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Abstract. By using two generic polymer models, namely self-consistent
field theory and bond-fluctuation Monte-Carlo simulations, we investigate
numerically the properties of a polymer melt in a hexagonal array of nanotubes
as a function of the polymer length, the interaction with the nanotubes
and the compressibility or average density. The combined effect of the
attractive interaction with the nanotube walls, the entropy decrease due to the
impenetrability of the walls and the hexagonal arrangement of the nanotubes
with varying gap size in between them leads to a wide array of possible density
profiles and polymer configurations as a function of the model parameters. Even
in the case of the Monte-Carlo simulations, where the contact interaction affects
only the first layer of monomers, the effect of the wall can nevertheless be felt
throughout the entire melt at intermediate temperatures.
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1. Introduction

The investigation of polymer–nanotube mixtures is of great technological importance.
Composites made of polymer and carbon nanotubes have excellent mechanical, thermal and
electrical properties [1–9]. A major challenge in producing high-quality nanocomposites lies
in achieving a good dispersal of the nanotubes and preventing them from sticking together
during the formation of the material. One pathway taken to achieve this goal is to synthesize
a hexagonal array of carbon nanotubes on a template and then let a polymer melt infiltrate
the space between the nanotubes [10]. This process is facilitated by the attractive interaction
between polymers and nanotubes. When the polymer can be made to fill the space between the
tubes, the goal of producing a composite material in which the nanotubes are well dispersed has
been achieved.

However, materials that consist of a hexagonal array of nanotubes with polymers in the
spaces between the tubes are not only technologically important, but also interesting from a
theoretical point of view. Owing to the presence of the nanotubes, the configurations of the
polymers are no longer random walks as in a bulk melt, but they wind around the tubes and
squeeze in the gaps between the tubes. If the distance between the tubes is not too long,
the configurations of all polymers will be affected strongly by the presence of the tubes.
Furthermore, due to the decreased entropy in the vicinity of the tubes, the polymer density
decreases close to the tubes.

The goal of this paper is to study the density profile and the polymer conformations of
a polymer melt in a regular hexagonal nanotube array. Since we are interested in the general
features of polymers confined in the space between a hexagonal array of cylinders, we use
simple idealized models for polymers and nanotubes, which are modeled as Gaussian chains
or as walks on a lattice. By comparing the results obtained by two different methods, we can
identify the generic properties of such systems. The first method is self-consistent field theory
(SCFT) [11–13] for a polymer melt between cylindrical impenetrable tubes, which model the
nanotubes, with an attractive interaction between tubes and polymers. The second method is
Monte-Carlo simulations with a bond-fluctuation model, which incorporates the same type of
interaction with the nanotubes. We evaluate two equilibrium features: the density profile of
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the polymer melt and the radius of gyration of the polymers as a function of their position.
This study considerably extends our preliminary first analysis presented in [10], where the two
methods have been introduced and where the relaxation time towards equilibrium and a few
density profiles and polymer configurations have been evaluated in the absence of an attractive
interaction.

Here, we calculate the rich variety of density profiles and polymer configurations that can
be obtained by varying three important model parameters, namely the strength of the attractive
interaction with the nanotube walls, the average polymer density or compressibility and the
temperature. Our Monte-Carlo simulations show that the presence of the nanotubes affects the
polymer melt throughout the entire volume, even though only the first monomer layer interacts
with the tubes. This effect vanishes at lower temperatures, when a layer of monomer becomes
adsorbed at the surface of the tubes, isolating them from the bulk.

This paper is structured as follows. In section 2, we describe the analysis based on the
SCFT and show the results for the polymer density and configurations obtained numerically.
In section 3, we present a complementary approach using bond-fluctuation Monte-Carlo
simulations and show the results of computer simulations. Finally, in section 4 we compare
and discuss the results obtained by the two approaches.

2. Self-consistent field theory

2.1. Model

In accordance with the SCFT approach [11–13], we consider a system of n polymers in a
volume V , where the individual chains are treated as perfect Gaussian chains with degree of
polymerization l and statistical segment length a = 1, with an associated end-to-end distance
Re = a

√
l. We assume that the melt is compressible [14], leading to a factor dependent on the

polymer concentration profile φ(r) in the partition function

Z =
1

n!

