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Abstract. The asymptotic dynamics of many-qubit quantum systems is
investigated under iteratively and randomly applied unitary transformations.
For a one-parameter family of unitary transformations, which entangle pairs
of qubits, two main theorems are proved. They characterize completely the
dependence of the resulting asymptotic dynamics on the topology of the
interaction graph that encodes all possible qubit couplings. These theorems
exhibit clearly which aspects of an interaction graph are relevant and which ones
are irrelevant to the asymptotic dynamics. On the basis of these theorems, the
local entropy transport between an open quantum system and its environment
are explored for strong non-Markovian couplings and for different sizes of the
environment and different interaction topologies. It is shown that although the
randomly applied unitary entanglement operations cannot decrease the overall
entropy of such a qubit network, a local entropy decrease or ‘cooling’ of
subsystems is possible for special classes of interaction topologies.
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1. Introduction

The development of sophisticated experimental cooling and trapping techniques has enabled
the controlled manipulation of many-qubit quantum systems to an unprecedented level of
sophistication. Thus, in the spirit of Feynman’s original suggestion [1], it has become possible
to simulate interesting Hamiltonian dynamics with the help of elementary qubit systems whose
interactions are engineered appropriately by external laser fields, for example [2]. These
quantum technological developments also allow us to explore new dynamical regimes of open
non-Hamiltonian many-qubit dynamics in which couplings between different qubits are caused
not by direct Hamiltonian interactions but by additional ancilla systems and by projective
measurements [3]. Such open many-qubit systems may be viewed as quantum generalizations
of classical bit networks that already play a central role in various branches of classical physics
and that have been explored extensively in recent decades [4]. Quantum networks are also
of topical interest in quantum information science in the form of quantum communication
or quantum computation networks [5]. Typical nodes of these types of networks are material
quantum systems, which are entangled by photonic quantum channels, for example. In the
simplest possible cases, the nodes of such a network are qubit systems. Recently, numerous
theoretical proposals have been developed on how such types of quantum networks can be
implemented by present-day technology, and first promising experimental results are already
available [5, 6]. Thus, quantum networks, i.e. qubit systems that are coupled and entangled
by quantum operations [7], constitute a unifying concept with which numerous fundamental
characteristic quantum phenomena can be explored all the way from the microscopic to the
macroscopic domain. In particular, their dynamical features and their scaling properties shed
new light on basic questions concerning entanglement and decoherence [8, 9].

Incomplete control over couplings between the nodes of a quantum network introduces
randomness, which typically affects characteristic quantum phenomena, such as quantum
interference and entanglement. It has been demonstrated recently that in large quantum systems,
this randomness may offer interesting, and at first sight apparently counter-intuitive, possibilities
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for enabling or enhancing physical processes of practical interest, such as energy transfer in
light-harvesting complexes [10] or transmission of quantum information in qubit networks [11].
Motivated by these recent developments, in this paper, we address the question of how classical
randomness influences the entanglement properties of quantum networks. For this purpose, we
investigate the asymptotic dynamics of arbitrarily sized qubit networks under the influence of
repeatedly and randomly applied unitary two-qubit entanglement operations. In the context of
quantum communication networks, for example, such a classical randomness may result from
the uncontrolled influence of users who entangle different pairs of nodes of the network in
a random way. In the different context of quantum information processors, this randomness
may arise from shift register, for example, which entangles arrays of trapped atomic qubits in
an uncontrolled way [12]. In the framework of ‘collision models’ [13–17], for example, this
randomness describes the lack of knowledge about subsequent ‘collisions’ that entangle pairs
of distinguishable interacting particles. The unitary entanglement operations considered here
are assumed to belong to a particular one-parameter family of two-qubit transformations, which
also contains the controlled-NOT operation as a special case. It is shown that for this type
of entanglement operations, the resulting asymptotic dynamics of the qubit network can be
determined analytically. Thus, within this exactly solvable model, interesting general relations
can be established between asymptotic quantum states and their corresponding interaction
topology, i.e. the system of all two-qubit entanglement operations that are possible within such
a qubit network. These relations exhibit in a quantitative way the intricate interplay between
entanglement and classical noise and the resulting balance that characterizes the asymptotic
quantum states. Furthermore, it is demonstrated that although classical randomness is involved
in the network, the entropy of subsystems may decrease. As our results are valid for arbitrarily
sized qubit networks, interesting conclusions concerning scaling properties can also be drawn.
In particular, for moderate numbers of qubits, the effects predicted should be amenable to further
experimental exploration.

In the following, two main theorems are derived that characterize the asymptotic dynamics
of arbitrarily sized qubit networks whose couplings are determined by the already mentioned
one-parameter family of randomly applied controlled unitary transformations. These results
emphasize the significance of the interaction topology of the network, i.e. of the structure
of the possible two-qubit couplings that take place with non-zero probabilities. Furthermore,
they demonstrate clearly which details of this topology are relevant for determining the
asymptotic dynamics of such qubit networks and which ones are irrelevant. These general
results are applied to exploring a characteristic many-qubit phenomenon in detail, namely
the local entropy exchange between an open subsystem of such a randomly interacting qubit
network and its residual qubit environment. Contrary to previous investigations of open quantum
systems [13–18], on the basis of our two main theorems, this phenomenon can be explored
without any further simplifying assumptions concerning the number of relevant couplings
between the system and environment qubits, concerning their initial state or the numbers of
qubits involved. In this way, interesting aspects concerning the dependence of the asymptotic
dynamics on the size of the qubit network and on the topology of the relevant interaction graph
can be explored in detail for strong couplings in the non-Markovian domain. Furthermore, it
should be mentioned that in our subsequent treatment, no constraints are imposed on the form
of the possible initial states of the system and environment.

This paper is organized as follows. Starting from our recently developed general theoretical
framework [19, 20], in section 2 we summarize relevant previously derived results concerning
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the asymptotic dynamics of quantum systems under the influence of iteratively applied random
unitary transformations. In particular, we discuss important consequences of these results for
the qubit networks being investigated here. In addition, the concept of an interaction graph is
introduced that encodes in a convenient way the topological properties of a randomly interacting
qubit network by characterizing which qubits interact with non-zero probabilities. In section 3,
the asymptotic dynamics of a special one-parameter family of conditional unitary two-qubit
transformations is investigated, which contains the controlled-NOT operation as a special case.
Two main results are proved in the form of theorems. Firstly, it is shown that all qubit networks
with strongly connected interaction graphs share the same asymptotic dynamics. Secondly, a
generalization of this theorem is presented that also characterizes the asymptotic dynamics of
qubit networks with non-strongly connected interaction graphs. For the one-parameter family
of controlled unitary couplings considered in this paper, these two main results show clearly
which aspects of a randomly coupled qubit network are relevant and which ones are irrelevant
to its asymptotic dynamics. In section 4, details of the resulting local entropy exchange between
an open system and its environment are investigated analytically. We show that, in spite of
a non-decreasing entropy of the composite system, the non-Markovian evolution of the local
subsystem allows us to drain some of its entropy into the environment. With the help of two
main theorems derived previously by us, we study the entropy flow in two basic settings. In the
first setting, the composite system forms a strongly connected qubit network. It is shown that in
this case, both thermalization and cooling, i.e. maximization and reduction of the entropy of the
open subsystem, can be achieved. In the second setting, we assume that only the open system
forms a strongly connected qubit network and all environmental qubits act as target qubits as
far as the coupling between the open system and its environment is concerned. It is proved
that in this case, neither thermalization nor cooling can be achieved. Moreover, it is shown
that the asymptotic dynamics of the open system is independent of the way the environmental
qubits are coupled among themselves. Thus, in the asymptotic regime, the open system does
not undergo any changes in the couplings of the environmental qubits, so that this part of
the qubit network is irrelevant as far as the asymptotic dynamics of the open subsystem are
concerned.

2. Asymptotic dynamics of randomly interacting qubit networks

Let us consider a typical quantum network, i.e. an open quantum system consisting of N qubits
interacting with each other by the repeated application of a single unitary two-qubit interaction
Û , which is applied to pairs of qubits according to a prescribed probability distribution.
Information as to which qubit pairs are coupled with which probabilities within this quantum
network can be encoded in a convenient way by a weighted and directed interaction graph (or
digraph) G(E,V). Its N vertexes i ∈ V = {1, . . . , N } represent the N qubits and its m 6 N (N −

1)/2 directed edges e = i j ∈ E = {i1 j1, . . . , im jm} with weights pi j encode the probabilities
pi j > 0 with which qubits i and j are coupled by the unitary two-qubit transformation Û i j .
These probabilities are normalized according to

∑
e∈E pe = 1. As a qubit of such a quantum

network does not interact with itself, the corresponding interaction graph G(E,V) contains
neither loops nor multiple edges (compare with figure 1). If the coupling Û i j involves qubits
i and j in an asymmetric way, as in the case of a controlled-NOT operation, for example, this is
indicated by an arrow whose head is j and whose tail is i .
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Figure 1. Example of a (non-strongly connected) interaction graph: vertexes
connected by a directed edge represent qubits that interact with non-zero
probabilities by a unitary conditional two-qubit transformation. In a controlled
unitary transformation, the target qubit is the head and the control qubit is the
tail of the directed edge.

