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Abstract. We investigate the dynamical behavior of a model of robust gene
regulatory networks which possess ‘entirely reliable’ trajectories. In a Boolean
representation, these trajectories are characterized by being insensitive to the
order in which the nodes are updated, i.e. they always go through the same
sequence of states. The Boolean model for gene activity is compared with a
continuous description in terms of differential equations for the concentrations of
mRNA and proteins. We found that entirely reliable Boolean trajectories can be
reproduced perfectly in the continuous model when realistic Hill coefficients are
used. We investigate to what extent this high correspondence between Boolean
and continuous trajectories depends on the extent of reliability of the Boolean
trajectories, and we identify simple criteria that enable the faithful reproduction
of the Boolean dynamics in the continuous description.
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1. Introduction

Biological networks display a remarkable degree of robust behavior, the origins of which are
not yet fully understood [1]. Despite ubiquitous sources of noise, which tend to drive the system
away from deterministic dynamical behavior, many biological networks manage to maintain a
predictable behavior under these circumstances, such as a robust cell cycle [2] and circadian
clocks [3]. These systems must possess features that guarantee the correct execution of certain
dynamical steps in the presence of noise [4, 5]. The general principles that are responsible for
these characteristics have not yet been fully identified [6], although dynamical robustness has
been studied for a variety of biological systems [7–11]. Most studies focused on two types of
perturbations: noise which directly affects the states of individual nodes in the system [12–17],
or fluctuations in the update sequence of the nodes [4, 6, 18–20].

Perhaps the simplest approach to tackling this question is to consider minimal, conceptual
models which discard certain features of the underlying dynamics. A common approach,
especially used for gene regulatory networks, consists in discretizing protein concentrations
by using Boolean values and implementing the regulatory dynamics in discrete time steps
[2, 21–27]. Such a description is particularly useful when dealing with large networks [28],
because it reduces the huge complexity of a continuous system to a problem with a logical
structure that is easier to handle and understand. It permits us to study generic features of entire
classes of systems [21], or to reproduce biologically meaningful sequences of states in gene
regulation networks that must function reliably, such as cell cycle dynamics [2].

Within the Boolean framework, Peixoto and Drossel [4] showed that it is possible to
construct networks that have dynamical trajectories that are entirely reliable in the presence
of perturbations in the update sequence. Such networks produce exactly the same sequence of
states independently of the order in which the nodes are updated. This is achieved by designing
periodic trajectories where consecutive states differ in the value of only one node, i.e. these
states have a Hamming distance h = 1. Peixoto and Drossel constructed ensembles of minimal
networks which reproduce predetermined reliable trajectories, and analyzed their topologies and
update functions.
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Although it is quite suggestive of a general underlying principle which guarantees
robustness, this reliability criterion is strongly tied to the Boolean description of the system.
In contrast, real biological systems are more realistically described via continuous variables
representing the concentrations of the participating macromolecules, e.g. mRNA and proteins.
Although much less analyzed than discrete models [29], ordinary differential equations
(ODEs)—which model the switch-like dynamics of genes by using sigmoidal regulatory
functions—can include more detailed information about transcription and translation processes.
Depending on the parameter values, such models can show oscillating behavior or stable fixed
points. These dynamical patterns may or may not correspond qualitatively to their Boolean
counterparts, and so far little is known about the conditions under which this may happen [30].
Indeed, even for small systems of only two genes there seems to be no simple relation between
Boolean and continuous models [31]. It is therefore unclear to what extent Boolean reliability
criteria do apply to the continuous variants.