∫ ∏
α

D[rα]P[rα] exp

{
−

ρκl

2

∫
V

d3r [(φ̂ − φ0)
2 + uφ̂]

}
, (1)

where α labels the individual chains, l is the degree of polymerization, ρ is the volume per
monomer, κ is a dimensionless constant proportional to the inverse isothermal compressibility,
φ0 is the average concentration in the melt and P[rα] is the weight factor for a Gaussian chain
configuration,

P[r(s)] ∼ exp

[
−

3

2R2
e

∫ 1

0
ds

(
dr
ds

)2
]

. (2)

We further consider that the system is in equilibrium with an external reservoir of bulk material
with average concentration φ̄B = φ0, with which it can freely exchange polymers. The field u(r)
is an attractive interaction potential with the nanotube array and is defined as

u(r) = −
γ exp[−λ(|r − rc| − Rt)]

kBT
, (3)

where rc is the center of the closest nanotube, Rt is the nanotube radius, and γ and λ

define the interaction strength and range, respectively (we fixed the range to λ = 1 and varied
the interaction strength γ ). The partition function can be rewritten so that the relevant term
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corresponds to the partition function of a single chain subjected to an external field w which
incorporates the effect of the remaining chains and of the nanotubes,

Q[w] =
1

V

∫
D[r]P[r] exp

{
−

1

V

∫
V

d3r

(
iw +

ρκl

2
u

)
φsc

}
. (4)

The end-segment distribution q(r, s) of a single chain can be obtained from the following
diffusion equation,

∂q(r, s)

∂s
=

R2
e

6
∇

2q(r, s) −

(
iw(r) +

ρκl

2
u(r)

)
q(r, s), (5)

with q(r, 0) = 1, where the impenetrability of the nanotubes is implemented by the boundary
condition q(r t, s) = 0 (corresponding to w(r t) = ∞), where r t denotes the surface of the
nanotubes. The concentration profile imposed by a given field is obtained from

φ(r) =
φ̄

Q

∫ 1

0
dsq(r, s)q(r, 1 − s), Q =

1

V

∫
d3rq(r, 1). (6)

The average concentration φ̄ can be obtained from the equilibrium condition with the bulk,
by requiring that the chemical potential in the system and in the reservoir be equal. From
equation (1), we obtain

µ = kBT [ln ρφ̄ − ln Q]. (7)

The chemical potential in the bulk is thus given by µB = kBT [ln ρφ̄B + (φ̄B − φ0)
ρκl

2 )], where φ̄B

is the concentration in the bulk. By setting µ = µB, we obtain

φ̄ = φ̄B Q exp

{
(φ̄B − φ0)

ρκl

2

}
, (8)

which can be substituted in equation (6). The field generated by the concentration profile is
obtained by minimizing the free energy, which leads to

w

ρκl
+ i(φ − φ0)

2
= 0. (9)

The self-consistency of equation (9) can be satisfied by solving this equation for φ, using
equations (5) and (6), based on the method described in [15, 16].

The nanotubes are aligned in the z-direction. Due to the translational invariance, we
performed our calculations on a two-dimensional (2D) unit cell of a hexagonal lattice with
periodic boundary conditions. In the following, we used arbitrary length units and their
corresponding volume units. The polymer number density ρ is set to one inverse volume unit,
and the radius of the nanotubes is set to 20 length units. The total size of the unit cell is 100
units in the x-direction and 100/

√
3 ≈ 58 units in the y-direction, which leads to a spacing

of 50(1 + 1/
√

3)1/2
− 40 ≈ 22.8 units between the nanotubes. This configuration is inspired by

the values used in the experiments [10], and by the expectation that the confinement effects
are more interesting when the nanotube spacing is of the order of the nanotube radius. The
volume occupation of the polymer melt in the bulk reservoir was set to φ̄B = φ0 = 0.95. We used
several values of the degree of polymerization l (and hence Re) and of the inverse isothermal
compressibility κ . While higher values of κ are more relevant for the experiments, we also
used smaller values in order to explore the entire range of possibilities. In order to differentiate
between the effects of confinement and of the impenetrable barrier imposed by nanotubes, we
considered also a system composed of free polymers confined only by a single impenetrable flat
wall, with the same attractive potential as in equation (6), and with φ0 = 0.95 in the bulk.
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Figure 1. Concentration profiles obtained by SCFT for different combinations of
γ , l and κ . Top row: 2D profiles. Middle row: 1D average profiles as a function
of the center of the closest nanotube. Bottom row: 1D profiles for polymers
confined by a single impenetrable attractive wall.