After a single application of a random unitary two-qubit interaction Û , an originally
prepared quantum state ρ̂(n) of such an N -qubit network is changed according to

ρ̂(n)−→ ρ̂(n + 1)=

∑
e∈E

peÛ eρ̂(n)Û
†
e := PG(ρ̂(n)), (1)

with Û e denoting the two-qubit interaction acting on qubits i and j , which constitute the
edge e := i j of the interaction graph G(E,V). The state change (1) is generated by the linear
superoperator PG, which is characterized by the interaction graph G(E,V) and which cannot
be diagonalized in general. It acts on the Hilbert space B(H ) of linear operators over the
Hilbert space H ≡ C2N of N qubits. In general, a quantum operation of the form (1) with
Kraus operators {K̂ e :=

√
peÛ e, e ∈ E} is called a random unitary operation [21] and it belongs

to the class of trace-preserving unital quantum channels [22]. In our subsequent discussion, we
want to explore the asymptotic quantum states ρ̂(n) resulting from an initially prepared quantum
state ρ̂ in in the limit of large numbers of iterations n.

The general properties of the asymptotic longtime dynamics resulting from random unitary
operations (1) have been studied recently for general cases that do not necessarily involve
qubit systems [19, 20]. So, let us briefly recapitulate some of these results and discuss their
consequences for the special kind of random unitary dynamics that we are investigating in this
work.

It has been shown that the asymptotic iterative longtime dynamics of a random unitary
trace-preserving map P which acts on density operators ρ̂ in ∈ B(H ) are determined by an
asymptotic attractor space Atr(P). For a given interaction graph G(V,E), this attractor space
is constructed by all linearly independent solutions X̂λ,i ∈ B(H ) of the eigenvalue equations

Û e X̂λ,iÛ
†
e = λX̂λ,i for all e ∈ E. (2)

In particular, it has also been shown that this attractor space is the direct sum of all eigenspaces
of this set of equations belonging to different eigenvalues λ with |λ| = 1. These eigenvalues
constitute the attractor spectrum σ|1|. This is due to the fact that the Hilbert space B(H ) can
be decomposed into a direct sum according to B(H )= Atr(P)⊕ (Atr(P))⊥ with ⊥ denoting
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the orthogonal complement, and that both mutually orthogonal subspaces are invariant under
iterations of random unitary operations. Furthermore, all components in the subspace (Atr(P))⊥
vanish after sufficiently large numbers of iterations. Thus, in the asymptotic limit of large
numbers of iterations n, the dynamics are described by the relation

ρ̂(n)= Pn(ρ̂ in)=

Dλ∑
|λ|=1,i=1

λnTr{ρ̂ in X̂ †
λ,i}X̂λ,i , (3)

with Dλ denoting the dimension of the eigenspace defined by (2) corresponding to the
eigenvalue λ. In (3), it is assumed that the linear independent solutions X̂λ,i of (2) are orthogonal
and normalized in the sense Tr{X̂ †

λ,i X̂λ′,i ′} = δλλ′δi i ′ .
These general results have interesting consequences for the randomly interacting qubit

networks that we are investigating here:

• The set of attractors is independent of the values of the probabilities pe with which two
qubits i and j are coupled by the edge e = i j . Thus, all interaction graphs with the same
numbers of qubits and the same set of edges E (associated with non-zero probabilities) have
the same attractor space Atr(PG). The actual values of the non-zero probabilities determine
only how fast an initially prepared state ρ̂ in converges to the asymptotic dynamics.

• Let us consider two interaction graphs, say G and H, with the property that one of them is a
subset of the other one, say H ⊆ G, but with the same number of qubits, i.e. vertexes. Thus,
the set of attractors Atr(PG) of the interaction graph G is a subset of the set of attractors
Atr(PH) of the interaction graph H, i.e.

H ⊆ G ⇒ Atr(PG)⊆ Atr(PH). (4)

This is due to the fact that the attractors of G have to fulfill more constraints according
to (2). Therefore, if the sets of attractors of the interaction graphs H and G are equal, an
arbitrary interaction graph F with the property H ⊆ F ⊆ G has also the same set of attractors
as G. A simple consequence of these relations is that there is always a minimal set of the
so-called base attractors, which is included in the set of attractors of all possible interaction
graphs with the same numbers of qubits. The base attractors are the elements of the attractor
space of the complete interaction graph in which each qubit is coupled to each other one and
vice versa with a non-zero probability (compare with figure 2(a)). These base attractors are
determined uniquely by a particular unitary two-qubit interaction Û . Interaction graphs that
have just this minimal set of attractors we call base graphs. Apparently, base graphs play
an important role in the solution and classification of the asymptotic dynamics of general
randomly interacting quantum networks because they exhibit clearly which couplings are
relevant for achieving a particular attractor space and which ones are irrelevant.

3. Asymptotic dynamics of controlled unitary interactions

According to (2) and (3), the asymptotic quantum states of randomly interacting qubit networks
depend not only on the specific form of the unitary interaction Û but also on the topology of the
interaction graph G(E,V) involved, i.e. on the information as to which qubits are connected by
which edges. Motivated by the significant role that controlled unitary transformations play in the
processing of quantum information [5] and on a more fundamental level in our understanding

New Journal of Physics 13 (2011) 053052 (http://www.njp.org/)

http://www.njp.org/


7

(a) (b)

Figure 2. Interaction graphs representing qubit networks: completely (a) and
strongly (b) connected interaction graphs in which any two qubits i and j are
coupled in both directions with non-zero probabilities, either by a directed edge,
in the case of complete connectedness, or at least by one path formed by adjacent
directed edges, in the case of strong connectedness.

of decoherence and the emergence of classical features [8], we explore these dependences for a
one-parameter family of conditional two-qubit couplings. This family of unitary transformations
also includes the controlled-NOT transformation as a special case. For these couplings, two
main results are shown. Firstly, it is proved that it is exactly the set of all strongly connected
interaction graphs which for a given number of qubits yields the base attractors. Thus, full
details of an interaction graph apart from its strong connectedness are irrelevant to the attractor
space and therefore to the resulting asymptotic dynamics. Secondly, it is proved that the
attractor spaces of non-strongly connected interaction graphs are determined uniquely by the
corresponding digraph of continuity. Thus, also for this significantly more general class of
interaction graphs, the aspects of the dynamical couplings between the qubits that are relevant
to the asymptotic dynamics can be characterized completely.

Controlled unitary two-qubit interactions are asymmetric. One qubit constitutes the control
and the other one the target. The asymmetry of the interaction originates from the fact that the
quantum state of the target qubit is changed conditional on the quantum state of the control qubit
and that there are at least two orthogonal quantum states of the control qubit, i.e. the so-called
computational basis states, which are not affected by this interaction at all. In order to put the
problem into perspective, let us consider a particular one-parameter family of controlled unitary
two-qubit couplings acting on the control and target qubits i and j according to

Û (φ)

i j = |0〉i i〈0| ⊗ Î j + |1〉i i〈1| ⊗ û(φ)j (5)

with

û(φ)j = cosφ(|0〉 j j〈0| − |1〉 j j〈1|)+ sinφ(|0〉 j j〈1| + |1〉 j j〈0|) (6)

and with Î j denoting the unit operator acting on qubit j . For φ = 0 or φ = π , the two-
qubit unitary transformation Û (φ) is diagonal in the (orthonormal) computational basis
{|00〉, |01〉, |10〉, |11〉} and it describes a conditional phase change of magnitude π of one of
the target states of qubit j . In the special case φ = π/2, the controlled unitary transformation
Û (φ)

i j reduces to a controlled-NOT operation with control qubit i and target qubit j . The unitary
transformation (6) is Hermitian and its eigenvalues λ are given by λ1 = 1 and λ2 = −1 with
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corresponding eigenvectors |V1〉 and |V ⊥

1 〉. Hence, for an arbitrary interaction graph G(V,E),
the superoperator of the associated random unitary transformation, i.e.

8(.)=

∑
e∈E

peÛ
(φ)
e (.)Û †(φ)

e , (7)

is also Hermitian and its attractor spectrum σ|1| fulfills the relation σ|1| ⊂ {−1, 1}.
Furthermore, in our subsequent discussion, we restrict ourselves to cases with φ ∈ (0, π).

As already mentioned, if φ = 0 or φ = π , all controlled operations Û (φ)
e are diagonal in the

computational basis and therefore the superoperator (7) is also diagonal, so that a solution of
the asymptotic dynamics is significantly simpler than for general parameters φ ∈ (0, π).

3.1. Base attractors and base graphs

As already stated in section 2, base attractors are the minimal building blocks of the attractor
spaces of arbitrary interaction graphs because they are elements of the attractor space of any
quantum network with the same number of qubits. For a given number of qubits N , these
base attractors are determined uniquely by a given unitary two-qubit interaction Û and by the
completely connected interaction graph in which each of these N qubits is coupled to each other
one and vice versa (see figure 2(a)).

