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Abstract. The optical transmittance of one-dimensional photonic structures
generated from lossless dielectric slabs with linear, or piecewise linear, profiles
of their electric permittivity for linearly polarized, normally incident electro-
magnetic radiation is studied both analytically and numerically. Resorting to an
analysis of the respective photonic modes, the dependence on frequency of the
optical property addressed is first established for the singly graded slab and the
doubly graded slab, i.e. for the proper dielectric constituents, and subsequently
for the photonic structures derived from them. Considering the singly graded
periodic structure, the transmittance reveals a series of photonic bands and gaps,
exhibiting maxima less than unity, as for the singly graded slab, and tending to
saturate in a periodic sequence of centro-symmetric columnar peaks, separated
by gaps of identical widths, at large frequencies; an asset that recommends
this type of photonic structure as ideal. Looking at the doubly graded periodic
structure, the transmittance reveals two series of photonic bands and gaps, exhi-
biting maxima of full transparency, as for the doubly graded slab, or maxima of
reduced transparency and tending to saturate in essentially constant values with
zero gaps at large frequencies; a trait known for all frequencies from an optically
homogeneous, non-dispersive medium of semi-infinite extent. The properties
revealed for both the singly graded periodic structure and the doubly graded
periodic structure offer unique possibilities regarding practical applications of
such novel photonic composites, optical filters exploiting their transmittance or
optical mirrors utilizing their reflectance only being the most obvious.

1 This paper is dedicated to Professor A M Stoneham FRS on the occasion of his 70th birthday.
2 Author to whom any correspondence should be addressed.
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1. Introduction

Photonic crystals are regularly structured, synthetic composites made up of materials with dif-
ferent refractive indices. The terminology dates back to the year 1987, when three-dimensional
dielectric structures of this kind were analyzed for the first time [1, 2]. One-dimensional
periodic structures, however, had already been studied a century before [3]: multi-layer stacks
of dielectric plates were then found to display spectral ranges of high optical reflectivity,
now called stop bands or bandgaps [4]. Investigations of the effect of transparency bands on
the spontaneous emission of light from atoms and molecules embedded in one-dimensional
structures followed later on [5].

The two keynote works initially cited above sparked off a wealth of publications about
photonic composites, and the literature tends to ever grow [6]–[18]. From a practical point of
view, interest in such structures is due to their unique optical properties—selective transmission
of electromagnetic waves in definite ranges of frequency perhaps being the most prominent of
them—revealed when the structural period length is comparable with, or larger than, the vacuum
wavelength of the irradiating electromagnetic field. These traits offer ready exploitation for
modern photonics and optoelectronics applications that rely on, e.g. (i) fast optical switching,
routing, filtering and forging spectrometers-on-a-chip as well as the availability of several laser
types [12, 14] or (ii) techniques for preparing samples with desired characteristics by doping,
infiltration or mechanical deformation [12, 14], [19]–[23].

Apart from employing conventional dielectrics, photonic crystals may be fabricated from
materials prone to undergo order/disorder phase transitions, with performances that can be
controlled by external parameters and fields. Foremost examples are structures involving
ferroelectric [24, 25], ferromagnetic [26, 27] or superconducting [28, 29] constituents, which
behave significantly different below and above the respective transition temperatures. In their
low-temperature, ordered states, these materials are sensitive to applied electric or magnetic
fields and also to mechanical stress; a fact likely to unfold additional and entirely new vistas for
governing the optical properties of such composites.

Recently, graded materials distinguished by characteristics that change continuously
over each layer have been suggested for use as building blocks in one-dimensional
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photonic composites, with suitable space dependences of their electric permittivity or
magnetic permeability, and hence their refractive index, ensuring significant bandgaps
persist [30]. Whereas common multi-layer structures restrict themselves to regularly alternating
homogeneous layers of different, but constant, thicknesses and refractive indices [31], graded
multi-layer structures open up the additional possibility of shaping the refractive index’s profile
itself, and hence broaden the spectrum of reflection or transmission properties; these structures
might also include homogeneous, alongside with graded, constituents, extending the optical
diversity even more [32].

For single-layer structures displaying exponential, parabolic or linear profiles of the
refractive index and linear profiles of the electric permittivity, the dispersion of electromagnetic
waves as well as the optical transmittance and reflectance have been explored [31], [33]–[35].
Periodically modulated profiles of the electric permittivity have been considered on top, in
which case selective optical transmittances were found, as with photonic crystals having two
different kinds of spatially homogeneous constituents [36, 37]. For regular multi-layer stacks of
exponentially index-graded plates combined with spatially homogeneous plates, the distribution
of the electromagnetic field, the structure of the photonic bands and gaps as well as the
dispersion of the optical reflectance have been obtained. It was established that, due to the
insertion of the so-graded plates, the density and the ranges of frequency of the bandgaps
rise (the locations of the gaps allowing control by adjustments of the refractive index) and the
reflectance of these stacks augments [38].

Motivated by the opportunities for guiding electromagnetic radiation that the technique
of grading provides, we here study the optical transmittance of one-dimensional photonic
structures generated by lossless dielectric slabs with linear, or piecewise linear, profiles of
their electric permittivity, aiming to examine whether intriguing features emerge for such
structures too. Calling upon the convenient vector potential approach, in section 2 we introduce
the photonic modes of singly and doubly graded dielectric slabs as well as those of periodic
structures derived from them, assuming linearly polarized electromagnetic radiation at normal
incidence. Applying these, we gain exact analytical representations of the transmittance and
the structure of the photonic bands that cover the whole dispersion regime, and supplement
them with simple asymptotic forms limited to large frequencies. Graphical illustrations serve to
highlight the crucial points in each case. Finally, in section 3 we conclude by summarizing
the insights and results obtained, suggesting potential applications of the novel photonic
composites. A summary of mathematical details relating to periodic structures with stepwise
constant electric permittivities quoted for comparison can be found in the appendix.

