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Abstract. We construct and investigate Boolean networks that follow a given
reliable trajectory in state space, which is insensitive to fluctuations in the
updating schedule and which is also robust against noise. Robustness is
quantified as the probability that the dynamics return to the reliable trajectory
after a perturbation of the state of a single node. In order to achieve high
robustness, we navigate through the space of possible update functions by
using an evolutionary algorithm. We constrain the networks to those having
the minimum number of connections required to obtain the reliable trajectory.
Surprisingly, we find that robustness always reaches values close to 100%
during the evolutionary optimization process. The set of update functions can
be evolved such that it differs only slightly from that of networks that were not
optimized with respect to robustness. The state space of the optimized networks
is dominated by the basin of attraction of the reliable trajectory.
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1. Introduction

Boolean networks (BNs) are used as simplified models of gene regulation, where the expression
levels of genes are described by Boolean variables and their mutual regulation by Boolean
functions. This simplification permits in particular the analysis of larger networks, the full
dynamics of which would include many nonlinear equations and many parameters [1].

The simplest class of BNs are random Boolean networks (RBNs) [2, 3], i.e. BNs with
connections and update functions assigned at random to each node. These networks undergo
a phase transition from a frozen phase to a ‘chaotic’ phase at a critical value K = 2 of the
number of inputs per node. It has been argued [2] that real networks may share properties with
RBNs that lie at the boundary between two phases, since these ‘critical’ networks are capable
of responding to perturbations, but without an exponentially fast divergence of trajectories in
state space.

However, critical RBNs are not robust against noise [4], due to their large number of
dynamical attractors. In contrast, BNs that are modeled on the basis of real biological data,
such as the yeast cell cycle regulation network [5], go faithfully through the correct sequence of
states even in the presence of noise. This is due to the structure of the state space: most states of
the network lead after a few update steps to the dynamical attractor that corresponds to the cell
cycle.

In this paper, we will construct and investigate BNs that are robust against two types of
noise. The first type of noise is applied to the update schedule, and it delays or advances the
update time of a given node [6]–[9], i.e. with this type of noise the update function acts in a
deterministic manner, but the time the node takes to react fluctuates. The second type of noise is
applied to the update rule, and it flips the state of a node to the opposite of the value imposed by
the update function [4], [10]–[16], i.e. the functions themselves behave non-deterministically.
Both types of noise are present in real systems, since genes lack a global update clock and
are therefore not updated at fixed time intervals, and since expression levels are subject to
stochastic fluctuation [17]. However, these two types of noise are quite different, and require
different strategies to attain robustness: with respect to the first type of noise, it is possible for
the dynamics of BNs to be entirely reliable, simply by requiring that consecutive states of an
attractor differ by the state of at most one node [9]. In order to make BNs robust against the
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second type of noise, it is necessary to introduce redundancy [18] or to build networks with a
state space dominated by the basin of attraction of one attractor [19]. These methods lead to a
good level of robustness, but can never entirely remove the effects of noise.

In order to obtain networks that are robust against both types of noise, we will first construct
minimal networks that have a reliable dynamical trajectory, which is insensitive to the sequence
in which the nodes are updated [9]. Then, by using an evolutionary algorithm, we will optimize
the set of update functions of all nodes such that the dynamics return to this attractor with a
large probability when the state of a node is perturbed. We investigate the extent of robustness
attainable for these networks, and characterize the distribution of their update functions and
their state space properties.

This paper is structured as follows. In section 2, we provide a definition of the model, and a
description of the minimal reliable BNs defined in [9], as well as of the evolutionary algorithm
used for the optimization process. In section 3, we analyze the robustness, the set of update
functions and the state space of the networks obtained by the optimization process. Section 4
summarizes and discusses our main findings.

2. Construction of reliable and robust Boolean networks (BNs)

Our goal is to obtain and investigate BNs that are robust with respect to the update schedule and
with respect to perturbation of the state of a node. For this purpose, we first construct reliable
networks (i.e. networks that have an attractor that is robust with respect to the update sequence),
which we will then optimize with respect to robustness against perturbations.