In view of the important role of base attractors in the construction of attractor spaces of
any interaction graph, it is of primary interest to determine the structure of the most general
quantum networks whose associated attractor space consists of base attractors only. Let us call
their interaction graphs base graphs. Definitely, the completely connected interaction graph is an
example of a base graph but, depending on the two-qubit transformation Û under consideration,
typically it is not the only one. For the one-parameter family of conditional unitary two-qubit
interactions (5) with φ 6= 0, π the base graphs are characterized completely by the following
theorem:

Theorem 3.1. For φ 6= 0, π the base graphs of the one-parameter family of conditional unitary
two-qubit interactions (5) are exactly all strongly connected interaction graphs G(V,E) in which
any pair of vertexes is connected by some path (i.e. a connected sequence of directed edges) in
both directions. For a given number of qubits with N > 3, the associated base attractors are
elements of a five-dimensional (5D) attractor space Atr(8G). An orthonormal basis system of
linear operators in this space of base attractors is given by

X̂ 1 = |0N 〉〈0N |, X̂ 2 = |0N 〉〈ψN |, X̂ 3 = |ψN 〉〈0N |, X̂ 4 = |ψN 〉〈ψN |,

X̂ 5 = ( Î N − |0N 〉〈0N | − |ψN 〉〈ψN |)/
√

2N − 2
(8)

with the pure N-qubit states

|0N 〉 = |0〉
⊗N , |ψN 〉 = |θN 〉/

√
〈θN |θN 〉,

|θN 〉 =

∑
06=z∈IN

(
cos

φ

2

)N−τ(z) (
sin

φ

2

)τ(z)

|z〉. (9)

Thereby, IN denotes the set of all possible binary N-tuples and τ(z) is the sum of the bit values
of all N qubits of the N-qubit string z. All of these base attractors (8) solve equations (2) with
eigenvalue λ= 1. For N > 3 there are no non-trivial solutions of (2) with eigenvalue λ= −1.
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In the special case of two qubits, i.e. N = 2, the attractor space Atr(8G) of the base
attractors is 6D. There is a 5D eigensubspace given by (2) associated with eigenvalue λ= 1
whose orthonormal basis is again given by (8). But now, also a non-trivial 1D eigensubspace
exists that corresponds to eigenvalue λ= −1 and that contains the normalized linear
operator,

X̂ 6 = (cos(φ/2)(|01〉〈11| − |10〉〈11| − |11〉〈01| + |11〉〈10|)

− sin(φ/2)(|01〉〈10| − |10〉〈01|)) /
√

2 + 2 cos2(φ/2). (10)

Although it is straightforward to prove that the linear operators (8) and (10) solve
equations (2) with the corresponding eigenvalues, the proof that they also form a basis of the
minimal attractor space is less apparent. Thus, a formal proof of theorem 3.1 based on graph
theoretical methods is given in appendix.

For the generic case of N > 3, this theorem tells us that all attractors have eigenvalue λ= 1.
Thus, asymptotically any initially prepared quantum state ρ̂ in approaches the stationary state,

ρ̂∞ = p
P̂N ρ̂ in P̂N

p
+ (1 − p)

Î N − P̂N

2N − 2
, (11)

with P̂N = |0N 〉〈0N | + |ψN 〉〈ψN | denoting the projector onto the subspace formed by vectors
|0N 〉 and |ψN 〉, and with p = Tr{P̂N ρ̂ in} denoting the probability with which the initial quantum
state ρ̂ in has been prepared in this particular subspace. Due to the fact that all components
of the initially prepared quantum state ρ̂ in inside this 2D subspace are not affected by the
random unitary operations within the N -qubit quantum network, P̂N projects onto an N -qubit
decoherence free subspace. Furthermore, it is apparent from the structure of the attractors of
theorem 3.1 that they are invariant under arbitrary permutations of qubits.

3.2. Attractor spaces of non-strongly connected interaction graphs

Theorem 3.1 states that the attractor spaces of quantum networks with a given conditional
unitary two-qubit interaction (5) and with strongly connected interaction graphs are all
identical. For non-strongly connected interaction graphs in general, the situation is much more
complicated. In the following, we demonstrate that even these more general interaction graphs
can be classified with respect to equivalence classes that share the same attractor space.

For this purpose it is convenient to partition a given non-strongly connected interaction
graph G(V,E) into all of its possible strongly connected subgraphs, say Gi(Vi ,Ei), i ∈{1, . . . , r}.
Such a partition is possible in a unique way because connectedness is an equivalence relation on
the set of vertexes V of a graph G(V,E) [23]. Thus, in each of these subgraphs (or dicomponents
of continuity), any two vertexes are connected by some directed path in both directions. The
so-called digraph of continuity G [23] associated with the interaction graph G(V,E) is a new
graph whose vertexes are formed by the subgraphs Gi(Vi ,Ei), i ∈ {1, . . . , r}. Two vertexes of
G, say Gi(Vi ,Ei) and G j(V j ,E j), are connected by a directed edge if there is a directed edge
in G(V,E) whose tail lies in Gi(Vi ,Ei) and whose head lies in G j(V j ,E j). Two non-strongly
connected interaction graphs, say G(V,E) and H(V,E), are said to have equivalent digraphs
of continuity, G and H, if these digraphs of continuity are identical and if the vertexes of these
digraphs of continuity correspond to the same vertexes of the associated non-strongly connected
interaction graphs G(V,E) and H(V,E).
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In terms of digraphs of continuity associated with non-strongly connected interaction
graphs, the following general relation between their attractor spaces can be established:

Theorem 3.2. Let G and H be two interaction graphs of N qubits with the same conditional
unitary two-qubit interaction (5). If their corresponding digraphs of continuity G and H are
equivalent, their attractor spaces are identical.

This theorem tells us that for conditional unitary two-qubit interactions given by (5), even
in the case of non-strongly connected interaction graphs, an attractor space depends only on
the associated digraph of continuity and on the sets of qubits that constitute its vertexes. In
particular, this implies that details of the coupling between qubits within a particular strongly
connected subgraph or even some of the details of the qubit couplings between different
strongly connected subgraphs are irrelevant to its attractor space. Thus, this theorem simplifies
significantly the determination of attractor spaces of quantum networks randomly coupled by
a conditional unitary two-qubit interaction (5) by characterizing completely which details of a
given interaction graph are relevant for the asymptotic dynamics and which ones are irrelevant.
Despite these simplifications, however, for large numbers of qubits, the set of all possible
non-equivalent digraphs of continuity is still large.

For the proof of this theorem, we start from the observation that according to theorem 3.1,
it is true for strongly connected interaction graphs. So, let us consider an interaction graph
G(V,E) that has two strongly connected subgraphs G1(V1,E1) and G2(V2,E2), and that involves
a conditional unitary two-qubit interaction (5). The proof of more general cases is analogous.
Let us denote the attractor spaces of these strongly connected subgraphs by Atr1, Atr2. Each
of these attractor spaces does not depend on how qubits are connected within its associated
subgraph. The only aspect that matters is that each subgraph is strongly connected. An
arbitrary attractor X̂ of the interaction graph G(V,E) can be written as a linear combination
in the form X̂ =

∑
i j αi j X̂ (1)

i ⊗ X̂ (2)
j with X̂ (m)

i ∈ Atrm, m ∈ {1, 2}. The possible values of the
coefficients αi j are determined by the edges of the digraph of continuity. The attractors
X̂ (m)

i are associated with the strongly connected subgraphs Gm(Vm,Em). Therefore, they are
symmetric with respect to arbitrary permutations of qubits within each subgraph. In particular,
it does not matter which qubit is the control and which one the target. As a consequence, the
attractor space of the interaction graph G(V,E) depends only on the corresponding digraph of
continuity and the vertexes of G(V,E) constituting its own vertexes. This completes the proof of
theorem 3.2. �

4. Asymptotic dynamics of open qubit networks in qubit environments of arbitrary sizes

An interesting property of the controlled unitary transformations (5) is their ability to create
entanglement between qubits. Thus, the asymptotic dynamics of a qubit network governed by
such randomly applied controlled unitary transformations is characterized by two competing
mechanisms. On the one hand, the unitary two-qubit couplings tend to create coherence
and entanglement within the qubit network; on the other hand, the classical randomness
involved tends to destroy these characteristic quantum phenomena. Therefore, investigating
the asymptotic dynamics of open subsystems of such quantum networks under large numbers
of iterations offers the possibility of exploring intricate details of the interplay between these
two competing mechanisms and their resulting influence on characteristic features, such as the
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entropy exchange between an open quantum system and its environment. This entropy exchange
is particularly interesting because, depending on the interaction topology, a subsystem of a
qubit network may be cooled locally by an appropriate entropy exchange with its environment
although in general random unitary transformations never decrease the total entropy of a qubit
network [19, 20]. In order to examine the dependence of local entropy changes on the interaction
topology, we investigate two different classes of open qubit subsystems in this section, namely
subsystems that are part of a quantum network with a strongly connected interaction graph and
subsystems that are part of a network with a non-strongly connected interaction graph in which
the environmental qubits act as control qubits on the open subsystem.