Glass et al [19] investigated the behavior of small networks (with N = 5 nodes at most)
possessing entirely reliable dynamics based on results and methods to identify networks
displaying stable robust oscillations developed in the 1970s [32]. They indeed found that it
is possible that both the Boolean and continuous descriptions exhibit compatible dynamics.
Perkins et al [1] analyzed the entirely reliable trajectory of the yeast cell cycle and constructed
a minimal network that contains almost all experimentally confirmed links. They found that by
approximating the Boolean functions by appropriate continuous nonlinear sigmoidal functions,
the essential features of the dynamics are conserved. However, compared to Peixoto and
Drossel [4], they imposed severe restrictions on the dynamics of the networks and the basin
of attraction in addition to the reliability condition, by prohibiting self-inputs and by requiring
that states that differ by one bit from a state on the trajectory must lead directly to the
trajectory. In this paper, we analyze the continuous dynamics of networks that have entirely
reliable Boolean trajectories. We translate the Boolean dynamics into continuous ODEs for
the concentrations of mRNA and proteins using sigmoidal Hill functions, and we analyze the
resulting time series. We do not analyze specific individual networks, but instead investigate an
ensemble of thousands of networks with different sizes and reliable trajectories with different
lengths. For this type of trajectory, we find perfect agreement between the Boolean and the
continuous dynamics for networks with up to 50 nodes, with biologically reasonable values
of the Hill coefficients. Hill coefficients are usually assumed to be between 1 and 4 [33], but
larger values are also observed, for instance for Escherichia coli, where values of the Hill
coefficient up to n ≈ 11 were reported [34]. In order to investigate how the degree of agreement
depends on the reliability criterion, we compare our results to state sequences with larger
average Hamming distances h between consecutive states, and we indeed find that increasing the
Hamming distance destroys the good agreement. This demonstrates that the Boolean criterion
for reliability is, in fact, a criterion for agreement between continuous and Boolean dynamics.
This paper is structured as follows. In section 2, we introduce the modeling of gene regulatory
networks in the Boolean case in general, and reliable trajectories in particular, and explain the
translation to continuous dynamics (section 2.2). In section 3.1, the results of the comparison
between Boolean and continuous dynamics for entirely reliable trajectories with Hamming
distance h = 1 are presented. We then investigate trajectories with larger Hamming distances
h between consecutive states in section 3.2. Finally, in section 4 we discuss and compare our
findings with previous studies.
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2. Model

2.1. Boolean model and entirely reliable trajectories

In Boolean networks, the state of each node or ‘gene’ is either ‘on’ or ‘off’ [21, 22]. Each node
receives input from other nodes. The Boolean variables σ ∈ {1, 0}

N , which describe the states of
the N nodes, are subject to a dynamical update rule, σi(t + 1) = Fi(σ (t))ui(t) + σi(t)(1 − ui(t)),
where Fi is the update function assigned to node i , which depends exclusively on the states of
its inputs. The binary vector u(t) represents the update schedule and has components ui(t) = 1
if node i is updated at time t , and ui(t) = 0 otherwise. The update schedule can be chosen,
in general, in three different ways: (a) synchronous (parallel update), where all ui(t) = 1, i.e.
all nodes are updated simultaneously at every time step; (b) asynchronous and deterministic,
where, for instance, each node i is updated at time intervals ti , starting at a time t0

i ; the period ti

and phase t0
i can be different for different nodes; and (c) asynchronous and stochastic, where at

each time step the node that is updated is chosen at random.
Networks can respond in different ways to stochasticity in the update sequence: the system

may lose memory of its past states, or the system may have some degree of order and stay in
the vicinity of a well-defined trajectory in state space despite these perturbations. In particular,
one may require that the system possesses an entirely reliable dynamics where the sequence
of states is always the same, no matter in which order the nodes are updated [4]. Consecutive
states of such a reliable attractor trajectory differ only in the value of one node, which means
a Hamming distance h = 1. In state space, such attractors are represented as simple loops even
under stochastic update. The number of different states on the attractor, i.e. the length of this
trajectory, is L =

∑
i li , where li is the number of times node i changes its state during a full

period. If we require that each node is updated at least once, the shortest trajectory length is
L = 2N with li = 2 for each node, and the longest trajectory length is L = 2N and comprises all
states of the network.

Peixoto and Drossel [4] obtained networks with entirely reliable trajectories by solving
the inverse problem, i.e. by first defining the reliable trajectory and afterwards determining the
topology and the update functions of the corresponding network. Briefly, the trajectories were
generated by performing self-avoiding and closed random walks on the Hamming hypercube,
where all nodes flip an even number of times. The minimal networks were obtained by
searching through all possible input combinations for each node, until one with the minimal
number of inputs is found (if more than one combination is possible, one is randomly chosen).
Furthermore, since the trajectory does not necessarily fully specify the complete truth table
of all the functions, an additional minimality condition was imposed, where the unspecified
output states in the truth table correspond to the majority of the specified ones (or a uniform
random value if there is no majority). The ensemble of minimal networks generated in this way
is characterized by two parameters: the number of nodes N and the trajectory length L .

