32]. There is onemore parameter in themodel (2), namely, the network
sizeN3. Numerical simulation of equation (2) have been performed forN = 50 andN = 100 and require the
integration, respectively, of 125 000 and 106 nonlinear differential equations. No differences of importance in
the systemdynamics were observed for these two values ofN. Naturally, such computation is beyond the
capability of themodern personal computer and requiresmore powerful computer facilities and parallelized
software.

Results of direct numerical simulationofmodel (2) in the two-parameter plane of thephase shiftα and the
coupling radius r are presented infigure 1. Thisfigure reveals the appearance of regions of different kinds of 3D
chimera states, outlined in shading (colors), at intermediate values of the radius of coupling andphase lag. Typical
shapes of the chimera states obtained are illustrated in the insets. For better visual representation, they are centered
with respect to the coordinate frame (as also done in thefigures belowand in the supplemental videos).

Parameter regions for type (I) chimeras, i.e. not-rotating, can be seen in the upper-right corner of the ( r,α )
-plane. Alternatively, type (II) chimeras, i.e. spirally rotating locate in the lower left part of the bifurcation
diagram. It can be observed that the regions belonging to the two chimera types are separated from each other,
whereas the regions for chimeras of the same type are essentially intersectingwhich causesmultistability. It
should bementioned that the chimeras shown infigure 1 co-exist with the fully synchronized solutionwhich is
stable for the values ofα and r considered. In addition, and consistent with 1D and 2D cases alike, stable rotating
waves also arise at r 1 3< , so-called q-twisted states [56]. Usually, to obtain chimera states in numerical
simulations it is necessary to use special initial conditions.However, as our numerical experiments show,most
of the chimera states can be obtained by repeating calculationswith randomly chosen initial conditions, which
indicates large chimera basins. In our experiments with random initial conditions other sorts of space-temporal
dynamics have been observed including apparently intermingled behavior when the trajectory switches between
different chimera states which resembles heteroclinic cycling. The study of them is for the future and the
following concentrates on the chimeras presented infigure 1.

Infigure 2, snapshots of four characteristic chimera states formodel (2) are presented. These are an
incoherent ball (a) and tube (b) in a coherent surrounding, and a coherent ball (c) and tube (d) in an incoherent
surrounding. For clarity the coherent regions in the 3D snapshots are left transparent, but they can be seen in the
2D section plots below. These chimera types are the three-dimensional counterparts of strip and spot chimeras
in two dimensions, see [16, 17]. As in two dimensions, they exist at large values of the parameters r andα (see
figure 1where parameter regions for their existence are specified). Themean frequencies of the individual
oscillators have also the same bell-shape profile as in 1D and 2D cases, see figure 3.Due to the periodic boundary
conditions inmodel (2), tube-like chimeras (b) and (d) can be represented as doughnut-shaped coherent/
incoherent toroids in an incoherent/coherent surrounding, respectively.

Figure 4 illustrates twomore exotic chimera states, also of type (I), whichdonot have 2Danalogues: (a) a six-
piece incoherent cross and (b) a four-piece coherent cross. The respective parameter regions canbe seen infigure 1
and are in between incoherent and coherent ball and tube chimeras. The complementary coherent set of the six-
piece chimera shown infigure 4(a) represents the samekindof cross but displayed in shifted coordinates
x x y y z z0.5, 0.5, 0.5→ + → + → + .Hence, both incoherent and coherent six-piece crosses exist
simultaneously, but in different coordinates, and they, clearly, are perfectly attached to eachother (see supplemental
data formoredetails). The second chimera state of this kind is a coherent four-piece cross (figure 4(b)). In contrast
to the six-piece cross (figure 4(a)), its complementary incoherent set in the shifted coordinates has only twopieces.
As for an incoherent four-piece cross chimera, it has not beenobserved inour simulationswhen varying system
parameters and initial conditions. Its existence inmodel (2) is an openproblem.

As illustrated in the supplementary videos the six-cross chimera dynamics are rather stationary: the
boundary surface between the coherent and incoherent regions is visually non-oscillating. This is not the case for
the four-piece cross: it breathes in time such that the coherent–incoherent boundary performs, evidently, large
scale chaotic oscillations.