4.1. Subsystem of a strongly connected qubit network

Let us consider a qubit network consisting of (K + N ) qubits that are coupled by randomly
applied controlled unitary transformations (5) with 0< φ < π . We want to explore the
asymptotic dynamics of an open subsystem of this qubit network, which is formed by K
arbitrarily chosen qubits and whose dynamical properties are determined by the residual N
qubits that constitute its finitely sized environment. For this purpose, we assume that the
interaction graph characterizing the interaction topology of the total qubit network is strongly
connected so that its attractor space is given by (8) and (10). Accordingly, the asymptotic
quantum state of the total (K + N )-qubit network has the form (11).

In the limit of large environments, i.e. N � 1, the approximation |ψK +N 〉 −→ |Vk+N 〉(1 +
O(cosN (φ/2))) is obtained with |VK +N 〉 = [(cos(φ/2)|0〉 + sin(φ/2)|1〉)/

√
2]⊗K +N . Thus, the

resulting asymptotic quantum state of the K -qubit subsystem is given by

ρ̂(S)
∞

= pV |VK 〉〈VK | + p0|0K 〉〈0K | + (1 − pV − p0)
Î K

2K
, (12)

with the pure K -qubit quantum state |0K 〉 = |0〉
⊗K . The sum of the probabilities p0 =

〈0K +N |ρ̂ in|0K +N 〉 and pV = 〈VK +N |ρ̂ in|VK +N 〉 determines the overlap of the initially prepared
quantum state ρ̂ in with the (K + N )-qubit decoherence free subspace P̂ K +N defined by (11).

We may obtain additional insights into the consequences of equation (12) by considering
initially uncorrelated quantum states between the subsystem and the environment of the form
ρ̂ in = ρ̂(S) ⊗ ξ̂⊗N . For these initial states and for large values of N , the probabilities p0 and pV

tend to zero unless ξ̂ = |V1〉〈V1| or ξ̂ = |01〉〈01|. Therefore, independent of the initially prepared
state ρ̂(S), equation (12) yields, up to an exponentially small term, a maximally mixed state for
the subsystem, i.e.

ρ̂(S)
∞

=
Î K

2K
, (13)

for p0, pV → 0. A special example of such a case is thermalization, i.e. maximization of the
entropy of the subsystem, which occurs if the N environmental qubits are prepared in the
maximally mixed state, i.e. ξ̂ = Î 1/2.

However, if initially the environment is prepared in the pure state ξ̂⊗N
= |VN 〉〈VN |, the

resulting asymptotic quantum state of the subsystem assumes the form

ρ̂(S)
∞

= p|VK 〉〈VK | + (1 − p)
Î K

2K
, (14)

New Journal of Physics 13 (2011) 053052 (http://www.njp.org/)

http://www.njp.org/


12

(a) (b)

Figure 3. The N + 1 strongly connected subgraphs or dicomponents of continuity
Gi(Vi ,Ei) (i = 1, . . . , N + 1) (figure 3(a)) of the non-strongly connected
interaction graph G(V,E) of figure 1 are the vertexes of the associated digraph of
continuity G (figure 3(b)). Any directed edge between two vertexes of G hints at
the fact that according to the non-strongly connected interaction graph G(V,E)
of figure 1 there is a directed edge between the corresponding strongly connected
subgraphs Gi(Vi ,Ei).

with p = 〈VK |ρ̂(S)|VK 〉 = pV . An analogous expression is obtained if the environment is
prepared in the pure state ξ̂⊗N

= |0N 〉〈0N | initially. In these cases, entropy can be extracted
from the subsystem for some initially prepared quantum states ρ̂(S) with p > 0 so that the
environment can act as a ‘refrigerator’. This is particularly apparent if the initial quantum state
of the system is maximally mixed, i.e. ρ̂(S) = Î K/2K so that p = 2−K . Even more generally, it
is straightforward to demonstrate that for a given value of K , the maximum amount of cooling
is achieved for an initially prepared quantum state,

ρ̂(S) = pmax|VK 〉〈VK | + (1 − pmax)
Î ⊥

K

2K − 1
, (15)

with Î ⊥

K/(2
K

− 1) denoting the maximally mixed state in the K -qubit subspace orthogonal to
state |VK 〉 and with the mixing probability pmax being determined by the relation(

1 +
1

dpmax

)d

(1 − pmax)= dpmax, (16)

with d = (2K
− 1). After larger numbers of random unitary transformations, this initially

prepared quantum state is transformed into the asymptotic quantum state (14) with p = pmax.
The corresponding entropies and their dependence on the number of qubits of the subsystem K
are depicted in figure 4. It is apparent that the entropy exchange between the subsystem and the
environment decreases with increasing size of the subsystem.

In order to investigate the influence of the size of the environment on the entropy exchange
between a K -qubit subsystem and its environment, let us consider the interesting case of a one-
qubit subsystem with an initially prepared quantum state ρ̂ in = ρ̂(S) ⊗ |VN 〉〈VN |. The resulting
entropy exchange depends not only on the initially prepared one-qubit quantum state ρ̂(S) but
also on the size of the environment N and on the controlled unitary coupling between the qubits,
which is characterized by the parameter 0< φ < π .
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Figure 4. von Neumann entropies per qubit (in units of bits) of the quantum
states (15) (· · · · ·, ◦, blue) and (14) (— · —, ♦, red) and their dependence on the
number of qubits K of the subsystem for ξ̂ = |V1〉〈V1|, the optimal cooling effect
achieved by large environments for pmax fulfilling (16) decreases with increasing
size of the subsystem.

Let us first of all restrict our discussion to controlled-NOT operations, i.e. φ = π/2. The
dependence of the von Neumann entropy of the asymptotic quantum state ρ̂(S)

∞
on the number

of qubits of the environment N is depicted in figure 5 for different initially prepared quantum
states with ξ̂ = |V1〉〈V1|. It is straightforward to demonstrate that the only case for which the
asymptotic von Neumann entropy is independent of the size of the environment arises for
the initial state ρ̂(S) = |V1〉〈V1|. Similarly, a strictly monotonically increasing dependence of the
von Neumann entropy is obtained only for an initial state ρ̂(S) = |V ⊥

1 〉〈V ⊥

1 | with 〈V1|V ⊥

1 〉 = 0.
In all other cases, the von Neumann entropy is either strictly monotonically decreasing or it
exhibits a single maximum whose position depends on the initially prepared quantum state
ρ̂(S). In these latter generic cases, sufficiently small environments increase the entropy of the
one-qubit subsystem. For a critical size of the environment, this heating effect is maximal.
For larger environments, this heating effect decreases again monotonically with increasing value
of N .

These size-dependent heating and cooling effects become even more involved for
controlled unitary transformations with 0< φ < π . Typical resulting N dependences of
asymptotic von Neumann entropies are depicted in figure 6 for different controlled unitary
transformations and for ξ̂ = |V1〉〈V1|. It is apparent that these N dependences of the asymptotic
von Neumann entropy can even exhibit both a maximum and a minimum so that there are two
critical sizes of the environment, namely one at which maximum heating occurs and another at
which maximal cooling is achieved.

Let us finally consider cases in which the environment is not prepared in one of the
exceptional quantum states |VN 〉 or |0N 〉, which may achieve cooling even in the limit of large
environments. For this purpose, let us consider cases in which the environment is prepared in a
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Figure 5. Asymptotic von Neumann entropy (in units of bits) and its dependence
on the size N of the environment for different initial one-qubit states: ρ̂(S) =
|V1〉〈V1| (· · · · ·, ◦, blue); ρ̂(S) = |V ⊥

1 〉〈V ⊥

1 | (——, ×, red); ρ(S) = pδ|δ〉〈δ| + (1 −

pδ) Î 1/2 with |δ〉 = (|0〈+eiδ
|1〉)/

√
2 and with δ = 2π/3, pδ = 1/3 (— · —, ♦,

green).
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Figure 6. Asymptotic von Neumann entropy (in units of bits) and its dependence
on the size of the environment N for initial one-qubit states ρ(S) = pδ|δ〉〈δ| +
(1 − pδ) Î 1/2, |δ〉 = (|0〉 + eiδ

|1〉)/
√

2, δ = 2π/3, pδ = 1/3 and for different
controlled unitary transformations: φ = π/3 (· · · · ·, ◦, blue), φ = π/2 (——, ×,
red), φ = 2π/3 (— · —, ♦, green).

quantum state ξ̂⊗N with

ξ̂ = (1 − ε)|V1〉〈V1| + ε
Î 1

2
. (17)
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Figure 7. Asymptotic von Neumann entropy (in units of bits) and its dependence
on the size of the environment N for different initial environmental states ξ̂⊗N

with ξ̂ as defined by (17): ε = 0 (◦, blue), ε = 0.001 (×, red), ε = 0.01 (♦, green)
and ε = 0.1 (M, black).

The corresponding N dependence of the asymptotic von Neumann entropy is depicted in
figure 7 for different values of ε and for an initial one-qubit state ρ(S) = pδ|δ〉〈δ| + (1 − pδ) Î 1/2
with |δ〉 = (|0〉 + eiδ

|1〉)/
√

2 and with δ = 2π/3, pδ = 1/3. It is apparent that with increasing
deviation of the initially prepared state of the environment from ξ̂⊗N

= |VN 〉〈VN |, the asymptotic
cooling effect decreases so that eventually cooling can be achieved only for sufficiently small
numbers of environmental qubits.