2. Theory and results

Let us look at a singly graded dielectric slab of thickness d and, respectively, a doubly graded
dielectric slab of thickness 2 d as constituents of one-dimensional periodic structures of semi-
infinite extent, both spreading infinitely along the x- and y-directions of a Cartesian coordinate
system x, y, z. We envisage that linearly polarized electromagnetic radiation propagating in the
positive z-direction through the vacuum space z < 0, with the electric (magnetic) field oriented
parallel to the x-axis and the magnetic (electric) field oriented parallel to the y-axis of this
coordinate system, is normally incident on the surface z = 0 of either type of slab, whose optical
properties are supposed to be entirely determined by the principal components of the tensor
of electric permittivity εν for ν = x, y. Assuming a harmonic time dependence with arbitrary
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frequency ω > 0, the space-dependent parts of the vector potential in the Coulomb gauge Ãν ,
i.e. the photonic modes, obey the master equation [29]

d2 Ãν

dz2
+ k2

0εν Ãν = 0, (1)

identifying the wavenumber of electromagnetic radiation k0 = ω/c, where c means the vacuum
speed of light. Solutions of equation (1) allow derivations of the electric and magnetic fields as
well as the time-averaged flow of electromagnetic energy straightforwardly.

In the range 06 z 6 d, the principal components of the tensor of electric permittivity of
the singly graded slab and the doubly graded slab shall be given by εν = εA(z), where

εA(z) = εa +

(
εb − εa

d

)
(z − 0) (2)

with constant dielectric parameters εa > 1 and εb > 1, neglecting electromagnetic dispersion
as well as dissipation and assuming in-plane crystalline isotropy. In the range d 6 z 6 2d, the
principal components of the tensor of electric permittivity of the doubly graded slab shall be
given by εν = εB(z), where

εB(z) = εb −

(
εb − εa

d

)
(z − d) (3)

with the same dielectric parameters εa and εb, again neglecting electromagnetic dispersion as
well as dissipation and assuming in-plane crystalline isotropy. On introducing the variables

ζA,B(z) = −u2εA,B(z) with u = sgn(εb − εa)

∣∣∣∣ k0d

εa − εb

∣∣∣∣1/3

, (4)

which adopt the respective values α = −u2εa for z = 0 and β = −u2εb for z = d, equation (1)
transforms into Airy’s differential equations

d2 Ãν

dζ 2
A,B

− ζA,B Ãν = 0 (5)

solved by the Airy functions Ai and Bi of arguments ζA(z) and ζB(z) [39]. Investigations of
the optical transmittance of the slabs or the periodic structures made up of them imply solving
equation (1) for the photonic modes separately in z < 0 and z > 0 and joining the solutions
together smoothly at z = 0; a procedure that ensures continuity of the tangential components of
both the electric and the magnetic field.

2.1. Singly graded slab

We first address the singly graded dielectric slab of thickness d faced with two vacua and excited
by normally incident electromagnetic radiation, as figure 1 depicts. The photonic modes in the
vacuum space z < 0 are

Ãν(z) = V (s)
1,sg exp (ik0z) + V (s)

2,sg exp (−ik0z) (6)

with constants V (s)
1,sg and V (s)

2,sg. In the range 06 z 6 d occupied by the slab, they adopt the form

Ãν(z) = A(s)
1,sg Ai(ζA(z)) + A(s)

2,sg Bi(ζA(z)) (7)
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Figure 1. Schematic view of the singly graded slab of thickness d excited by
normally incident electromagnetic radiation with the electric (magnetic) field
oriented parallel to the x-axis and the magnetic (electric) field oriented parallel to
the y-axis of a Cartesian coordinate system x, y, z. The optical density of the slab
is symbolized by the spatially varying colour depth for the dielectric parameters
εa < εb (left) and, respectively, εa > εb (right).

owing to equations (2), (4) and (5), with constants A(s)
1,sg and A(s)

2,sg; in the vacuum space z > d,
they read

Ãν(z) = V (s)
3,sg exp (ik0z) (8)

with a free amplitude V (s)
3,sg.

Linking the photonic modes, equations (6)–(8), together smoothly at the surfaces z = 0
and, respectively, z = d yields the constants

V (s)
1,sg =

π

2

[
MA−(α)NB−(β) − MB−(α)NA−(β)

]
V (s)

3,sg exp (ik0d) (9)

and

V (s)
2,sg =

π

2

[
MA+(α)NB+(β) − MB+(α)NA+(β)

]
V (s)

3,sg exp (ik0d) (10)

as well as

A(s)
1,sg = π NB−(β)V (s)

3,sg exp (ik0d) (11)

and

A(s)
2,sg = −π NA−(β)V (s)

3,sg exp (ik0d) (12)

in terms of V (s)
3,sg, where

MA±(α) = Ai(α) ±
i

u
Ai ′ (α) (13)

and

MB±(α) = Bi(α) ±
i

u
Bi ′ (α) (14)

as well as

NA−(β) = Ai ′ (β) − iuAi(β) (15)

and

NB−(β) = Bi ′ (β) − iuBi(β), (16)
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the primes symbolizing the derivatives of the Airy functions Ai ′ and Bi ′ for the respective
arguments; a result that duplicates the findings of a previous analysis [40]. The transmittance
T (s)

sg , defined through the time-averaged flows of electromagnetic energy of the incident and
transmitted waves using equations (6), (8) and (9), thus reads

T (s)
sg =

4/π 2

|MA−(α)NB−(β) − MB−(α)NA−(β)|2
. (17)

In the steady-oscillations regime attained for ω � ωsg, equation (17) takes on the
asymptotic form

T (s)
sg

∼=
1

C2
1,sg cos2

(
πω/ωsg

)
+ C2

2,sg sin2
(
πω/ωsg

) , (18)

where

C1,sg =
1

2

(
v +

1

v

)
(19)

with the modified ratio of dielectric parameters v = (εa/εb)
1/4, and

C2,sg =
1

2

(
n +

1

n

)
(20)

with the refractive index n = ε1/2 in terms of the average dielectric parameter ε = (εaεb)
1/2,

apart from the characteristic frequency

ωsg =
3π

2

∣∣∣∣∣ εa − εb

ε
3/2
a − ε

3/2
b

∣∣∣∣∣ c

d
. (21)

