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Abstract. Based on direct numerical simulations of forced turbulence, shear
turbulence, decaying turbulence, a turbulent channel flow as well as a
Kolmogorov flow with Taylor-based Reynolds numbers Reλ between 69 and
295, the normalized probability density function of the length distribution P̃(l̃)
of dissipation elements, the conditional mean scalar difference 〈1k|l〉 at the
extreme points as well as the scaling of the two-point velocity difference along
gradient trajectories 〈1un〉 are studied. Using the field of the instantaneous
turbulent kinetic energy k as a scalar, we find good agreement between the model
equation for P̃(l̃) as proposed by Wang and Peters (2008 J. Fluid Mech. 608
113–38) and the results obtained in the different direct numerical simulation
cases. This confirms the independence of the model solution from both the
Reynolds number and the type of turbulent flow, so that it can be considered
universally valid. In addition, we show a 2/3 scaling for the mean conditional
scalar difference. In the second part of the paper, we examine the scaling
of the conditional two-point velocity difference along gradient trajectories. In
particular, we compare the linear s/τ scaling, where τ denotes an integral time
scale and s the separation arclength along a gradient trajectory in the inertial
range as derived by Wang (2009 Phys. Rev. E 79 046325) with the s · a∞ scaling,
where a∞ denotes the asymptotic value of the conditional mean strain rate of
large dissipation elements.
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1. Introduction

One of the many approaches in turbulence research is to study geometrical structures in terms
of critical points in the flow field. Gibson [1] analyzed the behaviour of zero gradient points
and minimal gradient surfaces in turbulent scalar fields. He argued that these points are of
importance to the problem of turbulent mixing. Wray and Hunt [2] subdivided the flow field into
four types of space-filling regions, characterizing them by the second invariant of the velocity
derivative tensor Q and the pressure p. More examples of studies of geometrical structures in
turbulent fields can be found in [3]–[5]. Dávila and Vassilicos [6] used the spatial distribution
of stagnation points in homogenous isotropic turbulence to show that it has a fractal structure
of dimension Ds = 2 and found that the Richardson constant is an increasing function of the
number density of the stagnation points. Goto and Vassilicos [7] relate the energy dissipation
rate coefficient to the stagnation point structure of homogeneous isotropic turbulence in order
to prove its non-universality.

Based on the extreme points of turbulent scalar fields, i.e. points of vanishing scalar
gradient, Wang and Peters [8, 9] developed the theory of dissipation elements, which arise
as natural geometries in turbulent scalar fields when these are analyzed by means of gradient
trajectories. Starting from every grid point, trajectories along the ascending and descending
gradient directions can be calculated, which inevitably end at extreme points. All points that
share the same two ending points define a finite volume, which is called a dissipation element.
These elements are parameterized by two values, namely the linear length l between the extreme
points and the scalar difference 1k at the extreme points, where k is the scalar to be used in the
present paper.

Based on this theory, space-filling elements are identified, which allow the reconstruction
of statistical properties of the field as a whole in terms of conditional statistics within the
elements. Examples of such an analysis can be found in [9, 10], where in addition the model
constants of the ε-equation in the widely applied k–ε turbulence model are determined via
dissipation element analysis in the ε-field. However, taking instead the mixture fraction Z as the
underlying scalar field allows the physical interpretation of dissipation elements in the context
of the flamelet approach in non-premixed combustion; see [11] for details.

From the definition it follows that the temporal evolution of dissipation elements in
turbulent fields is inherently connected with the evolution of their ending points, which are
separated by a mean linear distance lm that is of the order of the Taylor microscale λ [8]. While
strain and diffusion lead to continuous distortion of an element as a whole, the creation or
annihilation of extreme points leads to their abrupt formation or disappearance. These different
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effects have successfully been considered in a modelled evolution equation for the probability
density function (pdf) for the length distribution P(l) of dissipation elements, which in its

normalized form P̃(l̃) is assumed to be independent of both the Reynolds number and the type
of turbulent flow. In this equation, two parameters appear, cf [9], which can be identified as
a splitting and on attachment frequency of the elements and thus indirectly correspond to the
lifetime of extreme points; see [12, 13] for further details. A third important parameter employed
in [9] for the description of the pdf of the length distribution is the normalized rate of strain ã.
The strain rate is defined as the difference of the velocity at the ending points, projected in
the direction of the connecting line between the two extreme points. It will be shown below that
there is a linear scaling of the mean absolute value of the velocity difference with the curvilinear
distance along gradient trajectories for large elements.