4.2. Subsystem of a non-strongly connected qubit network

In order to investigate the influence of the interaction topology on the entropy transport within
a quantum network, let us now consider interaction graphs that are non-strongly connected. In
particular, let us focus on cases in which the open K -qubit subsystem is described by a strongly
connected interaction graph and in which these K qubits couple in a random way as target
qubits to its N environmental qubits that constitute the control qubits. An example of such an
interaction topology is depicted in figure 1. For the sake of simplicity, let us first of all neglect
direct couplings between the environmental qubits. Later in this section, this restriction will
be relaxed and it will be shown that the way in which the environmental qubits are coupled
among themselves has no influence on the resulting asymptotic dynamics of the open system.
This remarkable observation indicates that, as far as the asymptotic dynamics of the subsystem
are concerned, there are relevant and irrelevant properties beyond the concept of the digraph of
continuity that characterize the asymptotic dynamics of the whole network.

As the interaction graph of the total (K + N )-qubit system is not strongly connected,
theorem 3.2 applies. This theorem tells us that in the asymptotic limit of large numbers of
iterations, the state of the complete quantum network is determined uniquely by the relevant
digraph of continuity, which is depicted in figure 3(b) for the interaction graph of figure 1.
In particular, this implies that this asymptotic quantum state is independent of the detailed
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form of the strongly connected interaction graph of the K -qubit subsystem. Furthermore, details
concerning which environmental qubit couples to which qubit of the open K -qubit subsystem
are also irrelevant. This irrelevance is reflected in the fact that in the digraph of continuity, each
strongly connected part of the interaction graph collapses to a vertex and the directed edges of
the digraph of continuity do not contain information as to which qubits of different strongly
connected subgraphs are connected in the original interaction graph. As a consequence, the
digraph of continuity of this (K + N )-qubit quantum network has (N + 1) components. One of
them is formed by the strongly connected interaction graph of the open K -qubit subsystem. Each
of the environmental qubits forms a trivial strongly connected subgraph of its own because all
couplings in which environmental qubits are target qubits are neglected for the moment. They
are taken into account later in this section, where it will be shown that they do not alter our
conclusions concerning the open K -qubit subsystem.

Let us now determine the asymptotic quantum state resulting from an initially uncorrelated
quantum state ρ̂ in = ρ̂(S) ⊗ ρ̂(E) of the K -qubit subsystem and its N -qubit environment (K +
N > 3). For this purpose, we have to determine an orthonormal basis of the attractor space of the
non-strongly connected interaction graph of figure 1. When solving the eigenvalue equations (2),
it turns out that the attractor space of this (K + N )-qubit system is (4N + 3 · 2N + 1)-dimensional,
that the only possible eigenvalue is given by λ= 1 and that an orthonormal basis system of
attractors is given by

X̂ i ⊗ |0N 〉〈0N |, |0K 〉〈VK | ⊗ |0N 〉〈 y|,

|ψK 〉〈VK | ⊗ |0N 〉〈 y|, |VK 〉〈0K | ⊗ | y〉〈0N |,

|VK 〉〈ψK | ⊗ | y〉〈0N |, |VK 〉〈VK | ⊗ | y〉〈 y|,

|VK 〉〈VK | ⊗ | y〉〈z|,
1

√
2K − 1

( Î K − |VK 〉〈VK |)⊗ | y〉〈 y|, (18)

with i ∈ {1, 2, . . . , 5}, 0 6= y ∈ IN , 0 6= z ∈ IN . Thereby, the first parts of the tensor products refer
to the K -qubit subsystem and the second parts to the N -qubit environment. The pure K -qubit
quantum states |ψK 〉 and |VK 〉 are defined in (9) and (12). By tracing out the environment, we
finally obtain the asymptotic stationary quantum state of the K -qubit subsystem, i.e.

ρ̂(S)
∞

= p(0)envρ̂
(S)
0 + (1 − p(0)env)ρ̂

(S)
1 , (19)

with p(0)env denoting the probability with which the environment was prepared initially in state
|0N 〉. This probability is the only parameter of the environment that enters the asymptotic state
of the K -qubit subsystem. According to (19), the asymptotic quantum state of the interaction
center is a convex sum of the two states

ρ̂
(S)
0 =

5∑
i=1

Tr{ρ̂(S) X̂ †
i }X̂ i ,

ρ̂
(S)
1 = 〈VK |ρ̂(S)|VK 〉|VK 〉〈VK | + (1 − 〈VK |ρ̂(S)|VK 〉)

Î ⊥

K

2K − 1
.

(20)

Thereby, ρ̂(S)0 characterizes all quantum features of the K -qubit subsystem that are not affected
by the conditional unitary coupling to the environment. In view of the random couplings among
the qubits of this open subsystem, this quantum state can be entangled even if the initially
prepared quantum state ρ̂(S) of the K -qubit subsystem is separable. But apparently the quantum
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state ρ̂(S)1 is always separable with respect to arbitrary partitions of the K -qubit subsystem.
Therefore, the transformation between the initial quantum state ρ̂(S) and the final quantum state
(19) is entanglement breaking.

For initially prepared environmental quantum states ρ̂(E) = ξ̂⊗N and for large environments
with N � 1, two different cases can arise. If ξ̂ = |01〉〈01|, the probability p(0)env equals unity so
that the asymptotic quantum state is given by ρ̂(S)0 . Thus, the environment does not influence the
asymptotic quantum state at all. However, if 06 〈01|ξ̂ |01〉< 1, the probability p(0)env = 〈01|ξ̂ |01〉

N

tends to zero so that the asymptotic quantum state of the K -qubit subsystem is given by the
separable quantum state ρ̂(S)1 of the form (20). In view of this fact, we conclude that this quantum
network makes the process of thermalization, i.e. maximization of the entropy of the subsystem,
impossible.

The transformation of any initial quantum state ρ̂(S) to this final state can also be viewed
as arising from a two-step process involving a projective von Neumann measurement with the
projection operator |VK 〉〈VK | and a second quantum operation that transforms the orthogonal
component of the initial state into the maximally mixed state Î ⊥

K/(2
K

− 1). Definitely, these
quantum operations do not decrease the entropy of any initially prepared quantum state ρ̂(S), so
that cooling of the K -qubit subsystem is impossible in such a qubit network. This impossibility
may be traced back to the fact that in such a quantum network the qubits of the K -qubit
subsystem act as target qubits only as far as the coupling between the open subsystem and
its environment is concerned.

Also, in the case of a finite environment with an arbitrary value of p(0)env, the entropy of the
asymptotic quantum state (19) cannot be smaller than the von Neumann entropy of an arbitrary
initially prepared quantum state ρ̂(S). This can be seen from the inequalities

S(ρ̂(S)
∞
)> p(0)envS(ρ̂(S)0 )+ (1 − p(0)env)S(ρ̂

(S)
1 )

> p(0)envS(ρ̂(S))+ (1 − p(0)env)S(ρ̂
(S))= S(ρ̂(S)). (21)

The first inequality of (21) reflects the mixing property of the von Neumann entropy. The second
inequality takes into account the fact that random unitary transformations cannot decrease
the von Neumann entropy, i.e. S(ρ̂(S)0 )> S(ρ̂(S)), and that S(ρ̂(S)1 )> S(ρ̂(S)), as was shown in
the previous paragraph. Thus, in general, the K -qubit subsystem cannot be cooled in such a
quantum network.

Let us focus now on the question of how random conditional unitary couplings
between environmental qubits influence the asymptotic dynamics of the K -qubit subsystem.
Surprisingly, although in general such additional purely environmental couplings change the
asymptotic quantum state of the complete (K + N )-qubit system, these couplings do not at
all affect the asymptotic quantum state of the K -qubit subsystem. In the asymptotic regime,
the open subsystem does not undergo any changes in the environmental couplings no matter
whether the initial state of the open system and its environment is separable or entangled. This
surprising result is partly a further consequence of our main theorems 3.1 and 3.2 and partly
reflects some additional characteristic properties of randomly interacting quantum networks
whose two-qubit interactions are given by (5). However, a systematic investigation of these
properties is outside the scope of this paper and will be given elsewhere. Thus, all previously
derived results of this section are valid, irrespective of whether environmental qubits are
interacting or not.

The proof of this general feature is surprisingly simple and involves two main steps. In
the first step, one demonstrates that the asymptotic dynamics of the K -qubit subsystem do
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not change in those extreme cases where the environmental qubits are all coupled among
themselves so that the interaction graph of the environment g1 is completely connected. This
is the extreme opposite limit of the previously investigated non-interacting situation. In this
case, the interaction graph of the total (K + N )-qubit system, G1, has only two dicomponents of
continuity and the attractor space of the associated digraph of continuity turns out to be 12D.
An orthonormal basis of this attractor space is given by

X̂ i ⊗ |0N 〉〈0N |, |0K 〉〈VK | ⊗ |0N 〉〈ψN |,

|ψK 〉〈VK | ⊗ |0N 〉〈ψN |, |VK 〉〈0K | ⊗ |ψN 〉〈0N |,

|VK 〉〈ψK | ⊗ |ψN 〉〈0N |, |VK 〉〈VK | ⊗ |ψN 〉〈ψN |,

|VK 〉〈VK |
√

2N − 2
⊗ ( Î N − |0N 〉〈0N | − |ψN 〉〈ψN |),

(IK − |VK 〉〈VK |)√
(2N − 2)(2K − 1)

⊗ ( Î N − |0N 〉〈0N |). (22)

Determining the asymptotic quantum state of the K -qubit subsystem with the help of these
attractors, we obtain the same result as in (19).