Equation (18) reveals maxima given by

T (s),max
sg

∼=
1

C2
1,sg

at ωmax
j = j ωsg, j � 1, (22)

and minima given by

T (s),min
sg

∼=
1

C2
2,sg

at ωmin
j =

(
j −

1

2

)
ωsg, j � 1, (23)

the coefficients C1,sg and C2,sg thus determining the finesse of the singly graded dielectric slab.
Figure 2 presents the variation with frequency of the transmittance of the singly graded

dielectric slab, obtained from equation (17), for linearly polarized electromagnetic radiation
with on-axis propagation, as illustrated in figure 1, taking the dielectric parameters εa = 2 and
εb = 11 or, respectively, εa = 11 and εb = 2. This shows that, because of the inversion symmetry
of the radiation incidence regarding a positive (for εa < εb) or negative (for εa > εb) gradient
of the electric permittivity of the slab, the transmittance in either case proves degenerate:
starting from unity at zero frequency, quasi singly periodic oscillations for increasing frequency
appear, with maxima delineated by a monotonically falling envelope and minima delineated
by a monotonically rising envelope, tending to saturate in singly periodic oscillations at
reduced transparency for large frequencies, as equation (18) predicts. Of course, periodic
oscillations with a constant amplitude and full transparency at harmonically spaced resonant
frequencies throughout would come to the fore, if the limit εb → εa characterizing an optically
homogeneous, non-dispersive slab were addressed.
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Figure 2. Transmittance T (s)
sg of the singly graded slab of thickness d as

a function of the normalized frequency ωd/2πc in the case of linearly
polarized electromagnetic radiation due to on-axis propagation, for the dielectric
parameters εa = 2 and εb = 11 or, respectively, εa = 11 and εb = 2.

2.2. Doubly graded slab

We next consider the doubly graded dielectric slab of thickness 2d faced with two vacua and
excited by normally incident electromagnetic radiation, as figure 3 depicts. The photonic modes
in the vacuum space z < 0 are

Ãν(z) = V (s)
1,dg exp (ik0z) + V (s)

2,dg exp (−ik0z) (24)

with constants V (s)
1,dg and V (s)

2,dg. In the range 06 z 6 d of the slab, they adopt the form

Ãν(z) = A(s)
1,dg Ai(ζA(z)) + A(s)

2,dg Bi(ζA(z)) (25)

owing to equations (2), (4) and (5), with constants A(s)
1,dg and A(s)

2,dg; in the range d 6 z 6 2d of
the slab, they adopt the form

Ãν(z) = B(s)
1,dg Ai(ζB(z)) + B(s)

2,dg Bi(ζB(z)) (26)

owing to equations (3), (4) and (5), with constants B(s)
1,dg and B(s)

2,dg, and in the vacuum space
z > 2d, they read

Ãν(z) = V (s)
3,dg exp(ik0z) (27)

with a free amplitude V (s)
3,dg.

Linking the photonic modes, equations (24)–(27), together smoothly at the surface z = 0,
the interface z = d and, respectively, the surface z = 2d yields the constants

V (s)
1,dg =

π 2

2

[
MA+(α)OB A−(α, β) + MB+(α)OAB−(α, β)

]
V (s)

3,dg exp(2ik0d) (28)

and

V (s)
2,dg =

π 2

2

[
MA−(α)OB A−(α, β) + MB−(α)OAB−(α, β)

]
V (s)

3,dg exp(2ik0d) (29)
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Figure 3. Schematic view of the doubly graded slab of thickness 2d excited
by normally incident electromagnetic radiation with the electric (magnetic) field
oriented parallel to the x-axis and the magnetic (electric) field oriented parallel to
the y-axis of a Cartesian coordinate system x, y, z. The optical density of the slab
is symbolized by the spatially varying colour depth for the dielectric parameters
εa < εb (left) and, respectively, εa > εb (right).

as well as

A(s)
1,dg = π2OB A−(α, β)V (s)

3,dg exp(2ik0d) (30)

and

A(s)
2,dg = π2OAB−(α, β)V (s)

3,dg exp(2ik0d) (31)

as well as

B(s)
1,dg = π NB−(α)V (s)

3,dg exp(2ik0d) (32)

and

B(s)
2,dg = −π NA−(α)V (s)

3,dg exp(2ik0d) (33)

in terms of V (s)
3,dg, referring to the definitions of equations (13)–(16), where

OAB−(α, β) = NA−(α)PB A+(β) − 2NB−(α)Ai(β)Ai ′ (β) (34)

and
OB A−(α, β) = NB− (α)PAB+(β) − 2NA−(α)Bi(β)Bi ′ (β) (35)

with

PAB+ (β) = Ai(β)Bi ′ (β) + Bi(β)Ai ′ (β) (36)

and

PB A+(β) = Bi(β)Ai ′ (β) + Ai(β)Bi ′ (β), (37)

the primes symbolizing the derivatives of the Airy functions Ai ′ and Bi ′ for the respective
arguments. The transmittance T (s)

dg , defined through the time-averaged flows of electromagnetic
energy of the incident and transmitted waves using equations (24), (27) and (28), thus reads

T (s)
dg =

4/π4

|MA+(α)OB A−(α, β) + MB+(α)OAB−(α, β)|2
. (38)
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Figure 4. Transmittance T (s)
dg of the doubly graded slab of thickness 2d

as a function of the normalized frequency ωd/2πc in the case of linearly
polarized electromagnetic radiation due to on-axis propagation, for the dielectric
parameters εa = 2 and εb = 11 (left) and, respectively, εa = 11 and εb = 2 (right).