The basis for this scaling is a paper by Wang [14], who studied the two-point
correlation of scalar gradients along gradient trajectories. Starting from the governing equation
for the passive scalar, a decorrelation assumption for the product of two-point scalar gradients
and the velocity difference in the triple correlation term is used to derive a positive linear
scaling of the velocity difference with curvilinear separation distance along the trajectory s
and the inverse of the integral time scale τ . Furthermore, Wang shows that this result is in good
agreement with data obtained from direct numerical simulations (DNSs) of homogeneous shear
turbulence. It is argued that due to a conditioning of the statistics on gradient trajectories, regions
of large extensive strain, which smooth the scalar field, are preferentially extracted, thereby
allowing a gradient trajectory to extend over large distances. For relatively short distances in
the viscous range however, with s < λ, no analytic expression for the scaling of the velocity
difference has been derived so far. Based on an argument involving the curvature term, which
arises in the derivation of the governing equation along trajectories, a negative value for the
velocity difference is qualitatively concluded in [14].

The intention of the present paper is twofold. In a first step, we will examine the validity of
the model for the pdf of the linear element length as derived in [9] as well as the Kolmogorov
scaling of the conditional scalar difference for different types of turbulent flows. In a second
step, the universality of the two-point velocity difference 〈1un〉 along gradient trajectories is
analysed. To this end, we examine the validity of Wang’s scaling for long trajectories.

In contrast to previous work, all gradient trajectory and dissipation element analyses
presented in this paper are based on the field of the instantaneous turbulent kinetic energy k.
This appears reasonable as it allows a direct interaction between the underlying velocity field
and the examined scalar field, as well as an evaluation of the energy budget along gradient
trajectories. In addition, the field of the turbulent kinetic energy can easily be evaluated from
investigations of the three-dimensional (3D) velocity field and consequently simplifies an
experimental verification of the theoretical results; see for instance [15].

As numerical test cases, DNSs of various turbulent flows have been performed. Details
of the different flow setups are given in section 2. In section 3, we present the results of the
dissipation element analysis. The two-point velocity difference along gradient trajectories is
discussed in section 4, and the conclusion drawn is presented in section 5.

2. Direct numerical simulations

DNSs of six different types of turbulent flows, namely homogeneous shear turbulence (cases 1
and 2), homogeneous isotropic forced turbulence (case 3), homogeneous isotropic decaying
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turbulence (case 4), a channel flow (case 5) and a Kolmogorov flow (case 6), were performed.
Cases 1–4 and case 6 were run on the JUGENE Supercomputer of the Research Center Jülich
using up to 16 384 CPUs for the calculations and case 5 was run on the HHLR Darmstadt. In
all cases the Kolmogorov length η = (ν3/ε)1/4 was resolved, which is particularly important for
dissipation element analysis. Taylor-based Reynolds numbers Reλ = u′λ/ν between 69 and 295
have been investigated, with the Taylor microscale λ =

√
10νk/ε and the turbulence intensity

u′
=

√
2k/3.

For the DNS of cases 1–4 and 6, the incompressible Navier–Stokes equations were
solved in a cubic box of size 2π with periodic boundary conditions employing pseudo-spectral
methods. The DNS code was parallelized to run on supercomputers using a highly efficient
MPI parallelized 2D decompositioning and a 3D-FFT library [16] as the kernel of the code.
This enables high-accuracy fast-Fourier transformations used for spatial discretization. Aliasing
errors were removed by isotropic truncation applying the 2/3 rule.

In detail, homogenous shear turbulence has been performed for cases 1 and 2 with a
mean velocity gradient of S = 1.5 on a grid with 20483 and 10243 grid points. The temporal
advancement is performed by a third-order Runge–Kutta method. The convective term of
the Navier–Stokes equations is formulated in the skew-symmetric form in order to reduce
aliasing errors and to improve numerical stability and accuracy, cf [17]. Periodic boundary
conditions, which are required for the application of spectral methods, cannot be satisfied
when a mean gradient is present. To overcome this problem, a coordinate transformation of
all dependent variables to a moving frame attached to the mean flow is performed [18]. Since
the computational frame gets distorted with advancing time a remeshing procedure is applied to
keep the distortion in an appropriate range. The total amount of cpu time needed for one integral
time step was 3795 626 cpu hours for case 1 and 216 177 cpu hours for case 2.