In the second step of the proof, we consider also cases where not all of the qubit pairs
of the environment interact with each other. Let g be the environmental interaction graph of
such a case and G the corresponding interaction graph of the N -qubit environment and the
K -qubit subsystem. Denoting the interaction graphs of a non-interacting environment and of
the corresponding K -qubit subsystem by g2 and G2, respectively, the relation

g1 ⊆ g ⊆ g2 (23)

holds. According to relation (4), the corresponding attractor spaces of these three cases satisfy
the relation

Atrg2 ⊆ Atrg ⊆ Atrg1 . (24)

This allows us to choose orthonormal bases in these attractor spaces in the following way.
Firstly, we choose an orthonormal basis {r̂ i} of Atrg2 , afterwards an orthonormal basis {r̂ i , ŝ j}

of Atrg and finally an orthonormal basis {r̂ i , ŝ j , t̂ k} of Atrg1 with appropriate ranges of indices.
Starting from these basis elements, we can construct orthonormal bases of the corresponding
complete quantum systems with the help of tensor products between basis states of the attractors
of the N -qubit environment and of the K -qubit subsystem. Thereby, one has to take into account
that the couplings between these two parts of the quantum network impose constraints on
possible attractors of the total (K + N )-qubit system. At this point, it is important to remember
that according to our system–reservoir model, all edges between the N -qubit environment and
the K -qubit subsystem start in the environment because all environmental qubits are control
qubits as far as the coupling to the K -qubit subsystem is concerned. As a result, we can choose
the basis states of the attractor space of the total (K + N )-qubit quantum system in the following
way. The orthonormal basis of AtrG2 is of the form {r̂ 1

i1
⊗ R̂i1

ui1
}. This notation reflects the fact

that this basis is constructed by taking a basis element of the environmental attractor space,
say r̂ i , and finding a basis, say {R̂i

ui
}, for all possible attractors of the K -qubit subsystem

that is consistent with the conditions imposed by the edges leading from the environment to
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the K -qubit subsystem. Repeating this procedure for all basis elements of the environmental
attractor space yields the orthonormal basis {r̂ 1

i1
⊗ R̂i1

ui1
} of the total quantum system. Thereby,

the introduction of the double indices takes into account that there are some basis elements
r̂ i of the environmental attractor space for which no attractor of the K -qubit subsystem can
be found or for which the corresponding attractor space of the K -qubit subsystem is more
than 1D. The set {r̂ 1

i1
} is the particular subset of orthonormal environmental basis elements {r̂ i}

for which solutions exist. They are indexed by i1 and the corresponding solutions of the K -
qubit subsystem are indexed by ui1 . Naturally, all of the attractors of the graph G2 are also
attractors of the interaction graphs G and G1. Hence, we include them in the construction
of their attractor spaces. Thus, analogously orthonormal basis systems of the attractor spaces
of the interaction graphs G and G1 are of the form {r̂ 1

i1
⊗ R̂i1

ui1
, r̂ 2

i2
⊗ R̂i2

ui2
, ŝ1

j1
⊗ Ŝ j1

v j1
} and

{r̂ 1
i1

⊗ R̂i1
ui1
, r̂ 2

i2
⊗ R̂i2

ui2
, r̂ 3

i3
⊗ R̂i3

ui3
, ŝ1

j1
⊗ Ŝ j1

v j1
, ŝ2

j2
⊗ Ŝ j2

v j2
, t̂1

k1
⊗ T̂ k1

wk1
}.

With the help of these orthonormal bases and of equation (3), the asymptotic quantum
states of the K -qubit subsystem for the three interaction graphs G1, G and G2 are given by

ρ̂∞,G2 =

∑
i1,ui1

R̂i1
ui1

Trr̂ 1
i1

Tr((r̂ 1
i1
)†ρ̂env)Tr((R̂i1

ui1
)†ρ̂0),

ρ̂∞,G =

2∑
a=1

∑
ia,uia

R̂ia
uia

Trr̂a
ia

Tr((r̂a
ia
)†ρ̂env)Tr((R̂ia

uia
)†ρ̂0)

+
∑
j1,v j1

Ŝ j1
v j1

Trŝ1
j1

Tr((ŝ1
j1
)†ρ̂env)Tr((Ŝ j1

v j1
)†ρ̂0),

ρ̂∞,G1 =

3∑
a=1

∑
ia,uia

R̂ia
uia

Trr̂a
ia

Tr((r̂a
ia
)†ρ̂env)Tr((R̂ia

uia
)†ρ̂0)

+
2∑

b=1

∑
jb,v jb

Ŝ jb
v jb

Trŝb
jb

Tr((ŝb
jb
)†ρ̂env)Tr((Ŝ jb

v jb
)†ρ̂0)

+
∑

k1,wk1

T̂ k1
wk1

Trt̂1
k1

Tr((t̂1
k1
)†ρ̂env)Tr((T̂ k1

wk1
)†ρ̂0). (25)

We have already proved that ρ̂∞,G2 = ρ̂∞,G1 for all initially prepared density operators ρ̂(E) and
ρ̂(S). Hence, by subtraction we obtain the result

0 = ρ̂∞,G1 − ρ̂∞,G2

=

3∑
a=2

∑
ia,uia

R̂ia
uia

Trr̂a
ia

Tr((r̂a
ia
)†ρ̂env)Tr((R̂ia

uia
)†ρ̂0)

+
2∑

b=1

∑
jb,v jb

Ŝ jb
v jb

Trŝb
jb

Tr((ŝb
jb
)†ρ̂env)Tr((Ŝ jb

v jb
)†ρ̂0)

+
∑

k1,wk1

T̂ k1
wk1

Trt̂1
k1

Tr((t̂1
k1
)†ρ̂env)Tr((T̂ k1

wk1
)†ρ̂0). (26)
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Finally, by appropriate choice of the density operators ρ̂(E) and ρ̂(S), it is straightforward to
show that all operators {r̂ 2

i2
}, {r̂ 3

i3
}, {ŝ1

j1
}, {ŝ2

j2
}, and {t̂1

k1
} have zero trace. As a direct consequence,

we finally arrive at the equality

ρ̂∞,G2 = ρ̂∞,G = ρ̂∞,G1 . (27)

It is important to emphasize that in the proof, we did not use the property that ρ̂env and ρ̂0 are
density operators. In fact, this is not important and the last equation (27) holds for an arbitrary
tensor product Â ⊗ B̂, with Â (B̂) being an operator acting on the K -qubit Hilbert space
(N -qubit Hilbert space). An arbitrary initial state ρ̂ in of the open system and its environment can
be decomposed into a linear combination of terms in the tensor product form Â ⊗ B̂. Therefore,
(27) holds for an arbitrary initial state ρ̂ in, which completes the proof. �

5. Conclusions

We have investigated the asymptotic dynamics of qubit networks of arbitrary size under the
influence of repeatedly and randomly applied entangling unitary two-qubit operations within
an exactly solvable model. General results have been derived for a particular one-parameter
family of entanglement generating controlled unitary transformations in the form of two main
theorems. They relate the topology of the interaction graph of a qubit network to its asymptotic
dynamics. These two theorems state clearly those features of an interaction graph of a quantum
network that are relevant for determining its asymptotic dynamics.

On the basis of these general results, the interplay between entanglement generation and
classical randomness originating from uncontrolled applications of these entangling unitary
transformations has been investigated. It has been demonstrated that although the overall
entropy of such a quantum network cannot decrease, it is possible that subsystems lower
their entropy locally and are thus cooled by entropy transport to their environment. In fact,
both maximization, i.e. thermalization, and reduction, i.e. cooling, of the local entropy of a
subsystem are possible if couplings between this subsystem and its environment act in both
directions. If this condition is violated, successful realization of both processes is not possible.
In particular, the possibility of local cooling hints at one of the surprising quantum features that
can result from the competition between entanglement generation and classical randomness.
Without invoking a Markov approximation or a weak coupling assumption, the dependence of
this entropy exchange between a subsystem and its environment has been explored in the case of
different topologies of interaction graphs and in the case of different sizes of the subsystem and
its environment. For moderate numbers of qubits, these characteristic quantum effects should
be amenable to further experimental exploration.

We have considered cases in which classical randomness is fed into a quantum network by
selecting the entanglement generating unitary operations according to some arbitrarily chosen
probability distribution that is held constant during the iteration process. It is found that the
resulting asymptotic quantum state is independent of details of this probability distribution and
that it depends only on its support, i.e. on the set of qubits that can be entangled at all by the
unitary entanglement operation. This robustness of the asymptotic quantum state might offer
advantages in experimental investigations of asymptotic network dynamics.