In the steady-oscillations regime attained for ω � ωdg, equation (38) takes on the
asymptotic form

T (s)
dg

∼=
1

cos2
(
πω/ωdg

)
+ C2

2,dg sin2
(
πω/ωdg

) , (39)

where

C2,dg =
1

2

(
na +

1

na

)
(40)

with the refractive index na = ε1/2
a , apart from the characteristic frequency

ωdg =
1
2 ωsg. (41)

Equation (39) reveals maxima given by

T (s),max
dg = 1 at ωmax

j = jωdg, j � 1, (42)

and minima given by

T (s),min
dg

∼=
1

C2
2,dg

at ωmin
j =

(
j −

1

2

)
ωdg, j � 1, (43)

the coefficient C2,dg thus measuring the finesse of the doubly graded dielectric slab.
Figure 4 presents the variation with frequency of the transmittance of the doubly graded

dielectric slab, obtained from equation (38), for linearly polarized electromagnetic radiation
with on-axis propagation, as illustrated in figure 3, taking the dielectric parameters εa = 2 and
εb = 11 or, respectively, εa = 11 and εb = 2. This shows that, because of the complementarity
of the radiation incidence regarding a ‘convex’ (for εa < εb) or ‘concave’ (for εa > εb) profile
of the electric permittivity of the slab, the transmittance in either case proves non-degenerate,
having some traits in common, but also pointing to an essential difference: starting from unity at
zero frequency, quasi doubly periodic oscillations for increasing frequency appear, with maxima
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of full transparency at an infinite sequence of resonant frequencies and minima delineated by
two associated envelopes both of which, if εa < εb, rise monotonically, whereas if εa > εb, one
falls monotonically while the other rises monotonically, tending to saturate in unique singly
periodic oscillations at a constant amplitude for large frequencies, as equation (39) predicts. It
may be commented that the occurrence of maxima of full transmittance here is reminiscent of,
e.g., the well-known phenomenon of excitation of resonant energy states of symmetric quantum
wells [41]. As for the singly graded slab, periodic oscillations with a constant amplitude and full
transparency at harmonically spaced resonant frequencies throughout would come to the fore, if
the limit εb → εa characterizing an optically homogeneous, non-dispersive slab were addressed.

2.3. Singly graded periodic structure

We now examine a one-dimensional dielectric photonic structure adjacent to a vacuum,
generated by periodic continuation into the half-space z > 0 of the singly graded dielectric
slab of thickness d and excited by linearly polarized, normally incident electromagnetic
radiation, as figure 5 depicts. Let us start by establishing the photonic modes. Thanks to
Floquet’s theorem [42], which introduces a wavenumber kz confined to the first Brillouin zone
−π/d 6 kz 6 π/d, the following derivations may be restricted to a primitive unit cell. Thus, in
the range 06 z 6 d, the solution of equation (1) is

Ãν(z) = A(p)

1,sg Ai(ζA(z)) + A(p)

2,sg Bi(ζA(z)) (44)

owing to equations (2), (4) and (5), with constants A(p)

1,sg and A(p)

2,sg, determined up to an arbitrary
non-zero factor, to read

A(p)

1,sg = Bi(β) − Bi(α) exp(ikzd) (45)

and
A(p)

2,sg = Ai(α) exp (ikzd) − Ai(β). (46)

The dispersion of the photonic modes itself follows from the implicit equation

MAB−(α, β)− MB A−(β, α) =
2

π
cos(kzd) , (47)

which defines the relation ω = ω j(kz) for varying wavenumber kz, the label j = 0, 1, 2, ...

distinguishing the photonic bands appropriate for the chosen direction of radiation incidence and
type of polarization; it simultaneously implies the relation kz = kz(ω j) for varying frequency ω j

of the photonic bands with label j = 0, 1, 2, ... called for in the evaluation of the transmittance
examined below. In equation (47),

MAB−(α, β) = Ai(α)Bi ′ (β) − Bi(α)Ai ′ (β) (48)

and
MB A−(β, α) = Bi(β)Ai ′ (α) − Ai(β)Bi ′ (α). (49)

Asymptotic expansion of equation (47) for large frequencies ω j , when j � 1, yields the
closed ‘tight-binding’ form

ω j(kz) ∼=

[
j +

1

2
+ (−1) j+1 1

π
arcsin

(
cos(kzd)

C1,sg

)]
ωsg (50)
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Figure 5. Schematic view of the singly graded periodic structure of primitive
translation d excited by normally incident electromagnetic radiation with the
electric (magnetic) field oriented parallel to the x-axis and the magnetic (electric)
field oriented parallel to the y-axis of a Cartesian coordinate system x, y, z. The
optical density of the periodic structure is symbolized by the spatially varying
colour depth for the dielectric parameters εa < εb (left) and, respectively, εa > εb

(right).

with the quantity C1,sg given by equation (19) and the inter-band spacing ωsg given by
equation (21). This shows that the band half-width 1ωsg in turn amounts to

1ωsg =
1

π
arccsc

(
C1,sg

)
ωsg. (51)

Figure 6 elucidates the dispersion of the photonic modes of the singly graded dielectric
periodic structure obtained from equation (47) for normally incident, linearly polarized
electromagnetic radiation, taking the dielectric parameters εa = 2 and εb = 11 or, equivalently,
εa = 11 and εb = 2. We note a quasi-periodic sequence of photonic bands and gaps controlling
electromagnetic wave propagation along the structure, which tends to saturate in a periodic
sequence of photonic bands for large frequencies, as equation (50) predicts.