DNSs of a homogeneous isotropic forced turbulence have been performed for case 3
on 10243 grid points. A pseudo-spectral method developed and implemented by Ruetsch and
Maxey [19] is applied. The nonlinear terms are solved using an explicit Adams–Bashforth
method, while the linear terms are solved by an implicit Crank–Nicholson method, both of
which are of second order. The forcing is implemented using a method developed by Eswaran
and Pope [20]. The total amount of cpu time needed for one integral time step was 42 513 cpu
hours for case 3.

The algorithm of case 3, but without forcing, was used for the DNS of a homogeneous
isotropic decaying turbulence (case 4) on 10243 grid points. It employed 327 840 cpu hours for
the whole calculation. The initial velocity field is random and isotropic and is generated such
that it satisfies a prescribed energy spectrum. The initial energy spectrum is taken from [21] and
has the form

E(κ) =
3

2A

κσ

κσ+1
p

exp

(
−

σ

2

(
κ

κp

)2
)

, (1)

where

A =

∫
∞

0
κσ exp(−σκ2/2) dκ. (2)

The constant κp is the wave number at which E(κ) has its maximum and is set to κp = 10.
We use σ = 4 in equation (1). After an initial development where the dissipation increases, the
decay of the kinetic energy and the dissipation follows a power-law decay k/k0 = (t/t0)

−n and
ε/ε0 = (t/t0)

−n−1, respectively. The decay exponent is found to be n = 1.4 and thus lies well in
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Figure 1. Kolmogorov flow in a periodic box of volume (2π)3.

the range of values reported in the literature; cf [22]–[25]. The Reynolds number at which the
flow field is evaluated is Reλ = 71.

For case 6 a turbulent Kolmogorov flow was calculated on 10243 grid points taking 36 113
cpu hours for one integral time. In contrast to cases 1 and 2, this flow exhibits regions of strong
shear as well as regions with weak shear. In order to obtain a statistically steady solution, the
value of the first mode of the velocity component u in the x-direction is kept at a constant
value in Fourier space, which leads to a sinusoidal mean velocity profile; see figure 1. As this
imposed profile introduces a single characteristic length scale to the turbulent flow, it naturally
bounds the size of the largest energy containing eddies and thus, in contrast to homogeneous
shear turbulence, allows for a statistically steady flow.

In case 5, DNSs of a turbulent channel flow were performed; see table 2. Figure 2 illustrates
the geometry and the coordinates of the channel flow. The numerical code uses spectral methods
to solve the 3D time-dependent incompressible Navier–Stokes equations and was developed at
KTH, Stockholm; see [26, 27] for details. The code adopts a spectral method with Fourier
decomposition in the streamwise and spanwise directions and discretization with Chebyshev
polynomial series in the wall normal direction. Apart from the wall-normal integration the
numerical method is similar to the one used in [28]. Time integration is performed using
a third-order Runge–Kutta scheme for the advective and forcing terms and second-order
Crank–Nicolson for the viscous terms.

We examine a pressure-driven incompressible turbulent flow field in a channel with
constant viscosity, with no rotation and no external forces passing through the channel bounded
by two parallel walls. The governing equations for such a flow satisfy the Navier–Stokes
equations in non-dimensional form with no-slip boundary conditions at the channel walls. In
the homogeneous streamwise and spanwise directions periodic boundary conditions are applied
and the pressure gradient that drives the flow is fixed.

The friction Reynolds number Reτ = uτ h/ν, where uτ =
√

τ/ρ is the friction velocity
expressed in terms of the average shear stress τ at the wall and the density ρ, for this DNS
is Reτ = 360 and the Taylor-based Reynolds number is Reλ = 69 evaluated in the core region
of the channel, respectively.
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Figure 2. Sketch of the channel flow geometry.

Table 1. Parameters of the different DNS cases. Values for case 5 originate from
the core region, while for case 6 all y-dependent quantities have been averaged
over the inhomogeneous direction.