2.2. Translation to continuous dynamics

In the more detailed continuous model, the number of variables becomes 2N , where N is the
number of genes, as the concentrations of mRNA and proteins of one gene are considered
separately. The protein is generated from the mRNA through translation with a rate that depends
linearly on the mRNA concentration. The degradation of mRNA and proteins is supposed to
occur with a constant rate as well. Transcription of mRNA is regulated by the proteins of those
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Figure 1. Activating the Hill function for different values of the Hill coefficient n
and θ = 0.5.

genes that act as the input in the Boolean model. These proteins can have an activating or
inhibiting effect. The ODE system describing the reaction kinetics can be written as [35]

ṙi = ε(mi Fi − ri),

ṗi = ri − pi ,
(1)

where the concentration of mRNA produced by gene i is denoted by ri and the corresponding
protein concentration is denoted by pi , for i = {0, . . . , N }. mi is the maximum transcription rate
and ε determines the time scale ratio between mRNA and protein dynamics.

The regulatory functions Fi depend on the concentrations of the respective regulatory
proteins. Regulation by only one protein is usually modelled by a monotonically increasing
sigmoidal function when the protein is an activator and by a decreasing function when the
protein is an inhibitor. Experimental evidence [36] suggests the usage of Hill functions [37],
which are therefore commonly employed in models of gene regulation. The Hill function for
activation is

f +(pi , ki , ni) =
pni

i

pni
i + kni

i

, (2)

and the Hill function for inhibition is

f −(pi , ki , ni) = 1 − f +(pi , ki , ni) =
kni

i

kni
i + pni

i

, (3)

where ki is the activation coefficient or expression threshold that defines the concentration of
protein i needed to significantly activate expression. The parameter ni , called the Hill coefficient,
controls the steepness of the Hill function. The larger the ni , the more step-like is the regulatory
function (see figure 1). Biologically, ni reflects the molecular binding mechanism: it describes
the number of proteins that are required for saturation of binding to the DNA [38] and is
therefore also called the cooperativity coefficient. The Hill function can be considered as the
probability that the promoter region is bound, averaged over many binding and release events
of proteins i [33].

The combined effect of multiple transcription factors is described by using multi-
dimensional input functions. An example for deriving such a function from gene expression
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Figure 2. HillCube of the input function F = p1 AND NOT p2.

measurements was given by Setty et al [39], who used the lacZYA operon of E. coli. The function
Fi(p1, p2) can, for instance, integrate an activator p1 and a repressor p2 [33]. If the activator and
the inhibitor bind to the promotor independently, there are four binding states of the promotor:
unbound, bound to either p1 or p2, or bound to both proteins. Transcription may occur mainly
in the case where the activator binds the promoter and the repressor does not, resulting in a
p1 AND NOT p2 input function. Already in 1978, Glass and Pasternack [40] translated multi-
dimensional Boolean functions into continuous analogues and nearly 30 years later, Wittmann
et al [41] introduced a general method for constructing continuous counterparts of Boolean
functions. They defined the so-called HillCubes, by taking sums over the appropriate products
of Hill functions with a weight 1 or 0, according to the output value of the Boolean function.
For instance, the AND NOT function (see figure 2) is written as

FAND NOT
i (p1, p2) = 0 ( f +(p1) · f +(p2)) + 1 ( f +(p1) · f −(p2)) + 0 ( f −(p1) · f +(p2))

+ 0 ( f −(p1) · f −(p2)).

In the following, we compare the reliable dynamics of minimal Boolean networks [4] with the
dynamics of their continuous counterparts. For this purpose, we translate a Boolean network into
a continuous model by constructing the associated ODEs (1) for the mRNA and proteins using
HillCubes for the update functions Fi , as explained above. These ODEs then can be solved,
e.g., with the Runge–Kutta method, and the time series can be analyzed and compared with the
Boolean trajectory. In the simulations, for which the results are shown in the following section,
the parameters were set to mi = εi = 1 and ki = 0.5.

2.3. Comparison

As an illustration, we first present one example of a network with an entirely reliable trajectory
and visually compare it with the time series of the continuous version of the network. In figure 3,
on the right, the time series of the concentrations of the nodes in the continuous system are
plotted versus time. The different colors refer to the concentration values from 0.0 (blue) through
0.5 (green) to 1.0 (yellow). This can be compared with the Boolean state sequence (figure 3,
left), which is discrete in time and only has two states for the concentration: 0 and 1 (blue
and yellow, respectively). Figure 3 shows very good agreement of the different states of the
trajectory after a short transient time in the continuous case.