2.2. Density profiles

The polymer density profiles obtained with the above approach are shown in figure 1. The top
row shows three examples for the full density distribution, the middle row shows average density
as a function of the distance from the center of the closest nanotube and the bottom row for the
system composed of a single wall. The concentration in the melt increases with increasing κ and
γ . A larger κ implies a smaller compressibility, making deviations from the equilibrium density
φ0 more difficult. A larger γ implies a stronger attraction between the nanotube walls and the
polymers, favoring larger densities close to the walls. With increasing degree of polymerization
l, the density profile becomes independent of l for γ = 0, as expected with our choice of scaling.
The depletion zone close to the nanotubes is due to the fact that the nanotube wall cannot be
penetrated by the polymer. Further away from the nanotubes, the density comes close to the
bulk equilibrium value φ0. If the distance between the nanotubes was made larger, all density
profiles would eventually reach this asymptotic value. In this situation, the concentration profile
is essentially the same as that for a single impenetrable flat wall. The bulk density is reached
faster when κ is larger.

2.3. Polymer conformation

The polymer conformations were investigated by modeling individual chains as biased random
walks, which are independently affected by the effective potential w imposed by the melt. This
was done by performing several 3D walks of length l where each step i of equal size 1 is
chosen randomly in all directions with probability proportional to the end-segment distribution
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Figure 2. Distribution of the center of mass as a function of the distance from the
center of the closest nanotube for different values of γ and l, as obtained within
the SCFT.

q(r, i/ l) × q(r, 1 − i/ l), obtained previously. The quantities measured were the center of
mass of the chains, and the contributions to the squared radius of gyration R2

g of the z- and
xy-directions, as well as the total radius of gyration. Figure 2 shows the distribution of the
center of mass as a function of the distance from the center of the closest nanotube. When we
increase the interaction strength γ , the peak of the distribution moves closer to the nanotubes, as
expected. The distribution decreases close to the nanotube walls, because the polymers cannot
penetrate the wall. However, the center of mass of a polymer can be inside the nanotube (i.e.
at a distance smaller than 20 from the nanotube center), because polymers are able to wrap
around the nanotubes. This effect is stronger in the case of longer polymers. The decrease of the
distribution with increasing distance is due to the fact that fewer points have such long distances
from the closest nanotube.

Figure 3 illustrates the influence of the attractive interaction with the walls on the average
squared radius of gyration R2

g as a function of the distance of the center of mass of the polymer
from the center of the closest nanotube. Figure 4 shows the effect of polymer length on the
radius of gyration. In the z-direction, the polymers are not influenced by the nanotubes, due to
the translational invariance of the system, and the z-part of R2

g is constant. In the xy-direction,
the radius of gyration increases close to the walls, which must be due to the fact that the
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Figure 3. Average radius of gyration as a function of the distance from the center
of the closest nanotube with and without an attractive interaction with the wall,
as obtained with the SCFT. The top and bottom graphs show the contribution of
the xy-directions and of the z-direction to R2

g , respectively.

polymers wrap around the nanotubes. This effect becomes stronger in the presence of attractive
interaction. For shorter polymers, the curves have a local minimum, due to these polymers being
squeezed into the narrow part of the gap between the nanotubes. Longer polymers can extend
into the wider parts of the gap and therefore the minimum is not visible in the data for R2

g
at larger l. When we increase the polymer length, polymers that have their center of mass at
the longest possible distance from the walls become more squeezed together, since they must fit
into the space between the three neighboring nanotubes. This explains the decrease of R2

g/ l with
increasing l at larger d. Finally, when we increase l, the curves for R2

g/ l at l > 1000 become
flatter, since these very long polymers extend over several nanotubes, and the distance to the
closest nanotube contains less information.