The DNS case 1 2 3 4 5 6
Flow type Shear Shear Forced Decaying Channel Kolmogorov
Number of grid cells 20483 10243 10243 10243 512 × 257 × 256 10243

Reynolds number Reλ 295 139 144 71 69 188
Viscosity ν 9 × 10−4 2 × 10−3 2.8 × 10−3 5 × 10−4 1.5 × 10−5 2.5 × 10−4

Kinetic energy k 3.510 1.925 3.210 0.049 3.8 × 10−5 0.115
Dissipation ε 1.160 0.640 1.190 0.001 3.5 × 10−7 0.010
Kolmogorov scale η 0.005 0.011 0.017 0.010 0.010 0.006
Taylor length λ 0.165 0.245 0.275 0.135 0.134 0.170
Resolution 1x/η 0.610 0.558 0.361 0.610 0.993 0.970
Mean linear distance lm 0.198 0.356 0.422 0.281 0.266 0.245
lm/λ 1.200 1.453 1.536 2.081 1.988 1.441

Table 2. Simulation parameters. L x and L z denote the streamwise and spanwise
dimensions of the computational box. 1y+

c is the non-dimension wall-normal
resolution in the centre of the channel.

Reτ L x/h L z/h Nx × Ny × Nz 1x+ 1z+ 1y+
c

360 2π π 512 × 257 × 256 4.4 4.4 4.4

An overview of the numerical parameters and selected mean quantities is presented in
table 1. Note that the values for case 5 originate from the channel core region, while for case 6
all y-dependent quantities have been averaged over the inhomogeneous direction.

3. Dissipation element analysis

The motivation for dissipation elements is the reconstruction of the entire 3D scalar field by
means of an adequate description of an element’s characteristics. Figure 3 shows for each
gradient trajectory of case 2 a scatter plot of the curvilinear length s from all calculated
trajectories within an element over the linear length l of the corresponding dissipation element.
As expected, the curvilinear length is always larger than the linear length. For small elements
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extreme points of dissipation elements of case 2.
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Figure 4. Joint pdf P(l, 1k) of case 1.

(s 6 0.25), it can be observed that the curvilinear length follows closely the linear distance,
while for larger elements an increasing spread between the curvilinear length of the trajectories
of an element and its linear length can be observed. On average s ∼ 1.2l. From this, one can
deduce that small elements are quite regular in shape, while larger elements are corrugated
and possess a highly complicated geometry, a finding that is in good agreement with previous
observations; cf [8, 9]. As the linear length is a more easily accessible parameter than an
appropriate average of the curvilinear length and, in addition, it is unique for each dissipation
element, l and 1k have been chosen as the statistical parameters for describing dissipation
elements.

The corresponding joint probability density function (jpdf) P(l, 1k) is expected to contain
most of the information needed for a statistical reconstruction. Based on a trajectory search
algorithm, the field of the turbulent kinetic energy has been analyzed for the different DNS
cases and the resulting jpdf for case 1 is shown in figure 4 (to relate the values of l and 1k given
in this figure to other characteristic flow quantities, see table 1). In this illustration, different
physical effects are illustrated. In addition to a distinct maximum, one observes a decrease at
the origin, corresponding to the annihilation of small elements due to molecular diffusion. The
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region in the upper right-hand area of the jpdf is dominated by extensive strain, as large elements
are exposed to large velocity differences.

Additionally, a dotted line corresponding to the conditional mean 〈1k|l〉 is included in
figure 4 (left), revealing a scaling with Kolmogorov’s 2/3. This finding will be discussed in more
detail later; see figure 7. However, the spread of the jpdf around this mean value is obviously not
symmetric and can therefore not be described by a Gaussian distribution; see figure 4 (right).