In addition to the ones investigated in this work, there are numerous other means of
influencing the dynamics of a quantum system externally in a probabilistic way. One of
them is information feedback based on quantum measurements [3]; another is decoherence by
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decorrelation [24], for example. It might be of interest for future investigations to find links
between the results presented in this work and more general forms of randomness-assisted
quantum phenomena.
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Appendix. Attractor spaces of strongly connected interaction graphs

In this appendix, theorem 3.1 is proved in two main steps. In a first step, it is proved for the
special case of qubit networks randomly coupled by controlled-NOT operations. The graph
theoretical methods [23] used in this first step are used subsequently in a slightly modified form
to prove theorem 3.1 also for general conditional unitary transformations described by (5).

A.1. Random qubit networks with controlled-NOT couplings

We construct an orthonormal basis system for the set of eigenvalue equations (2) for the
special case of controlled-NOT operations defined by (5) with φ = π/2 and for a completely
connected interaction graph G(V,E). These equations determine the minimal asymptotic
attractor space. In addition, we have to demonstrate that strongly connected interaction graphs
are the most general interaction graphs with the same minimal attractor space.

Because we are dealing with controlled-NOT operations, the possible eigenvalues can
only assume the values λ= 1 or λ= −1. Let us denote the orthonormal basis states of
the computational basis of N qubits by |z〉 with the binary N -tuples z ≡ (z1, z2, . . . , zN ) ∈

{0, 1}
N

≡ IN . In this computational basis, an arbitrary linear operator in the Hilbert space of
N qubits is given by

X̂ ≡

∑
i, j∈IN

X(i, j)|i〉〈 j | (A.1)

and the eigenvalue equations (2) reduce to the form

X(i ′, j ′) = λX(i, j) (A.2)

with i ′
= (i1, i2, . . . , i ′

t = it ⊕ ic, . . . , iN ), j ′
= ( j1, j2, . . . , j ′

t = jt ⊕ ic, . . . , jN ) and with the
subscripts t and c referring to the target and the control qubits, respectively. The symbol ⊕

denotes addition modulo two. Due to special properties of controlled-NOT operations, one can
distinguish five subsets of all indices (i, j) ∈ IN × IN with the property that equations (A.2)
do not couple matrix elements with indices from different subsets. These five subsets are
given by

A1 = {(0, 0)}, A2 = {(i, 0)|i 6= 0}, A3 = {(0, i)|i 6= 0},

A4 = {(i, i)|i 6= 0}, A5 = {(i, j)|i 6= j 6= 0 ∧ i 6= 0},
(A.3)

with 0 denoting the zero vector of indices.
The couplings between the matrix elements of X̂ can be encoded in a convenient way by

an index graph g(I, e), which is associated with an interaction graph G(V,E). All members of
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Figure A.1. Colored index graph (bottom) induced by a three-qubit oriented-
star interaction graph (top): the index graph of the three qubits is formed by
three dicomponents of continuity (bottom: solid lines and dot (001)), two of
which are two-connected isomorphic index graphs of a two-qubit oriented-star
interaction graph with a third qubit attached in state |0〉 and |1〉, respectively. The
third component has only one vertex associated with the quantum state |001〉.
These three dicomponents of continuity are connected by the colors 13 and 31
(bottom: dashed-dotted lines). The associated three-qubit star interaction graph is
constructed from the two-qubit star interaction graph (top solid line) by attaching
the third qubit as a vertex and by connecting it by an edge with the first qubit (top
dashed-dotted line).

the index set IN except for the element 0 are chosen as vertexes of such an index graph. This
choice reflects the fact that the quantum state |0〉 is trivial as it is not affected by controlled-
NOT operations. Each edge e ∈ E of the interaction graph defines a ‘colored’ edge i j of the
index graph with j = ei ⇔ | j〉 = Ue|i〉 and with Û e denoting the appropriate controlled-NOT
operation connecting these qubit states. The ‘color’ of this edge is denoted by e. Because of
the property e(ei)= i , the index graph g(I, e) is undirected. Each of its vertexes is the starting
point of exactly m (colored) edges, with m denoting the total number of edges of the associated
interaction graph. Thus, without loss of information, all loop-like edges with ei = i need not be
indicated explicitly in an index graph.

Following this convention, an example of an index graph induced by an interaction graph
with three qubits is depicted in figure A.1.

A.1.1. The attractor space with λ= 1. Let us first consider the minimal attractor space
with eigenvalue λ= 1. Definitely, this minimal attractor space arises in the case of a
completely connected interaction graph. Considering the orthonormal basis given as (8) in
the computational basis {|z〉}, one observes that we have to demonstrate that the minimal
attractor space is formed by all 2N

× 2N -matrices whose matrix elements are equal for indices
(i, j) within the same index set Al (l ∈ {1, . . . , 5}) of (A.3). This property is always fulfilled
trivially for the set A1 because this set has only one element. Formulated in terms of the graph
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theoretical concepts introduced, for the sets A2, A3 and A4 it is true iff the index graph of a
completely connected interaction graph is (one-) connected and for the set A5 it is true iff this
index graph is two-connected so that any pair of vertexes, say (i1, j 1), is connected to any other
pair (i2, j 2) by a path, i.e. a sequence of adjacent (colored) edges of the index graph. Therefore,
proving two-connectedness of the index graph of a completely connected interaction graph is
sufficient for establishing the minimal attractor space given by (8) because two-connectedness
implies also one-connectedness.

Two-connectedness of the index graph of a completely connected interaction graph can
be proved in three steps. In a first step, one proves two-connectedness for an oriented-star
interaction graph (compare with figure A.1 (top)) with an arbitrary number of qubits. This can be
achieved inductively. The first step of this inductive proof, which involves a two-qubit oriented-
star interaction graph, is apparent. Continuing the induction, let us suppose that an N -qubit
oriented-star interacting graph implies two-connectedness of the corresponding index graph.
An (N + 1)-qubit oriented-star interaction graph is formed by adding an (N + 1)th qubit and
2(N + 1) edges e = 1(N + 1) and e′

= (N + 1)1. As is apparent from the special case of N = 2
in figure A.1, the index graph resulting from the addition of one more qubit without connecting
it yet to the rest of the interaction graph by edges has three dicomponents of continuity. One
of these components is isomorphic to the index graph of an oriented-star interaction graph
with N qubits whose vertexes have the (N + 1)th qubit in the quantum state |0〉. The same
applies to the second dicomponents of continuity apart from the fact that the (N + 1)th qubit is
in the quantum state |1〉. The index graphs of these two components can be transformed into
each other by a bijective mapping of vertexes, edges and colors, i.e. they are color isomorphic.
The third component is formed by the single vertex (0, 0, . . . , 0, 1). Hence, all three resulting
dicomponents of continuity are two-connected. Let us now add also the 2(N + 1) new colored
edges e = 1(N + 1) and e′

= (N + 1)1. The colored edges with color e = 1(N + 1) connect the
first and second dicomponent of continuity and the edges with color e′

= (N + 1)1 connect the
second and the third one or they connect vertexes within the second one. The two-connectedness
of the resulting index graph can be proved in a straightforward way by taking advantage of
the color isomorphism between the first dicomponent of continuity and the second one. As an
example, let us choose a vertex u1 in the first dicomponent of continuity and a vertex v1 in
the second one. Due to the color isomorphism between both components, this pair of vertexes
can be connected to an arbitrary other pair of vertexes by an appropriate sequence of adjacent
colored edges applied to both vertexes, even if both final vertexes are located in the second
component, for example. For this purpose, one connects vertex u1 to a vertex that is adjacent
to an edge with color e = 1(N + 1) in the first dicomponent of continuity and vertex v1 to a
vertex in the second component that is not adjacent to an edge e = 1(N + 1). Subsequently, the
color e = 1(N + 1) connects these vertexes to vertexes in the second dicomponent of continuity.
In view of the two-connectedness of this component, these vertexes can now be connected to
any other pair of vertexes. Other cases can be proved in a similar way. Hence, the index graph
induced by an oriented-star interaction graph is two-connected.

In the second step, it is proved that the index graph of an arbitrary interaction graph
containing an oriented star is two-connected. Definitely, this is true because such an interaction
graph induces in its index graph even more colored edges. Therefore, the two-connectedness of
the index graph is not affected.

In the third step, one takes advantage of the fact that all strongly connected interaction
graphs can be obtained from the complete interaction graph by successively removing edges.
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Figure A.2. Part of a strongly connected interaction graph. The edge f can be
removed because it can be substituted by a path.