Figure 5 shows examples of the full 2D distribution of the center of mass and of the radius
of gyration for a very long polymer.
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Figure 4. Average radius of gyration as a function of the distance from the closest
nanotube for different values of l and for γ = 0, as obtained with SCFT.

3. Monte Carlo: bond fluctuation

3.1. Model

We performed Monte-Carlo simulations using one of the variants of the bond fluctuation
model [17–23]. Here, we use the simplest version introduced by Shaffer [22]: polymers of
length l were placed on a cubic lattice such that each of the individual monomer units occupies
a different lattice position and the bond between them occupies a different position in the
associated bond lattice, which permits diagonal bonds of length 1,

√
2 and

√
3. In this way, both

excluded volume and non-crossing of the chains are guaranteed. We note that this approach
allows us to reach monomer concentrations close to 1, comparable to the SCFT case for high
κ , which is the situation that prevails in experiments. Just as we did in the case of the SCFT,
we considered one unit cell of the hexagonal array with periodic boundary conditions, with
the lattice dimensions being Nx = 100, Ny = 58 and Nz = 100. As in the SCFT configuration,
the radius of each nanotube was set to 20 lattice sites, which leads to a spacing between the
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Figure 5. 2D distribution of the center of mass (top) and R2
g (bottom) for

l = 10 000, κ = 0.01 and γ = 0kBT , as obtained with SCFT.

nanotubes of at least 22 sites (which is enough to avoid ergodicity barriers, since it is larger
than the average radius of gyration of the chains considered). We also included an interaction
between the monomers and the nanotubes, by considering an energy contribution of −1kBT
for each monomer directly touching the nanotube, and the temperature T was varied. Thus, in
contrast to SCFT, the interaction is only due to direct contact with the nanotubes. However, the
range of the interaction (1 length unit) is comparable in the two models.

The simulations were initialized with the individual chains regularly stretched along the
z-direction. The system was equilibrated by using the Metropolis–Hastings algorithm [24, 25]:
at each step, a single monomer move was attempted and accepted if it was valid and if the energy
difference 1E was negative or zero. If the energy difference was positive, it was accepted with a
probability proportional to exp(−1E/T ). Additionally, at each time step a reptation move was
attempted, where the monomer of a random end of a chain was moved to the other end, and was
accepted or not according to the same criterion. The system was evolved at infinite temperature
until the average radius of gyration had reached equilibrium. Then the system was evolved at
the desired temperature until conformational equilibrium was reached again. Equilibration was
verified by observing that the average radius of gyration in all three directions had reached a
stationary value.
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Figure 6. Density profile obtained with the bond-fluctuation model for different
polymer lengths l and different lattice occupations.

3.2. Density profiles

Figures 6 and 7 show the density profiles obtained for varying l, T and total density. The density
is defined here as the fraction of occupied lattice sites. For infinite temperature, a depletion
zone can be observed, similarly to SCFT. The profiles show only small density variations with
d. For the lower temperature values, there is a local maximum at d = 21, which corresponds
to a distance of one lattice site to the nanotube wall. For higher temperature values, the
entropic effects dominate close to the wall, and the curves have a local minimum at d = 21.
For intermediate temperatures, most curves show both effects, i.e. a local maximum at d = 21
and a minimum at d = 22, because the attractive interaction at d = 21 and the entropic effects
close to the wall are both important. The monomers touching the nanotubes shield the walls
from the other monomers, which then perceive a noninteracting impenetrable wall at d = 21.
The depletion zone is most pronounced for intermediate temperatures, leading to a positive
slope of the density profile over a large distance. An exceptional case is the case l = 100 with
o = 90%, where the minimum has vanished. The lower density, combined with the shorter
length, apparently causes a larger fraction of polymers close to the wall to have contact with
the wall, resulting in an energy gain that is always larger than the entropy loss.
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Figure 7. 2D density profile obtained with the bond-fluctuation model for
l = 100, o = 95% and different temperatures.