The jpdf can be described by a model equation. Based on the Bayes theorem, it is
decomposed into a marginal pdf P(l) of the linear distance and a conditional pdf P(1k|l)
of the scalar difference, yielding

P(l, 1k) = P(l) P(1k | l), (3)

where the marginal pdf P(l) is defined by

P(l) =

∫
∞

0
P(1k, l) d1k. (4)

For this pdf in its normalized form P̃(l̃), with P̃ = P lm and l̃ = l/ lm, the following model
equation was derived in [9]:

∂P̃(l̃, t̃)

∂ t̃
+

∂

∂ l̃
(P̃(l̃, t̃)[ṽD(l̃) + ã(l̃)l̃]) = 3s

∫
∞

l̃
P̃(z̃, t̃) dz̃ − 3a l̃ P̃(l̃, t̃). (5)

In this equation, ã represents the conditional mean strain rate a of the elements of length l

a =
〈1un |l〉

l
(6)

normalized by its asymptotic value a∞, which is approached for l → ∞.
In equation (6), 1un denotes the velocity difference between an element’s maximum and

minimum projected in the trajectory direction

1un = u+ · n+ − u− · n−, (7)

with

n = ∇k/ |∇k| . (8)

The results for a(l) have been calculated for all DNS cases and its conditional mean is compared
with the model proposed in [9],

a = a∞

(
1 −

0.4

l̃ + 0.1

)
, (9)

where the value of a∞ was also obtained from the DNS.
Figure 5 depicts the comparison of equation (9) with DNS data. One observes a

qualitatively similar shape for all DNS cases, as well as good agreement between DNS data
and the model equation. The value of a∞ ranges from 0.68 for the Kolmogorov flow to 4.10 for
the shear turbulence.

Finally, ṽD, where

ṽD = vD/(lm a∞) = −4D/ l(cl̃ exp(−l̃))/(lm a∞), (10)

denotes the normalized drift velocity due to molecular diffusion in equation (5) and is
responsible for the linear decrease of P̃(l̃, t) for l̃ → 0 as will be shown below. The constant
c in equation (10) is determined from the condition that the total length of the array must not
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Figure 5. Comparison of conditional strain rate a(l̃) from the model equation
and DNS.

change, cf [9], and D is the molecular diffusion coefficient. In addition, in equation (5) the
two non-dimensionalized numbers 3s and 3a appear. These describe the splitting (respectively
reconnection) of larger (smaller) elements into smaller (larger) ones and are determined from
the normalization and the first moment during the solution of the equation as eigenvalues of the
problem, cf [12]. Equation (5) can be solved numerically yielding the steady solution depicted
by the solid curve in figure 6.

Furthermore, the results for the normalized pdf of the length distribution obtained from the
different DNS cases are shown. One observes very good agreement with the model solution.
Slight differences can be identified in cases 4 and 6, where the model marginally underpredicts
the maximal value of the pdf. The linear increase at the origin as well as the exponential tail
however, see especially the log insets, follow more or less closely the predicted solution. For
cases 1 and 5, the location and the overall shape of the pdf are tilted slightly to the left, resulting
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Figure 6. Comparison of normalized marginal pdf P̃(l̃) from the model equation
and DNS.

in a small deviation from the model, although the branches left and right of the maximum
qualitatively agree nicely. (Note: all data presented for case 5 here and in the following just stem
from an evaluation in the core region of the channel.) However, deviations in the exponential
tails (see the slopes of the pdf in the insets) of the pdf are hard to interpret due to the limited
number of sample points. Nevertheless, figure 6 illustrates that the equation for P̃(l̃) seems
not to be a function of the Reynolds number as the values of Rλ vary from 69 for the case
of decaying turbulence to 295 for the shear turbulence. Overall, no conclusive influences due
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to the Reynolds number or based on the type of turbulent flow can be identified, so that the

shape of the non-dimensional marginal pdf P̃(l̃) and its model equation may be considered
independent of inhomogeneities and anisotropies, a finding that is illustrated in particular by the
good agreement between the model and the Kolmogorov flow.

For the second term in equation (3), the conditional pdf of 1k, no conclusive model
equation was derived so far. In a first step, we will therefore analyse the conditional mean of 1k
conditioned on the length of the respective dissipation element, defined by

〈1k |l〉 =

∫
∞

0
1k P(1k |l) d1k. (11)

In unconditioned statistics the first moment is equal to zero. For statistics based on
gradient trajectories however, this is not the case, as the value of the turbulent kinetic energy
increases per definition monotonically along a trajectory from the minimum to the maximum
point. Consequently, we will study the first order conditional moment to examine its scaling.
In [8]–[10] this conditional difference based on various scalar fields, such as for instance a
passive scalar φ or the instantaneous dissipation ε, was found to scale with Kolmogorov’s 1/3
exponential dependence. In the present case for k however, one expects a scaling with 2/3
based on dimensional grounds. For the different DNS cases presented in chapter 2, the results
for 〈1k|l〉 are shown in figure 7.