2.1. Reliable BNs

A BN is specified by its topology and dynamical update rules. The topology is specified by the
number N of nodes, and by the connections between these nodes. Each node obtains an index
i ∈ {0, 1, . . . , N − 1} and can be either in the state σi = 0 or σi = 1. Its time evolution is given
by the iterative map

σi(t + 1) = fi(
#»σ j (i)(t))ui(t) + σi(t)[1 − ui(t)], (1)

where fi : {0, 1}
ki 7→ {0, 1} is the update function of node i , which depends exclusively on the

states of its ki input nodes #»σ j (i).
#»u (t) represents the update schedule, and has the components

ui(t) = 1 if node i is updated at time t , and ui(t) = 0 if it is not updated at time t .
We construct networks with entirely reliable trajectories in the same way as in [9]. Reliable

trajectories have the property that two consecutive states (under any update schedule) #»σ (t) and
#»σ (t + 1) can differ by the value of at most one node, i.e. the Hamming distance between these
states is one. Entirely reliable attractors can therefore be represented as closed walks over the
N -dimensional Hamming hypercube, as shown in figure 1. The length of the attractor can be
written as L =

∑
i li , where li denotes the number of times node i changes its state during the

full period. Given a reliable trajectory of length L it is possible to construct a minimal network
that realizes it, by finding for each node a minimal set of inputs and a corresponding Boolean
function that is compatible with the trajectory (see [9] for details). Since there are possibly many
such networks, we sample randomly from the ensemble of all possibilities. From all possible
functions that realize the same trajectory, given a specific choice of inputs, we choose those
which are more homogeneous, i.e. that have the smallest number of outputs that deviate from
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Figure 1. Example of a reliable trajectory of length L = 6 on a system of size
N = 3.

Figure 2. Example of a random reliable trajectory and one corresponding
minimal network.

the majority bit in their truth table. This represents also a minimality condition, since these
functions are the simplest ones that generate the given dynamics.

We generate the reliable trajectories at random, given the average number of flips per
node l. The number of flips of node i is li = 2 + 2`i , where `i is a random variable sampled
from a Poisson distribution with average l/2 − 1. The average total length of the trajectory is
given simply by Nl. Figure 2 shows an example of a random trajectory and one of its minimal
networks.

2.2. Optimizing the networks for dynamical robustness

We define robustness as the probability that the dynamics return to the reliable trajectory after a
perturbation of a single node. Such a perturbation moves the system to one of the N neighboring
states on the Hamming hypercube representing the state space. More precisely, considering
the set

H1(
#»σ a) = {

#»σ ∈ {0, 1}
N : H( #»σ , #»σ a) = 1} (2)

of all states with Hamming distance 1 from a given state #»σ a of our reliable attractor, we
define the local fitness fa of this state as the fraction of these N neighbors that return to the
reliable attractor. The total fitness of the network is given by the average f =

∑L
a=1 fa/L . Since

the trajectories considered are by construction already fully robust against fluctuations in the
update sequence, we always use a parallel update schedule when measuring fitness, where all
nodes are updated at the same time. This has the great advantage of producing a deterministic
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answer to a perturbation, while a stochastic update would require a repeated evaluation of the
same perturbation in order to determine the probability of returning to the attractor, making the
numerical analysis very time consuming.

The fact that two successive states on the reliable trajectory differ only by the value of one
node means that there is a lower bound on the fitness value of fmin = 2/N , since two of the N
possible perturbations generate a state that is on the reliable attractor.

Given this definition of the fitness of the network, we apply an evolutionary algorithm in
order to maximize it, modifying the update functions but retaining the network topology and the
reliable trajectory. When exploring the search space S of possible update functions, we can only
change the truth table entries of the output values that do not interfere with the given reliable
trajectory. Let us assume that node i has ki input nodes. If its function has κi truth table entries
that are fixed by the reliable trajectory and ~i entries that are not, then there are 2~ i different
possible output combinations for these entries. For N nodes, we have |S| = 5N

i=12~i = 2
∑N

i=1 ~i

for the size of the search space. The typical number of entries not fixed by the reliable trajectory
scales as ~ ∼ 2〈k〉

− 〈κ〉 ∼ 2l
− l. Hence the size of the search space scales as |S| ∼ 2N (2l

−l) and
therefore grows exponentially with N and superexponentially with l. Finding a global optimum
by searching through all update functions is possible only for very small networks. Instead, we
use an evolutionary algorithm, specified as follows.

(i) A node i ∈ {1, 2, . . . , N } is chosen at random.

(ii) An output in the truth table of this node is chosen at random. If it does not belong to a
configuration of the input nodes that occurs during the course of the reliable trajectory, we
change its value.

(iii) When this mutation increases the fitness (positive mutation) or has no effect (neutral
mutation) we accept the modification; otherwise (negative mutations) we reject it.

(iv) The adaptive walk obtained by iterating steps 1–3 stops when the maximum possible fitness
value (evaluated below) is reached, or after a certain number of attempted mutations, which
was set to 5 × 103 for N = 10, to 10 × 103 for N = 20 and to 30 × 103 for simulations that
use the approximate fitness f ? (see below).