The photonic modes in the vacuum space z < 0 read

Ãν(z) = V (p)

1,sg exp(ik0z) + V (p)

2,sg exp(−ik0z), (52)

with amplitudes V (p)

1,sg and V (p)

2,sg given by

V (p)

1,sg =
1

2

[
MA+(α)A(p)

1,sg + MB+(α)A(p)

2,sg

]
(53)

and

V (p)

2,sg =
1

2

[
MA−(α)A(p)

1,sg + MB−(α)A(p)

2,sg

]
, (54)

making recourse to the definitions of equations (13) and (14). The transmittance T (p)
sg , defined

through the time-averaged flows of electromagnetic energy of the incident and transmitted
waves using equations (44), (52) and (53), in the case of dielectric bands for 06 kz 6 π/d
or, respectively, air bands for −π/d 6 kz < 0, with l = 0, 1, 2, ..., thus reads

T (p+)

2l,sg

T (p−)

2l+1,sg

}
=

4

π

∣∣∣∣sin(kzd)

u

∣∣∣∣ |WAB−(α, β)|∣∣∣MA+(α)A(p)

1,sg + MB+(α)A(p)

2,sg

∣∣∣2 ; (55)

New Journal of Physics 12 (2010) 073033 (http://www.njp.org/)

http://www.njp.org/


12

5.0573.0052.0521.00521.0-052.0-573.0-5.0-
0

2.0

4.0

6.0

8.0

1

ω
d/

2π
c

k
z

2/d π

52.052.0-

Figure 6. Dispersion of the photonic modes of the singly graded periodic
structure of primitive translation d in the case of linearly polarized
electromagnetic radiation due to on-axis propagation, for the dielectric
parameters εa = 2 and εb = 11 or, respectively, εa = 11 and εb = 2: normalized
frequency ωd/2πc of the lowest five photonic bands as a function of the
normalized wavenumber kzd/2π within the first Brillouin zone.

likewise, this quantity, defined through the time-averaged flows of electromagnetic energy of
the reflected and transmitted waves using equations (44), (52) and (54), in the case of dielectric
bands for −π/d 6 kz < 0 or, respectively, air bands for 06 kz 6 π/d, with l = 0, 1, 2, ..., reads

T (p−)

2l,sg

T (p+)

2l+1,sg

}
=

4

π

∣∣∣∣sin(kzd)

u

∣∣∣∣ |WAB−(α, β)|∣∣∣MA−(α)A(p)

1,sg + MB−(α)A(p)

2,sg

∣∣∣2 . (56)

Herein,

WAB−(α, β) = Ai(α)Bi(β) − Bi(α)Ai(β). (57)

Both of these cases make use of the amplitudes A(p)

1,sg and A(p)

2,sg spelt out in equations (45)
and (46) and require exploiting equation (47).

In the steady-state regime attained for ω j � ωsg, equations (55) and (56) take on the
asymptotic form

T (p)

j,sg
∼=

2
∣∣scn

(
πω j/ωsg

)∣∣∣∣scn
(
πω j/ωsg

)∣∣ + C2,sg

∣∣sin
(
πω j/ωsg

)∣∣
in

(
j +

1

2

)
ωsg − 1ωsg < ω j <

(
j +

1

2

)
ωsg + 1ωsg,

(58)

where

scn
(
πω j/ωsg

)
= ±

∣∣1 − C2
1,sg cos2

(
πω j/ωsg

)∣∣1/2
(59)
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Figure 7. Transmittance T (p)
sg of the singly graded periodic structure of primitive

translation d as a function of the normalized frequency ωd/2πc in the case of
linearly polarized electromagnetic radiation due to on-axis propagation, for the
dielectric parameters εa = 2 and εb = 11 or, respectively, εa = 11 and εb = 2.

with the coefficients C1,sg and C2,sg defined in equations (19) and (20); they reveal maxima
given by

T (p),max
j,sg

∼=
2

1 + C2,sg
at ωmax

j =

(
j +

1

2

)
ωsg, j � 1, (60)

and minima given by

T (p),min
j,sg = 0

in

(
j −

1

2

)
ωsg + 1ωsg 6 ω 6

(
j +

1

2

)
ωsg − 1ωsg, j � 1.

(61)

Figure 7 presents the variation with frequency of the transmittance of the singly graded
dielectric periodic structure, obtained from equations (55) and (56), for linearly polarized
electromagnetic radiation with on-axis propagation, as illustrated in figure 5, taking the
dielectric parameters εa = 2 and εb = 11 or, respectively, εa = 11 and εb = 2. This shows
that, because of the inversion symmetry of the radiation incidence regarding the succession
of unidirectional, positive (for εa < εb) or negative (for εa > εb) gradients of the electric
permittivity of the singly graded periodic structure, the transmittance in either situation (which
bears witness to the sequence of photonic bands and gaps of figure 6) proves degenerate:
starting from the value appropriate for an optically homogeneous, non-dispersive medium of
semi-infinite extent, with average electric permittivity ε0 = εa/2 + εb/2 at zero frequency [29],
a quasi-periodic sequence of biased columnar peaks for increased frequency appears, with
maxima inside the photonic bands delineated by a constant, less than full, height, tending
to saturate in a periodic sequence of centro-symmetric columnar peaks, separated by gaps
of identical widths, for large frequencies, in keeping with the asymptotics disclosed by
equation (58). Of course, a constant, less than maximum, transmittance for all frequencies would
come to the fore, if the limit εb → εa characterizing an optically homogeneous, non-dispersive
medium of semi-infinite extent were addressed.
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2.4. Doubly graded periodic structure

We finally turn to a one-dimensional dielectric photonic structure adjacent to a vacuum,
generated by periodic continuation into the half-space z > 0 of the doubly graded dielectric
slab of thickness 2d and excited by linearly polarized, normally incident electromagnetic
radiation, as figure 8 depicts. Let us start by establishing the photonic modes. Thanks to
Floquet’s theorem [42], which introduces a wavenumber kz confined to the first Brillouin zone
−π/2d 6 kz 6 π/2d, the following derivations may be restricted to a primitive unit cell. Thus,
in the range 06 z 6 d, the solution of equation (1) is

Ãν(z) = A(p)

1,dg Ai(ζA(z)) + A(p)

2,dg Bi(ζA (z)) (62)

owing to equations (2), (4) and (5), and in the range d 6 z 6 2d, the solution of equation (1) is

Ãν(z) = B(p)

1,dg Ai(ζB(z)) + B(p)

2,dg Bi(ζB (z)) (63)

owing to equations (3), (4) and (5). The constants A(p)

1,dg and A(p)

2,dg as well as B(p)

1,dg and B(p)

2,dg,
determined up to an arbitrary non-zero factor, read

A(p)

1,dg = Bi(α)

[
1

π
exp (2ikzd) + PAB+ (β)