Scroll waveswith an incoherent core(s) constitute the second principal class of the three-dimensional
chimera states and snapshots of the typical patterns of this kind are illustrated infigure 5. They emerge in the
lower-left part of the r( , )α -parameter plane (see the bifurcation diagram infigure 1). In these chimera states,

5
Themeasure of coupling attractivity in the Kuramotomodel is controlled by the phase lag parameterα: for 0 2α π< < the coupling is

attractive, whereas for 2 3 2π α π< < it is repulsive. In thefirst, attractive case the coherent state ... N1 3φ φ= = is stable coexistingwith
chimera states (if they do exist) or other possible states. As α crosses 2π , the coherent state losses its stability giving rise to so-called q-twisted
states. See [32, 56, 57] formore details.
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coherent regions are spirally rotating around incoherent rolls as can be visually seen in the supplementary
videos. The rolls represent a three-dimensional ‘swelling’ of standard scroll wavefilaments and their
microscopic dynamics is apparently chaotic. Due to the periodic boundary conditions, the rolls can be
considered to be closed in a ring (in circular coordinates) representing, thereby, a toroid—scroll wave ringwith
an incoherent core. The surrounding coherent dynamicsmay be twisted or not [58].

Scroll wave chimeras are characterized by the number of the incoherent rolls and their large-scale behavior.
Infigure 5, chimeraswith two (a) and four (b)–(d) rolls are shown. The rolls here are stationary, i.e. notmoving
in a significantmanner as it can be concluded from the supplementary videos. The four-roll chimeras in (b) and
(c) differ in their position and their shape. Indeed, in (b) the rolls are parallel and symmetric and this is the 3D
counterpart of the spiral chimera state obtained in [16]. In contrast, the rolls in (c) and (d) are pairwise located in
perpendicular directions and, clearly, can not have any 2D analog. Compare [59]where the interactions of a pair
of parallel scroll waves similar to shown infigure 5(a)was studied experimentally for three-dimensional
excitablemedia in Belousov–Zhabotinsky reaction.

Figure 2. 3D chimera states in equation (2): (a) incoherent ball ( 1.15α = , r 0.28= ), (b) incoherent tube ( 1.305α = , r 0.334= ), (c)
coherent ball ( 1.53α = , r 0.39= ), (d) coherent tube ( 1.49α = , r 0.43= ). Snapshots of phase distributions ijkφ and cross-sections

in coordinates x i N y j N z k N, ,i j k= = = are shown. For each pattern, the coherent region is left transparent in the upper 3D

snapshot and can be observed in the lower 2D section plots. The space–time dynamics of the chimera states are illustrated by videos
available in supplemental data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-resolution/N = 50.

5
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In numerical experiments, scroll wave chimeras have also been observedwithmore complicated behavior of
the incoherent rolls, when the established large scale dynamics are not stationary, as in video ‘figure 5(a)video.
mkv’, but periodic or even chaotic. Two examples of this kind can be found at theweb page http://chimera3d.
biomed.kiev.ua/high-resolution/. In thefirst such video ‘two traveling rolls-1.mkv’ ( 0.9α = , r 0.17= ) the large

Figure 3. Spatial profiles of average frequencies for an incoherent ball (left panel) and an incoherent tube (right panel). Equation (2)
was integrated up toT=10 000, then averagingwas calculated at the time intervalΔT 100= . Parameters are the same as infigures 2(a)
and (b), respectively.

Figure 4.Cross-chimeras in equation (2): (a) incoherent six-pieces cross ( 1.365α = , r 0.342= ) and (b) coherent four-pieces cross
( 1.45α = , r 0.35= ). The space–time dynamics are illustrated by videos available in supplemental data and, in full quality, at http://
chimera3d.biomed.kiev.ua/high-resolution/N = 50.
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scale dynamics are rather simple: both rolls are symmetrically drifting with a constant velocity staying in parallel
to one of the coordinate axes. In the second video ‘two traveling rolls-2.mkv’ ( 0.9α = , r 0.16= ) the rolls
remain parallel to the coordinate axis but behave in amore complicated, visually chaoticmannermoreover,
their shape is chaotically breathing in the process ofmovement6.