One observes different absolute values for the difference of the instantaneous turbulent
kinetic energy between the extreme points of a dissipation element conditioned on its length.
(Note: for a better graphical illustration the channel flow data (case 5) have been shifted by four
orders of magnitude, the shear flow data (case 1) have been multiplied by 5 and the decaying
flow data (case 6) have been multiplied by 5.) The symbols of the different DNS cases included
in figure 7, however, show a scaling with 2/3 as indicated by the solid line with a slope of
2/3, which is more or less accurate for the different flow types. The best agreement is obtained
in the case of decaying turbulence, while for example in shear turbulence a less pronounced
2/3 scaling is observed. In addition, it is obvious that Kolmogorov’s scaling is also valid for
dissipation element analysis based on the channel flow and the Kolmogorov flow, which are
inhomogeneous and anisotropic flows.
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4. Scaling of the velocity difference along gradient trajectories

In the course of this section, we will study the velocity difference at two points along gradient
trajectories, motivated by the findings shown in figure 5. Conditioning on dissipation elements
and more specifically on points along one trajectory introduces major differences compared
with standard statistics in Cartesian correlation space. Due to the limitation of the two-point
statistics on points on the same trajectory, only the correlation of specific points is studied.
The conditional statistics along gradient trajectories also introduces differences with respect
to the correlation coordinate. In contrast to statistics in correlation space of a Cartesian grid,
where the correlation coordinate usually denotes the linear distance between the two points
under consideration, the correlation coordinate s is defined as the curvilinear distance of the two
points along their trajectory. This obviously also introduces a flow-dependent restriction to the
length of the new correlation coordinate as the mean distance of two points is the one between
a maximum and a minimum point, which is of the order of the Taylor scale, as discussed in the
previous section in the context of the dissipation element length and its pdf.

Compared to statistics in Cartesian coordinates, caution has to be exercised when the
concepts of isotropy and homogeneity are used. In homogeneous turbulence, the mean of the
fluctuating component of the instantaneous velocity is by definition equal to zero. The velocity
along trajectories un, however, is projected in trajectory direction n, cf (8), and therefore time
and space dependent, yielding un = u · n. The result of this product is a scalar, whose mean
value is not by definition equal to zero. This difference also arises when the first conditional
moment is studied, which is of particular interest for the present work in trajectory coordinates,
while it is equal to zero in the Cartesian system.

In the following, we will study the scaling of the conditioned mean velocity increment
〈1un〉 along gradient trajectories. Based on the governing equation for a passive scalar φ in
gradient coordinates, a relation for the inertial range was derived in [14]. Neglecting the viscous
term and assuming a decorrelation of the velocity difference from the two-point correlation of
the scalar gradient, it is concluded that

〈1un〉 ∝ s/τ, (12)

where the integral time scale is defined as τ = k/ε. As this proportionality has only been
validated in [14, 29] for homogeneous shear turbulence, we will examine its validity in the
following for other flows.

In figure 8, the non-dimensional product 〈1un〉(τ/λ) is shown as a function of s/λ. In this
figure, the Taylor scale is used for the normalization rather than the Kolmogorov or an integral
scale, as it is the representative length scale for gradient trajectories. One observes that both
the normalized velocity difference and the slope for all DNS cases are negative up to roughly
0.5λ, while the zero-crossing is always close to s/λ = 1. One furthermore finds a distinct quasi-
linear increase with the separation arclength for all DNS cases beyond the minimum. The slope,
however, varies for the different flows. The deviations from the linear scaling for large separation
distances s > 3.5λ may be attributed to the small number of gradient trajectories of such a
length, an obstacle that is overcome in the DNS of shear turbulence, which employs 20483 grid
points, as in this case the increase is linear up to s ≈ 8λ. As illustrated in figure 4 for the length
distribution of dissipation elements, the majority of elements have a linear length of order λ.
The probability of finding an element longer than s > 3.5λ is consequently very small. Even
though for the conditioned mean velocity increment the curvilinear arclength, which obviously
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Figure 8. Non-dimensional first-order velocity structure function 〈1un〉τ/λ

along a gradient trajectory for cases 1–6.