]
− 2Ai(α)Bi(β)Bi ′ (β) (64)

and

A(p)

2,dg = Ai(α)

[
PB A+ (β) −

1

π
exp (2ikzd)

]
− 2Bi(α)Ai(β)Ai ′ (β) (65)

as well as

B(p)

1,dg = Bi(α)

[
1

π
+ PAB+ (β) exp (2ikzd)

]
− 2Ai(α)Bi(β)Bi ′ (β) exp (2ikzd) (66)

and

B(p)

2,dg = Ai(α)

[
PB A+ (β) exp (2ikzd) −

1

π

]
− 2Bi(α)Ai(β)Ai ′ (β) exp (2ikzd). (67)

The dispersion of the photonic modes itself follows from the implicit equation

Q AAB B (α, β) + PAB+ (α)PB A+ (β) + Q B B AA (α, β) =
1

π 2
cos(2kzd) , (68)

which defines the relation ω = ω j(kz) for varying wavenumber kz, the label j = 0, 1, 2, ...

distinguishing the photonic bands appropriate for the chosen direction of radiation incidence and
type of polarization; it simultaneously implies the relation kz = kz(ω j) for varying frequency ω j

of the photonic bands with label j = 0, 1, 2, ... called for in the evaluation of the transmittance
examined below. In equation (68),

Q AAB B (α, β) = −2Ai(α)Ai ′ (α)Bi(β)Bi ′ (β), (69)

apart from the definitions of equations (36), (37), and

Q B B AA (α, β) = −2Bi(α)Bi ′ (α)Ai(β)Ai ′ (β). (70)
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z

x

Figure 8. Schematic view of the doubly graded periodic structure of primitive
translation 2d excited by normally incident electromagnetic radiation with the
electric (magnetic) field oriented parallel to the x-axis and the magnetic (electric)
field oriented parallel to the y-axis of a Cartesian coordinate system x, y, z. The
optical density of the periodic structure is symbolized by the spatially varying
colour depth for the dielectric parameters εa < εb (left) and, respectively, εa > εb

(right).

Asymptotic expansion of equation (68) for large frequencies ω j , when j � 1, yields the
‘empty-lattice’ form

ω j (kz) ∼=

[
j +

1

2
+ (−1) j+1

(
1

2
−

|2kzd|

π

)]
ωdg (71)

with the inter-band spacing ωdg given by equation (41). This shows that the band half-width
1ωdg in turn amounts to

1ωdg =
1
2 ωdg, (72)

indicating that bandgaps disappear.
Figure 9 elucidates the dispersion of the photonic modes of the doubly graded dielectric

periodic structure obtained from equation (68) for normally incident, linearly polarized
electromagnetic radiation, taking the dielectric parameters εa = 2 and εb = 11 or, equivalently,
εa = 11 and εb = 2. We note a quasi-periodic sequence of photonic bands and gaps controlling
electromagnetic wave propagation along the structure, which tends to saturate in a periodic
sequence of photonic bands for large frequencies, as equation (71) predicts. Because of band
splitting and bandgaps ceasing to exist, as equation (72) states, there are twice as many bands in
the Brillouin zone of halved extent compared to the singly graded periodic structure examined
above.

The photonic modes in the vacuum space z < 0 read

Ãν(z) = V (p)

1,dg exp(ik0z) + V (p)

2,dg exp(−ik0z), (73)

with amplitudes V (p)

1,dg and V (p)

2,dg given by

V (p)

1,dg =
1

2

[
MA+ (α)A(p)

1,dg + MB+ (α)A(p)

2,dg

]
(74)

and

V (p)

2,dg =
1

2

[
MA− (α)A(p)

1,dg + MB− (α)A(p)

2,dg

]
, (75)
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Figure 9. Dispersion of the photonic modes of the doubly graded periodic
structure of primitive translation 2d in the case of linearly polarized
electromagnetic radiation due to on-axis propagation, for the dielectric
parameters εa = 2 and εb = 11 or, respectively, εa = 11 and εb = 2: normalized
frequency ωd/2πc of the lowest ten photonic bands as a function of the
normalized wavenumber kzd/2π within the first Brillouin zone.

making recourse to the definitions of equations (13) and (14). The transmittance T (p)

dg , defined
through the time-averaged flows of electromagnetic energy of the incident and transmitted
waves using equations (62), (73) and (74), in the case of dielectric bands for 06 kz 6 π/2d
or, respectively, air bands for −π/2d 6 kz < 0, with l = 0, 1, 2, ..., thus reads

T (p+)

2l,dg

T (p−)

2l+1,dg

}
=

8

π2

∣∣∣∣sin(2kzd)

u

∣∣∣∣ |MAB− (α, β)WAB− (α, β)|∣∣∣MA+ (α)A(p)

1,dg + MB+ (α)A(p)

2,dg

∣∣∣2 ; (76)

likewise, this quantity, defined through the time-averaged flows of electromagnetic energy of
the reflected and transmitted waves using equations (62), (73) and (75), in the case of dielectric
bands for −π/2d 6 kz < 0 or, respectively, air bands for 06 kz 6 π/2d, with l = 0, 1, 2, ...,
reads

T (p−)

2l,dg

T (p+)

2l+1,dg

}
=

8

π2

∣∣∣∣sin(2kzd)

u

∣∣∣∣ |MAB− (α, β)WAB− (α, β)|∣∣∣MA− (α)A(p)

1,dg + MB− (α)A(p)

2,dg

∣∣∣2 . (77)

Herein, the definitions of equations (48) and (57) apply. Both of these cases make use of
the amplitudes A(p)

1,dg and A(p)

2,dg spelt out in equations (64) and (65) and require exploiting
equation (68).