In order to systematically make this comparison for different values of Hill coefficients and
for thousands of networks, we applied the algorithm described in the following.
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Figure 3. Comparison of the Boolean reliable trajectory with L = 20 states of a
network with N = 10 nodes (left) with the oscillations of the continuous model
with the Hill coefficient n = 4 (right).

σ σ

Figure 4. Different steps of the procedure to compare the Boolean and
continuous dynamics.

For each combination of N (node number) and L (trajectory length), we first generated
an ensemble of Boolean reliable trajectories. The topology and the Boolean update functions of
the minimal networks that display these trajectories were determined according to the algorithm
described in [4] (compare figure 4, steps 1–3). The minimal Boolean networks were translated
into continuous ODEs using Hill functions and HillCubes, and a simulation was run starting
with a large Hill coefficient n = 10. As the initial condition we chose a Boolean state of the
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reliable trajectory, i.e. the concentration values of mRNA and proteins are 0 or 1, depending on
the chosen initial state. Then we run the system of ODEs (compare figure 4, steps 4–5).

After a transient time, we translated the continuous dynamics into Boolean states in two
steps: firstly, we searched for the maximum and minimum values of each node and chose
the midpoint to be the individual threshold for this node. Secondly, we translated the entire
continuous time series back into a logical state sequence by scanning it in small time steps. We
defined a value above 1.1 times the threshold value to be ‘on’ (1), and a value below 0.9 times
the threshold value to be ‘off’ (0). If the concentration value is in between, the node retains its
state. Introducing in this way a finite width of the threshold prevents minor oscillations around
the threshold being counted as a switching event. The second step of the translation stops when
the first network state of the sequence is reached again. In this way, a closed periodic trajectory
can be found. In the time series obtained by this procedure, each state occurs many times in a
row until it is replaced by a state that differs in one node. We eliminated these repetitions of
the same Boolean state from the final trajectory, thus discarding the information on how long a
certain state appears in the continuous model, but keeping the information about the sequence
of states. The sequence of states was then compared with the Boolean trajectory, which should
be identical if the continuous model is able to reproduce the Boolean dynamics (and vice versa).
For this comparison, firstly we checked the length of the trajectory, i.e. the number of states of
the attractor, secondly the states themselves and thirdly the order in which they occur. Only if all
these criteria are fulfilled, we consider the Boolean and continuous dynamics to be in agreement.
We emphasize that if a trajectory is only partially in agreement, we count this as a failure.

Next, we decreased the value of the Hill coefficient in steps of size 0.2. As the initial
condition for the continuous simulation we chose a state of the trajectory calculated with the
previous value of n, because the Boolean values of the concentrations, 0 and 1, are not close
to actual concentration values on attractors when n is not large. Using this procedure, the
simulation can be started in the basin of attraction of the reliable trajectory if it is still an attractor
and if its basin is not too small. This permitted us to explore the dynamics of the continuous
model version for values of the Hill coefficient n ∈ {0, . . . , 10}.

We repeated this procedure with thousands of reliable trajectories and the associated
minimal networks and evaluated the number of instances for which the Boolean and the
continuous case agree, as a function of the Hill coefficient n, the number of nodes in the network
N and the length of the trajectory L .

3. Results

3.1. Entirely reliable trajectories (Hamming distance h = 1)

Figure 5 shows the proportion of networks for which the reliable trajectory of the Boolean and
the continuous model are in agreement, depending on the Hill coefficient n, for different sizes of
the networks (top) and different lengths of the trajectories (bottom). Nearly all trajectories with
Hamming distance h = 1 are in perfect agreement with the continuous trajectory for systems
with the Hill coefficient around n = 4.5. This good agreement occurs both for small networks
with only 10 nodes and L = 20, i.e. trajectories with 20 states, as well as large networks with
up to 50 nodes. For n = 3, around 30% of the networks with N = 10 reproduce the correct
trajectory, and 5% of the networks with N = 15 (all with L = 2N ), while for larger networks
this fraction becomes vanishingly small. We additionally analyzed networks with longer
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Figure 5. Proportion of trajectories in agreement between Boolean and
continuous dynamics depending on the Hill coefficient n for different numbers
of nodes N in the network, with L = 2N (top) and different lengths L of the
trajectories, with N = 10 (bottom).

trajectories: here, the proportion of trajectories with perfect agreement is close to 100% with
Hill coefficients between n = 4 and 6.5 for N = 10 and state sequences with a length between
L = 2N and 7N . When the continuous trajectory does not agree with the Boolean one, although
the Hill coefficients are quite high, the disagreement is due to the occurrence of Boolean states
in the wrong order. This often happens because a given node switches before its target node, the
concentration of which is still too far away from its threshold. These mistakes disappear with
larger Hill coefficients, as the concentrations pass the threshold much faster in this case. For
small Hill coefficients, the dynamics of the systems rather end up at fixed points.