An example of chaotic two-roll dynamics is presented infigure 6(a). This kind of behavior resembles scroll
wave turbulence [61, 62] known also asWinfree turbulence [63, 64]. It is consistent with spatiotemporal chaos
in three-dimensional excitablemedia and is thought to be relevant for understanding fibrillation of the heart
[65]. Themost surprising type (II) chimera state is that of a localized vortex with an incoherent core, as
illustrated infigure 6 (b). This chimera state develops, rather fast, from random initial conditions, as can be seen
in the supplementary video. The vortex contains a unique incoherent roll which is closed in a ring and rotating
with a constant velocity. The transverse diameter of the roll ismaximal in the center, it decreases and eventually
vanishes at the periphery. The vortex exist in a small parameter region delineated in black infigure 1.
Nonetheless, the origin of this fascinating pattern is not clear at present; we have also no ideas as for its possible
analogues in other fields.

Figure 5. Scroll wave chimera states in equation (2): (a) two parallel rolls ( 0.8α = , r 0.165= ), (b) four parallel rolls ( 0.9α = ,
r 0.16= ), (c) four crossed rolls ( 0.9α = , r 0.16= ), (d) four crossed rolls of different shape ( 0.83α = , r 0.094= ). The space–time
dynamics are illustrated by videos available in supplemental data and, in full quality, at http://chimera3d.biomed.kiev.ua/high-
resolution/N = 100.

6
Traveling chimeras can also be observed in the one-dimensional case however, with additional conditions on the coupling function:

multimodality [22] or asymmetry [60], or spatial inhomogeneity [23]. In the considered 3D case the chimeramovement typically arises
under fully symmetric conditions.
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The scroll wave chimeras illustrated infigures 5 and 6, exist inwide regions of the parameter space which can
be seen in the lower-left part of themain bifurcation diagram shown infigure 1.Moreover, these parameter
regions are heavily intersecting. Indeed, numerical simulations confirm that in the conjoint domains several
states of this type can be obtained starting from random initial conditions uniformly distributed on the circle
(from π− to π+ ). To illustrate thismultistability phenomenon,model (2) has been integrated with N 503 3=
oscillators for two cases: in the parameter pointsA1 defined by 0.8α = and r 0.14= andA2 defined by 0.9α =
and r 0.16= (marked infigure 1). In each of the two cases, simulations startedwith 40 different random initial
conditions and used up toT = 5000 time units. The following scroll wave chimeras and other space-temporal
patternswere observed at the end of the integration:

PointA1: three stationary two-roll chimera states (as infigure 5(a)), and one chaotic two-roll chimera state
(as infigure 6(a)). The other 35 simulations resulted in different behavior as it was recorded at t = 5000, namely:
15 coherent fully synchronized states, two rotatingwave solutionswith one and two rotating coordinates
respectively, 15 spatial chaos states with a coherent background, and four spatial chaos states with a rotating
wave background.

PointA2: sixmoving two-roll chimera states (as in videos ‘two traveling rolls-1.mkv’ and ‘two traveling rolls-
2.mkv’ at thewebpage http://chimera3d.biomed.kiev.ua/high-resolution/), one four-roll parallel spiral chimera
state (as infigure 5(b)), one four-roll crossed chimera state (as infigure 5(c)), one chaotic two-roll chimera state
(as infigure 6(a)), and one localized single-roll vortex (as infigure 6(b)). The other 30 simulations resulted in the
following different behaviors as observed at t = 5000: 17 coherent fully synchronized states, three rotatingwave
solutions, nine spatial chaos states with a coherent background, and one spatial chaos state with a rotatingwave
background (one coordinate rotates).

From these simulations scroll wave chimeras appear in 17.5%of experiments: 15% among them are regular,
i.e. with stationary or drifting rolls only and 2.5%—chaotic scroll chimeras resembling 3D spiral chaos. The
majority of the experiments—82.5%—result in fully or almost fully synchronized plane or rotatingwaves. It is
worth noting that calculations of up to t=5000 time units, andwith 80 sets of initial conditions, provides only a
brief insight into the high dimensional systemdynamics.However, the limited simulations do demonstrate the
rich andmultistable behavior of nonlocally coupled phase oscillators for the three-dimensional case7.