In the steady-state regime attained for ω j � ωdg, equations (76) and (77) take on the
asymptotic form

T (p)

j,dg
∼=

2

1 + C2,dg
in jωdg < ω j < ( j + 1) ωdg (78)
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Figure 10. Transmittance T (p)

dg of the doubly graded periodic structure of
primitive translation 2d as a function of the normalized frequency ωd/2πc in the
case of linearly polarized electromagnetic radiation due to on-axis propagation,
for the dielectric parameters εa = 2 and εb = 11 (left) and, respectively, εa = 11
and εb = 2 (right).

with the quantity C2,dg defined in equation (40); they reveal maxima given by

T (p),max
j,dg = 1 at ωmax

j = jωdg+, j � 1, (79)

and minima given by

T (p),min
j,dg = 0 at ωmin

j = jωdg−, j � 1. (80)

Figure 10 presents the variation with frequency of the transmittance of the doubly graded
dielectric periodic structure, obtained from equations (76) and (77), for linearly polarized
electromagnetic radiation with on-axis propagation, as illustrated in figure 8, taking the
dielectric parameters εa = 2 and εb = 11 or, respectively, εa = 11 and εb = 2. This shows that,
because of the complementarity of the radiation incidence regarding the succession of ‘convex’
(for εa < εb) or ‘concave’ (for εa > εb) profiles of the electric permittivity of the doubly graded
periodic structure, the transmittance in either situation (which bears witness to the sequence of
photonic bands and gaps of figure 9) proves non-degenerate, having some traits in common,
but also pointing to essential differences: starting from the value appropriate for an optically
homogeneous, non-dispersive medium of semi-infinite extent, with average electric permittivity
ε0 = εa/2 + εb/2 at zero frequency [29], if εa < εb, a quasi singly periodic sequence of biased
columnar peaks for increasing frequency appears, with resonant maxima close to the lower
edges of the photonic bands, whereas if εa > εb, a quasi doubly periodic sequence of dented
resonant peaks and biased columnar peaks for increasing frequency appears, with minima or,
respectively, maxima inside the photonic bands delineated by monotonically descending or,
respectively, ascending heights; these tend to saturate in sequences of peaks of rectangular
shape, i.e. in constant, higher (for εa < εb) or, respectively, lower (for εa > εb), but less than
full, transmittances appropriate for an optically homogeneous structure of semi-infinite extent,
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with electric permittivity ε∞ = εa for large frequencies [29] (apart from resonances at an infinite
sequence of evenly spaced frequencies associated with the edges of the gapless photonic bands),
in keeping with the asymptotics disclosed by equation (78), where the doubly graded periodic
structure loses its significance. It may be commented that the occurrence of maxima of full
transmittance here is reminiscent of, e.g., the well-known phenomenon of resonant tunneling
through periodic molecular structures [43]. As for the singly graded periodic structure studied
above, a constant, less than full transmittance for all frequencies would come to the fore, if the
limit εb → εa characterizing an optically homogeneous, non-dispersive medium of semi-infinite
extent were addressed.

3. Conclusions

By means of a vector potential approach, we have explored, both analytically and numerically,
the optical transmittance of one-dimensional photonic structures in the form of periodically
arranged, lossless dielectric slabs with linear, or piecewise linear, profiles of their electric
permittivity, assuming linearly polarized electromagnetic radiation at normal incidence.
Resorting to an analysis of the respective photonic modes, the dependence on frequency (or,
equivalently, the variation with the characteristic structural length) of the optical property
addressed has first been established for the singly graded slab and the doubly graded slab, i.e.
for the proper dielectric constituents, and subsequently for the photonic structures derived from
them.

Considering the singly graded periodic structure, with its sawtooth profile of the electric
permittivity, the following key results came to the fore: the transmittance reveals a series of
photonic bands and gaps, which proves degenerate as regards positive or negative gradients of
the electric permittivity, exhibiting maxima less than unity, as for the singly graded slab, and
tending to saturate in a periodic sequence of centro-symmetric columnar peaks, separated by
gaps of identical widths, at large frequencies (cf figure 7); an asset that recommends this type
of photonic structure as ideal. The occurrence of regularity of the transmittance is particularly
notable, since it contrasts fundamentally with the behaviour found in a conventional multi-
layer stack of dielectric slabs having spatially uniform permittivities εa and εb. Such a stepwise
constant periodic structure may be related to the singly graded one considered here by replacing
the linear segments of the profile of the electric permittivity with equilateral steps from εa to εb.
This confirms that, in general, no single periodicity in the band structure of the transmittance of
a conventional, twofold multi-layer stack exists (cf figure A.1).

Looking at the doubly graded periodic structure, with its triangular profiles of the electric
permittivity, the following key results came to the fore: the transmittance reveals two series of
photonic bands and gaps, which prove non-degenerate as regards the succession of ‘convex’
or ‘concave’ profiles of the electric permittivity, exhibiting maxima of full transparency, as
for the doubly graded slab, or maxima of reduced transparency and tending to saturate in
essentially constant values with zero gaps at large frequencies (cf figure 10); a trait known for
all frequencies from an optically homogeneous, non-dispersive medium of semi-infinite extent.
The occurrence of uniformity of the transmittance is particularly notable, since it contrasts
fundamentally with the behaviour found in a conventional multi-layer stack of dielectric slabs
having spatially uniform permittivities εa and εb. Such a stepwise constant periodic structure
may be related to the doubly graded one considered here by replacing the linear segments of
the profile of the electric permittivity with equilateral steps from εa to εb and from εb to εa.
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This confirms that, in general, no uniformity in the band structures of the transmittance of a
conventional, threefold multi-layer stack exists (cf figure A.2).