In the simulations underlying figure 5, the time scales of the mRNA and protein dynamics
were chosen to be equal (ε = 1 in equation (1)). The case where the mRNA dynamics are much
faster (ε ≈ 100) effectively reduces the system to N equations instead of 2N , since the mRNA
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concentrations always have enough time to reach the quasi-steady state that corresponds to the
present protein concentrations. Because this reduces the delay between subsequent changes of
the states of nodes, larger values of the Hill coefficient n are required for perfect agreement of
the continuous oscillations with the Boolean trajectories (results not shown). Additionally, the
maximum transcription rate mi was varied in the range 1–5 but no significant difference was
perceived, as only the maxima and the threshold values changed. Thus, the variation of mi only
changes the range of the concentrations.

We expect that the Hill coefficient needed to reproduce most reliable trajectories in the
continuous model increases when either N or L becomes even larger, because the likelihood of
errors increases with the number of states in the trajectory. Thus, the Hill coefficient, needed in
order to obtain good agreement between Boolean and continuous dynamics, increases for larger
networks. This is in contrast to the results for simple feedback loops, where the Hopf bifurcation
takes place at lower values of the Hill coefficient for higher dimensions [19]. The reason for this
is, on the one hand, the less defined state space and, on the other hand, the fact that in simple
feedback loops the time between two changes of the node states increases when there are more
nodes in the system. Thereby, the Hill function may be less steep, i.e. the Hill coefficient may
be smaller. This relationship between the time between two flips of one node and the size of the
network is not given for the more complex networks investigated here.

3.2. ‘Partially reliable’ trajectories (Hamming distance h > 1)

In order to investigate whether this good agreement between the Boolean and the continuous
dynamics is indeed due to the Hamming distance h = 1 between consecutive states, we
increased the average Hamming distance h of the trajectories in small steps, resulting in
‘partially reliable’ trajectories. The value h is defined as the sum of the individual Hamming
distances h between two subsequent states (under parallel update), divided by the length of the
trajectory L , i.e. the number of states. Again, we generated an ensemble of trajectories and the
corresponding minimal networks, using the same algorithm as before. We investigated again
the continuous model version of these networks and evaluated the proportion of trajectories in
agreement between the Boolean and the continuous model, for different sizes of the networks
and trajectory lengths. An average Hamming distance h > 1 means that in some state transitions
more than one node flip at the same time in the Boolean model. In the continuous model, this
cannot happen, and we therefore checked whether those nodes that flip at the same time in the
Boolean system with parallel update cross their thresholds directly one after the other in the
continuous case. The order in which these nodes change their state in the continuous model
does not matter, because any order can occur in the Boolean model when stochastic update is
used.

Figure 6 shows the results of this investigation. Again, the proportion of networks that
reproduce the Boolean trajectory in the continuous model version increases with n; however, it
appears to approach an asymptotic value that is smaller than 1. This asymptotic value decreases
with increasing h, and also with increasing N or L (not shown).

In the following, we investigate the reasons why part of the trajectories with h > 1 cannot
be reproduced in the continuous model even for large n. When observing the failure networks
in detail, we found two classes. (i) The continuous model shows oscillations that include states
that do not occur in the Boolean trajectory or that are in the wrong order. Such differences are
small and might even vanish if the parameters of the continuous model version were chosen
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Figure 6. Proportion of trajectories in agreement between the Boolean and
continuous dynamics when the average Hamming distance h is varied (for
networks with N = 10 and L = 20).