As a prospective challenging application, consider the co-existence of synchronous oscillations, with both
regular and chaotic scroll waves, which resembles, phenomenologically, the three characteristic regimes in
cardiovascular heart disease, namely, normal sinus rhythm, ventricular tachycardia, and ventricularfibrillation
(see [3], chapter 7.2 and references therein). It is expected that further research in the direction of
spatiotemporal control of the scroll wave behavior can contribute to understanding themechanisms of this fatal

Figure 6. (a) Two-rolls chimera state with chaotic dynamics ( 0.8α = , r 0.14= ) and (b) single-roll vortex ( 0.9α = , r 0.16= ). The
space–time dynamics are illustrated by videos available in supplemental data and, in full quality, at http://chimera3d.biomed.kiev.ua/
high-resolution/N = 50

7
Richmustistable structure of co-existing chimera dynamics in the 1D case is demonstrated by phase diagrams in [32]. Basins of attraction

for chimera states are studied in [50, 66].
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diseasewhich is the leading cause of death in themodernworld. Such research could provide prerequisites for
developing possible alternatives tomassive defibrillator shocks, as well as designing new drag therapies, with the
goal of a less traumatic transition from the pathologic scroll wave behavior observed infibrillation to a healthy
heart rhythm [9–13].

This report on three-dimensional chimera states in theKuramotomodel would not be complete without the
mention of the states with alternating layers of coherence and incoherence, i.e. ‘sandwich-like’ chimeraswhich
are illustrated infigure 7.Most probable are the patternswhere the coherence/incoherence layers are parallel to
one of the coordinate planes (figures 7(a) and (b)), which are the natural counterparts of the 2D strip chimeras
[16]. Thewide parameter region for this kind of behavior can be seen in the upper right corner of the bifurcation
diagram infigure 1. Some other simulations show robust oblique layer structures, where the layers lie along one
of the diagonal planes. Two examples of such states are presented in figures 7(c) and (d), with one and two
incoherent layers, respectively. They resemblewell known turbulent-laminar oblique structures which naturally
arise as robust states in shear andCouetteflows influid dynamics, see [4] and references therein. In numerical
experiments of equation (2), however, oblique chimera states were obtained in insular parameter points at the
intermediate values of the coupling radius r. Often, they arise after a long transient.

Figure 7. ‘Sandwich-like’ chimeras in equation (2): (a) parallel incoherent layer ( 1.4α = , r 0.46= ), (b) double parallel incoherent
layers ( r1.325, 0.31α = = ), (c) obligue incoherent layer ( 1.42α = , r 0.312= ), (d) double oblique incoherent layers ( 1.36α = ,
r 0.31= ). The space–time dynamics are illustrated by a video available in supplemental data and, in full quality, at http://chimera3d.
biomed.kiev.ua/high-resolution/N = 50.
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In conclusion, the very first observation of three-dimensional chimera states in the nonlocally coupled
Kuramotomodel, with a periodic topology equivalent to 3D torusT3, has been reported. Two large families of
the chimera states are obtained, which are (I) incoherent/coherent balls, tubes, crosses, and layers (figures 2, 4
and 7), and (II) incoherent rolls in spirally rotating coherent surrounding, which can behave in regular (figures 5
and 6(a)) and chaotic ways (figure 6(b)). Large numerical simulations indicate that these states are robust and
that they constitute an essential part of the spatiotemporal network dynamics. By carefully inspecting the r( , )α
-bifurcation diagram, the parameter regions for the states of interests have been obtained and it has been
concluded that (I) stationary and (II) scroll wave chimeras inhabit large, but distinct, areas of the parameter
space.

It is worth noting that the obtained three-dimensional coherent–incoherent patterns do not exhaust the
emerging beauty of the fascinating chimera dynamics. A variety ofmulti-headed three-dimensional chimeras
are certainly waiting to be discoveredwith further studies of the Kuramotomodel and the other,more realistic
systems. The authors believe that the chimera state is probably a common, and universal, phenomenon in
networks of very different nature and that a variety of surprising applications await to be discovered.
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