The properties revealed for both the singly graded periodic structure and the doubly
graded periodic structure with linear, or piecewise linear, profiles of the electric permittivity
offer unique possibilities regarding practical applications of such novel photonic composites,
optical filters exploiting their transmittance or optical mirrors utilizing their reflectance (which
here is just the transmittance’s complement) only being the most obvious. The simple
asymptotic forms derived, with their succinct exposition of the dependences on the various
geometrical and material parameters involved, can serve as convenient guides to actual designs
thereby.
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Appendix. Stepwise constant periodic structure

We here address a one-dimensional dielectric photonic structure adjacent to a vacuum, generated
by periodic continuation into the half-space z > 0 of a twofold or, possibly, threefold stack
of dielectric slabs of total thickness 2s spreading infinitely along the x- and y-directions of
the Cartesian coordinate system x, y, z. As in the main body of this work, we envisage that
linearly polarized electromagnetic radiation propagating in the positive z-direction through
the vacuum space z < 0, with the electric (magnetic) field oriented parallel to the x-axis and
the magnetic (electric) field oriented parallel to the y-axis of the said coordinate system, is
normally incident on the surface z = 0 of the stack. Each of its constituent slabs, with relative
thicknesses characterized by the structural fraction q for 0 < q 6 1, shall be entirely delineated
by constant values of the principal components of the respective tensors of electric permittivity
εν = εa > 1 or εν = εb > 1 for ν = x, y, neglecting electromagnetic dispersion as well as
dissipation and assuming in-plane crystalline isotropy. Specifically, in the range 06 z < qs,
the electric permittivity shall be εν = εa; in the range qs 6 z < (q + 1)s, the electric permittivity
shall be εν = εb; in the range (q + 1)s 6 z < 2s, the electric permittivity shall again be εν = εa.
The following compilation of results draws heavily on previous analysis [29, 31].

Introducing the wavenumbers ka = k0na and kb = k0nb linked to the refractive indices of
the dielectric constituents, na = ε1/2

a and nb = ε
1/2
b , the dispersion of the photonic modes obeys

the implicit equation

cos(kas) cos(kbs) −
1

2

(
na

nb
+

nb

na

)
sin(kbs) sin(kas) = cos(2kzs), (A.1)

which defines the relation ω = ω j(kz) for varying wavenumber kz confined to the first
Brillouin zone −π/2s 6 kz 6 π/2s, the label j = 0, 1, 2, ... distinguishing the photonic bands
appropriate for the chosen direction of radiation incidence and type of polarization; it
simultaneously implies the relation kz = kz(ω j) for varying frequency ω j of the photonic
bands with label j = 0, 1, 2, ... called for in the evaluation of the transmittance examined
below.
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Figure A.1. Transmittance T (p)
sc of a stepwise constant periodic structure with

the characteristics s = d/2 and q = 1 as a function of the normalized frequency
ωd/2πc in the case of linearly polarized electromagnetic radiation due to on-axis
propagation, for the dielectric parameters εa = 2 and εb = 11 or, respectively,
εa = 11 and εb = 2.

The transmittance T (p)
sc , defined through the time-averaged flows of electromagnetic energy

of the incident and transmitted waves, in the case of dielectric bands for 06 kz 6 π/2s or,
respectively, air bands for −π/2s 6 kz < 0, with l = 0, 1, 2, ..., reads

T (p+)

2l,sc

T (p−)

2l+1,sc

}
= 4na

∣∣∣A(p)

1,sc

∣∣∣2
−

∣∣∣A(p)

2,sc

∣∣∣2

∣∣∣(1 + na) A(p)

1,sc + (1 − na) A(p)

2,sc

∣∣∣2 ; (A.2)

likewise, this quantity, defined through the time-averaged flows of electromagnetic energy of
the reflected and transmitted waves, in the case of dielectric bands for −π/2s 6 kz < 0 or,
respectively, air bands for 06 kz 6 π/2s, with l = 0, 1, 2, ..., reads

T (p−)

2l,sc

T (p+)

2l+1,sc

}
= 4na

∣∣∣A(p)

2,sc

∣∣∣2
−

∣∣∣A(p)

1,sc

∣∣∣2

∣∣∣(1 − na) A(p)

1,sc + (1 + na) A(p)

2,sc

∣∣∣2 . (A.3)

Both of these cases make use of amplitudes A(p)

1,sc and A(p)

2,sc given by

A(p)

1,sc =
1

2

{(
1 +

nb

na

)
B(p)

1,sc exp[−iq (ka − kb) s] +

(
1 −

nb

na

)
B(p)

2,sc exp[−iq (ka + kb) s]

}
(A.4)

and

A(p)

2,sc =
1

2

{(
1 −

nb

na

)
B(p)

1,sc exp[iq (ka + kb) s] +

(
1 +

nb

na

)
B(p)

2,sc exp[iq (ka − kb) s]

}
, (A.5)
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Figure A.2. Transmittance T (p)
sc of a stepwise constant periodic structure with

the characteristics s = d and q = 1/2 as a function of the normalized frequency
ωd/2πc in the case of linearly polarized electromagnetic radiation due to on-
axis propagation, for the dielectric parameters εa = 2 and εb = 11 (left) and,
respectively, εa = 11 and εb = 2 (right).

with

B(p)

1,sc = 2 exp [−i (q + 1) kbs] −

(
1 +

nb

na

)
exp

[
i (2kz + ka − qkb) s

]
−

(
1 −

nb

na

)
exp

[
i (2kz − ka − qkb) s

]
(A.6)

and

B(p)

2,sc = −2 exp [i (q + 1) kbs] +

(
1 +

nb

na

)
exp

[
i (2kz − ka + qkb) s

]
+

(
1 −

nb

na

)
exp

[
i (2kz + ka + qkb) s

]
, (A.7)

and require exploiting equation (A.1).
Figures A.1 and A.2 present the variation with frequency of the transmittance of a regular

twofold stack of dielectric slabs of period length d (characterized by s = d/2 and q = 1) and,
respectively, a regular threefold stack of dielectric slabs of period length 2d (characterized
by s = d and q = 1/2), obtained from equations (A.2) and (A.3), for linearly polarized
electromagnetic radiation with on-axis propagation, taking the dielectric parameters εa = 2 and
εb = 11 or, respectively, εa = 11 and εb = 2. This shows that, because of the inversion symmetry
of the radiation incidence regarding the succession of positive (for εa < εb) or negative (for
εa > εb) steps of the electric permittivity of the twofold stack, the transmittance in either
situation proves degenerate, whereas because of the complementarity of the radiation incidence
regarding the succession of positive/negative (for εa < εb) or negative/positive (for εa > εb)
steps of the electric permittivity of the threefold stack, the transmittance in either situation
proves non-degenerate.
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