Table 3. τ and a∞ for all DNS cases.

DNS case 1 2 3 4 5 6
Flow type Shear Shear Forced Decaying Channel Kolmogorov
Reλ 295 139 144 71 69 188
τ 3.07 3.01 2.70 3.88 120.40 11.50
1/a∞ 0.244 0.40 0.35 1.43 40.0 1.47
τa∞ 12.58 7.53 7.82 2.71 3.01 7.82

is longer than the linear distance, is used, the difference between the linear distance of two
extreme points and their curvilinear distance is relatively small, cf figure 3. Summarizing, it
can be concluded that while the linear increase of 〈1un〉 with s/λ in the inertial range can be
considered as well established, the proportionality constant depends on the flow.

This is not surprising since 〈1un〉 is normalized in figure 8 with the integral time scale of
the respective DNS case. On the other hand, large dissipation elements are strained by a∞ such
that the projected velocity difference 1un at the extreme points of an element in the direction of
the linear connecting line is proportional to la∞. Therefore, one may expect that the strain rate
of individual trajectories within an element, especially for large separation distances s, will be
exposed to the extensive strain a∞.

To normalize the slope of the profile of 〈1un〉 for large s, we therefore propose to non-
dimensionalize it by using the strain a∞, cf table 3, rather than the integral time scale τ . This is
shown in figure 9. Compared with figure 8, the new scaling 〈1un〉/(a∞λ) naturally retains the
zero-crossing at approximately s = λ, but in addition collapses the profiles so that the results of
the different DNS cases now lie close to each other with a slope of approximately 0.5.

This normalization of 〈1un〉 using the strain rate a∞ connects the two-point correlation
along gradient trajectories with the concept of dissipation elements. Although all gradient
trajectories connecting the same two extreme points are only described by the parameters of
their dissipation element, this generalized 3D information is still valid when returning to a 1D
trajectory.
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Figure 10. Relation (15) in a double logarithmic plot.

The scaling of lm may be inferred from equations (5)–(10). Since only the diffusion D and
the strain rate a∞ appear as dimensional parameters in these equations and since ν = D in the
simulations, we obtain

lm ∝
√

ν/a∞. (13)

On the other hand, the Taylor scale λ is proportional to

λ ∝
√

ντ , (14)

leading to

lm/λ ∝ 1/
√

τa∞, (15)

as displayed in figure 10.
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5. Conclusion

Dissipation element analysis based on the instantaneous field of the kinetic energy has been
extended from homogenous shear turbulence to various other types of turbulent flows exhibiting
a wide range of Taylor-based Reynolds numbers. For all cases the mean length of the dissipation
elements was found to be of the order of the Taylor scale. The normalized pdf of the length of
the dissipation elements was found to be Reynolds number independent, in agreement with the
previous findings for homogeneous shear turbulence. In addition, it was found that the flow
configuration does not have a noticeable effect on the shapes of the normalized pdfs. This
leads to the conclusion that the relevant physical effects that determine the pdf are independent
of residual inhomogeneities or anisotropies. The model equation for the pdf was found to be
in good agreement for all the cases discussed. The first-order structure function of the scalar
difference at the ending points of the dissipation elements was found to scale approximately
as l2/3 in accordance with dimensional analysis. The velocity difference at the ending points,
however, revealed a linear scaling with the element’s linear length for all DNS cases. This
result was further analyzed in terms of the first-order velocity structure function along gradient
trajectories.

In a first step, Wang’s scaling was examined for the different turbulent flows, which
revealed a negative 〈1un〉(τ/λ) for small separation distance, followed by a linear increase
with a zero-crossing around λ. As shown in [14], the slope of this linear scaling varies from
case to case and is therefore not universal. In a second step however, 〈1un〉 was normalized
by the asymptotic strain rate calculated for dissipation elements, as strain is the dominating
physical mechanism acting on long gradient trajectories. The first order structure function along
gradient trajectories normalized with the strain rate 〈1un〉/(a∞λ) consequently exhibited the
same shape for all turbulent flows. The successful normalization of statistics along gradient
trajectories using the strain rate of dissipation elements, in addition, illustrated the physically
meaningful generalization used in dissipation element analysis.
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