However, as strong two-connectedness of the index graph is a necessary condition for obtaining
the minimal attractor space (8), one has to demonstrate that the two-connectedness of the
index graph is not affected by such a removal of edges of the interaction graph as long as the
interaction graph remains strongly connected. This property can be proved by induction with
respect to the length d of a path connecting any pair of vertex pairs of the index graph. We
start the inductive proof by considering a completely connected interaction graph and one of its
paths of length d = 2 formed by the adjacent edges e = i j and f = jk of length unity and an
edge g = ik of length d = 2. In the corresponding index graph, the colored edge g has the same
effect as applying the colored edges f e f e. Thus, the colored edge g can be removed from the
interaction graph without losing the two-connectedness of its induced index graph. Continuing
the proof by induction, we consider a path of length d + 1 involving the adjacent edges e1 = i1i2,
e2 = i2i3, . . . ed+1 = id+1d+2 of an interaction graph under the assumption that all edges that
can be substituted by paths of length d in this interaction graph can be eliminated without
affecting the two-connectedness of the induced index graph (see figure A.2). If one inserts in
this interaction graph an additional edge g := id id+2, one does not affect the two-connectedness
of the induced index graph. By this insertion, qubits i1 and id+2 are connected by a path of
length d, so that any direct edge between qubits i1 and id+2 can be removed without affecting
the two-connectedness of the index graph. As a consequence, also any edge of an interaction
graph that can be substituted by a path of length d + 1 can be removed without affecting the
two-connectedness of the induced index graph. This completes the proof by induction. �

Let us finally comment on the fact that strong connectivity of the interaction graph is
necessary for the attractor space of the form (8). If the interaction graph was not strongly
connected, it would consist of at least of two dicomponents of continuity so that qubits in the first
dicomponent are not coupled to qubits in the second component. For the induced index graph,
this implies that binary indices that have vanishing indices for all qubits in the first component
are not connected to binary indices that have non-vanishing indices for all qubits in the first
component. Therefore, not all matrix elements in sets Ai of (A.3) are related and thus the set of
attractors fulfilling (2) for λ= 1 is larger than the minimal set of base attractors. Therefore, for
λ= 1, strongly connected interaction graphs constitute the largest set of interaction graphs with
the attractor space given as (8).

A.1.2. The attractor space with λ= −1. We have already shown that strongly connected
graphs of interaction imply that matrix elements of attractors with both indices in one of
the sets Ai (i ∈ {1, 2, . . . , 5}) of (A.3) are all equal. However, now the eigenvalue of the set
of equations (A.2) is given by λ= −1. Strong connection implies that an arbitrary qubit is
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the tail of some edge in the interaction graph. Thus, with both indices in the set A1, an
arbitrary edge yields the relation X(0,0) = −X(0,0) = 0. The same conclusion is obtained for
matrix elements of X̂ with indices in one of the sets A2, A3 or A4 because of the relations
X(i,0) = −X(i,0) = X(0,i) = −X(0,i).

The case with indices in the set A5 is more complicated. Depending on the number of
qubits N , one has to distinguish two cases. If N > 3, one can always choose indices of the form
i = (0, i ′), j = (0, j ′) with i ′

6= j ′. Applying an edge with the first qubit as the tail, i.e. as the
control qubit, one obtains the relation X(i, j) = −X(i, j) = 0. Therefore, all matrix elements with
indices from the set A5 are zero. Hence, for N > 3, there is no non-zero attractor corresponding
to eigenvalue λ= −1. Let us now consider the case of two qubits, i.e. N = 2. We cannot use
the same argument again, because there is no such pair of indices. In this case, a successive
application of edges of a strongly connected interaction graph yields the result

X((1,0),(0,1)) = − X((1,1),(0,1)) = X((1,1),(1,0)) = −X((1,0),(1,1)) = X((0,1),(1,1))

= − X((0,1),(1,0)). (A.4)

Finally, this confirms the validity of theorem 3.1 for φ = π/2 and for the eigenvalue λ= −1.

A.2. The attractor space resulting from arbitrary conditional unitary couplings

For a general parameter φ ∈ (0, π) of the conditional unitary coupling (5), the equations for the
attractors (2) can be rewritten in a form that is similar to (A.2). As an example, consider the
resulting equations for two qubits a and b coupled by the conditional unitary transformation
Û (φ)

ab . In order to simplify notation, let us skip all indices of the remaining N − 2 qubits as they
are not mixed by (2) for Û (φ)

ab . In this simplified notation, the resulting equations for the matrix
elements of X̂ are given by

λX 0i
0 j = X 0i

0 j ,

λX 0i
10 = X 0i

10 cosφ + X 0i
11 sinφ, λX 0i

11 = X 0i
10 sinφ− X 0i

11 cosφ,

λX 10
0i = X 10

0i cosφ + X 11
0i sinφ, λX 11

0i = X 10
0i sinφ− X 11

0i cosφ,

λX 10
10 = X 10

10 cos2 φ + X 10
11 cosφ sinφ + X 11

10 cosφ sinφ + X 11
11 sin2 φ, (A.5)

λX 11
11 = X 11

11 cos2 φ− X 10
11 cosφ sinφ− X 11

10 cosφ sinφ + X 10
10 sin2 φ,

λX 10
11 = −X 10

11 cos2 φ + X 10
10 cosφ sinφ− X 11

11 cosφ sinφ + X 11
10 sin2 φ,

λX 11
10 = −X 11

10 cos2 φ + X 10
10 cosφ sinφ− X 11

11 cosφ sinφ + X 10
11 sin2 φ

with i, j ∈ {0, 1}.
Let us consider the eigenvalue λ= 1 first. In this case, these equations can be rewritten in

the more concise form

X 10
00 sin(φ/2)= X 11

00 cos(φ/2), (A.6)

X 00
10 sin(φ/2)= X 00

11 cos(φ/2), (A.7)

X 01
10 sin(φ/2)= X 01

11 cos(φ/2), (A.8)

New Journal of Physics 13 (2011) 053052 (http://www.njp.org/)

http://www.njp.org/


26

X 10
01 sin(φ/2)= X 11

01 cos(φ/2), (A.9)

2X 10
11 cosφ =

(
X 10

10 − X 11
11

)
sinφ, (A.10)

X 10
11 = X 11

10. (A.11)

In the special case φ = π/2, they reduce to the equations for the controlled-NOT coupling.
Each unitary action Û ab connects different matrix elements of a possible attractor X̂ .

(A.6) connects matrix elements with indices from the set A2. Similarly, (A.7) connects matrix
elements with indices from the set A3. Equations (A.8)–(A.10) connect matrix elements
with indices from the set A5. The major difference from the special case of controlled-NOT
operations is the fact that (A.10) also connects matrix elements with indices from the set A4

with those from the set A5. However, this coupling does only involve differences of matrix
elements with indices in A4. From our proof for controlled-NOT operations, it follows that all
matrix elements with indices in a given set Ai (i ∈ {1, . . . , 5}) are connected if and only if the
interaction graph is strongly connected. Therefore, we can conclude that also for φ 6= 0, π/2, π
the base graphs are strongly connected graphs. For a base attractor X̂ , this implies that as soon
as one of its matrix elements with indices from one of the sets Ai (i ∈ {1, . . . , 5}) is defined, the
other ones with indices in the same set are also determined. Hence, again the minimal attractor
space corresponding to eigenvalue λ= 1 is 5D.

Let us now construct the set of minimal attractors. The attractor corresponding to the
set of indices A1 is apparently given by X̂ 1 = |0〉〈0|. For the determination of the attractor
˜̂X 2 that corresponds to the set A2, we start from the arbitrarily chosen matrix element

(
˜̂X 2)

1
0 = (sin(φ/2))N−1 with 1 = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0). (A.6) implies ( ˜̂X 2)

i
0 =

(sin(φ/2))τ(i)−1(cos(φ/2))N−τ(i) with 0 6= i ∈ IN . All other elements of this attractor are equal

to zero. In a similar way, we can determine the matrix elements of the attractor ˜̂X 3 that

corresponds to the set A3. It is given by ( ˜̂X 3)
0
i = (sin(φ/2))τ(i)−1(cos(φ/2))N−τ(i) with all other

matrix elements vanishing. Consider now the indices from the set A4. The corresponding matrix
elements are determined by (A.10) and are therefore connected to matrix elements with indices
from the set A5. If the matrix elements of an attractor corresponding to the set of indices A5

are given, according to (A.10), only a single matrix element with indices from the set A4 can
be chosen arbitrarily. Setting all matrix elements with indices not contained in the set A4 to

zero, this free choice of this single matrix element yields the attractor ˜̂X 5 = I − |0〉〈0|. The

last attractor ˜̂X 4 corresponding to the index set A5 can be constructed in a similar way as

the attractors X̂ 2 and X̂ 3. It is given by ( ˜̂X 4)
i
j = (sin(φ/2))τ(i)+τ( j)−2(cos(φ/2))N−τ(i)−τ( j) with

i, j 6= 0. By orthonormalization of these attractors, we finally arrive at the set of orthonormal
attractors (8).

For the eigenvalue λ= −1, the set of equations (A.5) can be rewritten in the concise form

X 0i
0 j = −X 0i

0 j , X 0i
10 cos(φ/2)= −X 0i

11 sin(φ/2),

X 10
10 = −X 11

11, X 10
0i cos(φ/2)= −X 11

0i sin(φ/2),
(A.12)

with i, j ∈ {0, 1}. Therefore, the determination of the structure of minimal attractors is
analogous to the case of the controlled-NOT interaction, i.e. φ = π/2. Thus, one can show
that for N > 3 there is no non-zero attractor for strongly connected graphs, and for N = 2 there
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is only one solution, namely

sin(φ/2)X((1,0),(0,1)) = − cos(φ/2)X((1,1),(0,1))

= cos(φ/2)X((1,1),(1,0)) = − cos(φ/2)X((1,0),(1,1))

= cos(φ/2)X((0,1),(1,1)) = − sin(φ/2)X((0,1),(1,0)). (A.13)

This completes the proof of theorem 3.1. �
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