differently. (ii) The continuous model does not show oscillations at all, and the dynamics end
up on a fixed point. These fixed points can be further divided into two classes: ‘regular’ fixed
points, with concentration values near 0 and 1 for sufficiently large values of the Hill coefficient
n, and fixed points where one or more nodes have concentration values near their threshold. In
previous studies [42–45], these were referred to as singular steady states; we will refer to them as
threshold fixed points. We analyzed in which cases these threshold fixed points occur and found
that one criterion is especially relevant, which affects both the topology of the networks and
their dynamic properties: whenever there is a node that flips twice in two consecutive time steps
(dynamics) due to a self-input (topology), the continuous dynamics might not be able to generate
a sufficient degree of activation and inhibition, and therefore the concentration is trapped at
values near its threshold. We checked the hypothesis that short flip durations due to self-inputs
may cause disagreement between the Boolean and the continuous systems by evaluating the
proportion of networks with each of the four mentioned types of dynamical behavior. Figure 7
shows for n = 10 and for different average Hamming distances h the proportions of networks
with N = 10 and L = 20 that reproduce the Boolean trajectory, that show a different oscillation,
that have a regular fixed point, or a threshold fixed point. The gray bars on the left additionally
show the proportion of networks that do not have a node with a state duration of only one time
step due to a self-input in the Boolean model. This information is not based on simulations, but
only depends on the Boolean trajectory and the resulting network structure. Interestingly, the
proportion of networks where no node shows a flip duration of only one time step coupled with
a self-input (referred to as (SI FD1= 0)) is very similar to the proportion of networks showing
agreement with the Boolean trajectory.

All networks with trajectories with Hamming distances h = 1.0 have SI FD1 = 0, because
the network would return to the same state if the same node flipped twice in two consecutive
time steps. Only when more than one node flips per time step can the system be in a different
state after the same node flipped twice in a row.

New Journal of Physics 14 (2012) 123029 (http://www.njp.org/)

http://www.njp.org/


12

Figure 7. Proportion of networks falling into the four distinct groups—trajectory
reproduced, other oscillation, regular fixed point and threshold fixed point—for
simulations performed with n = 10. The gray bars on the left indicate how many
of the networks in the Boolean model do not have nodes with a state duration of
only one time step due to a self-input.

Figure 8. Proportion of networks showing the different classes while SI FD1 = 0
(left) and the proportion of networks showing different values of SI FD1 while
reproducing the trajectory (right). Parameters are N = 10, L = 20 and n = 10.

Figure 8 shows that for N = 10 the proportion of networks that reproduce the Boolean
trajectory increases if only those networks are considered that have no node with a self-input
coupled with a flip duration of one time step (SI FD1 = 0). For example, for an average
Hamming distance h = 1.1 the proportion of trajectories in agreement increases from 78 to
93% and for h = 1.4 the proportion increases from 25 to 51%. Those networks with SI FD1
= 0 that do not reproduce the Boolean trajectory have other oscillations or go to a fixed point,
but the number of networks showing threshold fixed points is reduced noticeably.

On the other hand, among the networks that reproduce the Boolean trajectory, 10–40% for
average Hamming distances from h = 1.1 to 1.5 do have a node that flips twice in a row due
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Figure 9. If the duration of nodes’ states is limited, that they must hold at least
for two time steps, it cannot happen that a node flips due to a self-input twice in a
row. For average Hamming distances h = 1.1 or 1.2, the proportion of networks
showing agreement between the Boolean and continuous trajectories is increased
obviously.

to a self-input (see the right column of figure 8). We observed similar trends for larger N (not
shown).

One can conclude that a general prohibition for a node to change its state twice within
two time steps increases the proportion of reproduced trajectories significantly for average
Hamming distances h > 1. A ‘time step’ in this case relates to a change of the state in the
Boolean network with a parallel update. We tested this assumption for networks with N = 10,
L = 20, h = 1.1 and 1.2 and found that with this restriction on the trajectories the plateau does
not exist (see figure 9). Instead we found oscillations corresponding to the Boolean trajectories
for all networks, as long as the Hill coefficient n was large enough (n ≈ 10). The proportion
of networks is even larger than suggested by figure 8 because now not only short flip durations
due to a self-input cannot occur, but all cases where a node changes its state twice within two
subsequent updates are prohibited. We tested furthermore whether the Hill coefficient needed to
show agreement between the Boolean and continuous dynamics can be decreased with an even
more stringent restriction on the flip duration to at least three time steps, but no better results
were obtained.