3.3. Radius of gyration

Figures 8 and 9 show the xy and the z contributions to the squared radius of gyration of the
polymers plotted against the distance d of the center of mass of the polymers from the center of
the closest nanotube for two different concentrations. Similarly to the SCFT results, the radius
of gyration in the xy-plane increases when the center of mass approaches the center of the
nanotubes, which is simply a geometrical necessity. In contrast to the SCFT simulations, there is
now a slight variation in the z-component, which is more clearly visible for lower temperatures,
shorter polymers or lower lattice occupations. The reason is that polymers that are close to
the nanotubes can stick to the tubes with part of their monomers, which stretches them also
in the z-direction and makes them more extended in the z-direction than they are in the bulk.
For somewhat higher temperatures, this stretching effect is manifest further into the bulk, due
to higher mobility of the polymers between the wall and the bulk. When polymers are shorter
and when density is higher, polymers that are centered in the vicinity of the nanotubes are
squeezed into a smaller volume than polymers in the bulk and have smaller values of R2

g , as
can be concluded from the shallow minimum visible in the curves for the xy contribution. For
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Figure 8. Average squared radius of gyration as a function of the distance to the
closest nanotubes, obtained with the bond-fluctuation model, for an occupation
of 95%. The dashed lines correspond to the average values in the bulk when no
nanotubes are present.

larger polymers (l = 300), the values of R2
g in the vicinity of the tubes decrease for smaller

temperatures. This is due to the almost complete adsorption of individual chains at the surface
of nanotubes, which causes them to be more segregated from each other and thus more coiled
(see figure 10).
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Figure 9. Average squared radius of gyration as a function of the distance to the
closest nanotubes, obtained with the bond-fluctuation model, for an occupation
of 90%. The dashed lines correspond to the average values in the bulk when no
nanotubes are present.

4. Discussion

We have analyzed the general properties of a polymer melt confined in a regular array of carbon
nanotubes, which were modeled as attractive, impenetrable barriers. Using SCFT we obtained
the density profile of the melt, depending on the isothermal compressibility, chain length and
interaction strength with the nanotubes. The concentration profile shows a higher concentration
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Figure 10. Randomly sampled chains with l = 300 and center of mass close
to the selected nanotube for 95% occupation and two different values of the
temperature.

in the larger interstices between the tubes, for larger polymer chains. The interaction with the
nanotubes has the expected effect of increasing the concentration in their vicinity. We also
obtained polymer conformations within the framework of SCFT by numerically investigating
individual chains that interact with the self-consistent effective potential, by means of biased
random walks. In this mean-field description, the polymer conformation is affected solely by
the density profile and by the geometrical constraints imposed by the confinement.

As an alternative approach, we performed Monte-Carlo simulations with the bond
fluctuation model. Since each chain is considered individually, this method provides more
detailed information about their conformation at the expense of neglecting other aspects
such as compressibility. Additionally, the interaction with the nanotubes was specified more
realistically, and the continuously varying potential was replaced by a contact interaction.
Analogously to SCFT, we also investigated the density and conformation profiles.

The choice λ = 1 for the SCFT simulations means that the range of the attractive interaction
with the wall is comparable in both types of investigations. However, due to the difference
between a contact energy and an exponentially decaying interaction and between an ideal
Gaussian chain and a self-avoiding walk on a lattice, the results of the two investigations differ
in several aspects. In particular, the small compressibility in the bond fluctuation model results
in much more uniform densities and much narrower depletion zones. However, the nature of
the interaction potential and the more detailed conformational information provided by this
approach allowed us to identify more precisely the effect of the nanotube interaction on the
chains close to it, which can become adsorbed at the surface if the temperature is low enough.
More interestingly, for intermediate values of temperature, the effects of interaction (both in the
chain conformation and in the monomer density) are felt also in the bulk, and the whole melt is
affected by the confinement.

We point out that the quality of the Monte-Carlo simulations with the bond-fluctuation
model is not affected by the excluded volume of the nanotubes, which is not large enough to
cause ergodicity problems. In such situations, it is expected that both the bond-fluctuation and
off-lattice models display similar behavior [26].
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