4. Discussion and conclusions

We showed that for networks possessing ‘entirely reliable trajectories’, i.e. trajectories with
Hamming distance h = 1 between consecutive states, there is very good agreement between
Boolean and continuous dynamics. We tested the importance of Hamming distance 1 by
investigating trajectories with average Hamming distances h > 1 and found that for those
‘partially reliable trajectories’ the degree of reproducibility decreases. The fact that in the
continuous model version both the concentrations and the time are continuous leads to
interesting phenomena: like other authors [42–45], we found in the continuous system fixed
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points with concentrations near the threshold. The occurrence of these fixed points can be
prevented if the trajectories are subject to certain restrictions: the trajectory may not include
nodes that—in the Boolean representation—flip back and forth between two states in successive
time steps. With this limitation, the Boolean and continuous systems fit together surprisingly
well. In the special case with h = 1 the excellent agreement was mostly due to not only the fact
that these flips back and forth are impossible, but also that on average the nodes stay a longer
time in the same state if only one node can flip per step in the Boolean version.

Trajectories with Hamming distance h = 1 have been investigated before by Wilds and
Glass [19], who also note their good reproducibility with continuous equations. In contrast
to our work they examined only a few networks with up to five nodes, and included more
restrictions on the networks, as self-inputs are forbidden. From our work, we can conclude that
self-inputs are not necessarily harmful, which is compatible with the fact that they are observed
in real systems. Wilds and Glass [19] applied an additional restriction that neighboring states
must lead to the trajectory, i.e. they belong to the basin of attraction of the given trajectory. This
restriction does not apply to the trajectories of the networks analyzed in our work, and thereby a
larger set of possible trajectories was considered. Nevertheless, we found this restriction not to
be relevant for the comparison of Boolean and continuous dynamics if the initial state is chosen
to be part of the trajectory.

Inspired by the work of Wilds and Glass, we performed an additional study in order
to analyze the impact of the basin of attraction. For networks with five nodes and entirely
reliable trajectories with 20 states, we compared two extreme cases: on the one hand, minimal
networks, which have the smallest possible number of inputs per node and the simplest functions
possible, and on the other hand, fully connected networks, where the state space is completely
determined and each state leads to the trajectory, so that there is only one attractor, i.e.
the entirely reliable trajectory. However, this precise prescription of the state space did not
decrease the Hill coefficient required for 100% agreement between Boolean and continuous
dynamics in this network ensemble. The reason for this is that for Hamming distances h = 1
there are no intermediate states needed in the continuous model to reproduce the trajectory;
thus no intermediate states can coincide with regular fixed points of the Boolean network,
which would then trap the dynamics of the continuous system. Therefore no improvement
of the reproducibility with continuous dynamics can be observed when the state space is
further specified. It is certainly worthwhile to further investigate the difference between the
minimal and fully connected networks for larger Hamming distances, because in this case the
state space could be defined such that those states lead to the trajectory, which are needed
as intermediate states in the continuous model to overcome Hamming distances h > 1. This
detailed prescription of the state space could presumably prevent the continuous trajectory
from ending up on regular fixed points and therefore increase the proportion of trajectories
in agreement between the Boolean and the continuous model version.

It is interesting to compare our results for general networks with those found by Braunewell
and Bornholdt [6], who studied the network of the yeast cell cycle, which has properties similar
to the networks investigated by us: the cell cycle network contains 11 nodes, and the trajectory
has 13 states. In contrast to us, they do not consider the correlation between Boolean and
continuous dynamics, but the robustness of the trajectory to fluctuations in the processing times
of protein concentration build-up and decay. They check whether the system reproduces the
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sequence of states under fluctuations in the update time and find that its very robust dynamic is
based on three criteria: the occurrence of catcher states that have a Hamming distance h = 1 to
the next state, a large basin of attraction and a sufficiently long duration of the state of a node
before it flips again.

In our study, the importance of catcher states for robust dynamics shows in the fact
that networks with many catcher states correspond to trajectories with low average Hamming
distances h. The criterion that a node must stay in the same state for a sufficiently long time
agrees with our finding that the proportion of networks that reproduce the Boolean trajectory is
much larger when there are no nodes that change their state in two consecutive time steps due to
a self-input. Sevim et al [5] point out the importance of filtering out quick back-and-forth flips,
as well, and justify this restriction with the fact that those short flip durations would represent a
very rapid build-up and decay of transcription products, which is not realistic.

According to our results, the dynamics between the Boolean and continuous models are
in agreement for those networks that are robust against fluctuations in the update sequence.
This means that for systems such as the cell cycle, which need to be robust against noise, the
simplified Boolean approach is a faithful, albeit conceptual, representation of the real biological
system.
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