3. Results

3.1. Robustness of reliable networks before evolution

Figure 3 shows the initial fitness f of minimal reliable networks for several combinations
of N and l, averaged for 6 × 103 (for N < 40) or 2 × 103 (for N > 40) independent network
realizations.

A large fraction of networks with small N and l have f = 1. As was observed in [9], for
these networks the reliable trajectory often has a basin of attraction that dominates the entire
state space, which explains why f is close to 1. When N and l increase, this changes, and the
basin of the reliable trajectory no longer dominates the state space, resulting in smaller values
of 〈 f 〉. The only trivial exception is when l is so large that the reliable trajectory occupies a
large portion of the state space (i.e. Nl ∼ 2N ). This explains the positive slope of the curve for
N = 5. In the more interesting case N � 1 and Nl � 2N , the fitness is far from the maximum
value, and the optimization procedure can considerably increase the fitness.
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Figure 3. Average fitness 〈 f 〉 as a function of the average number of flips per
node on the reliable trajectory, for different network sizes.

3.2. Fitness of the optimized networks

3.2.1. Upper bound on the fitness. In contrast to our initial expectation, even a full search of
the space of update functions does not always lead to a fitness value of 1. The reason for this
is that the search space is constrained by the reliable trajectory, which cannot change during
the evolutionary algorithm. This means that the truth table entries that cannot be modified by
the evolutionary algorithm (since they are necessary to regulate the given trajectory) may also
regulate other portions of the state space. This portion, therefore, cannot be modified by the
optimization. If some of these states are reached after a perturbation, and they do not inherently
lead back to the reliable trajectory, then the value of f = 1 can never be reached. If φ is the
number of perturbations that lead to one of these ‘locked’ states, the maximum fitness will then
be fmax = 1 −

φ

N L . Figure 4 shows the state space of such a network with a maximal fitness
smaller than f = 1. For five possible perturbations of the reliable attractor, this network will
unavoidably be trapped in a spurious attractor of size two, and thus fmax = 1 −

5
N L = 67/72 ≈

0.93. We evaluated fmax for ensembles of networks with different l and N , and observed that
fmax converges fast to 1 as l and N increase, as can be seen in figure 5. This is easy to explain,
since the typical truth table size scales as ∼2l , and the amount of unevolvable truth table entries
per node scales only as ∼l. Thus the probability that, after a perturbation, the state of a node
will be regulated via such an unsolvable truth table entry is ∼l/2l . The probability that this
will happen simultaneously for all nodes is given by ∼

∏N
i=1 pi =

(
l
2l

)N
, which tends to zero for

either l � 1 or N � 1.

3.2.2. Approximate fitness. The computer time required for the fitness evaluation at each
evolutionary step depends of the number L ≈ Nl of states in the reliable trajectory, and on
the number N of possible perturbations per state, which leads to the complexity of O(N 2l).
Thus, the optimization process becomes computationally too expensive for larger N and l as we
have to determine the fitness after each mutation. In order to reduce computer time for larger
Nl, we used an approximate fitness function f ?, which uses only a random subset of ξ different
perturbations, which remains fixed during the optimization. Thus, if k of these ξ perturbed states
return to the reliable trajectory the approximate fitness is f ? := k/ξ . Such an approximation
introduces the probability of accepting a negative mutation or rejecting a positive or neutral
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(a) before evolution (b) after evolution

Figure 4. State space of the example network in figure 2 before and after
evolution. The states are color-coded as follows. Blue: reliable attractor. Green:
states to which the network is brought by a perturbation. Yellow: the attractor
that cannot be modified by the optimization procedure and is reached by a
perturbation. Red: remaining states.

one. In order to minimize this effect, we re-sample the ξ perturbations after the maximum f ?
max

has been reached (which can be computed analogously to fmax above).
We have investigated the performance of this approximation, as can be seen in figure 6,

which compares the approximate and real fitnesses during two evolutionary processes applied
to the same network, using f ? as the selection criterion, with sampling sizes of ξ = 20 and
ξ = 40. One can see that the real fitness increases in both cases, and that it fluctuates around
f ?, but does not deviate strongly from it. The amplitude of the fluctuation gets smaller for
larger ξ .

3.2.3. Fitness results. We optimized networks for N = 10 and 15 and l = 2, 2.5, 3, 4 and 6,
as well as for N = 20 and l = 2, 2.5 and 3 using the fitness function f . Networks with N > 20
and N = 20 with l = 4 and 6 were optimized via the approximate fitness function f ?. The
number of networks evolved ranged from 104 for N = 10 to 800 networks for larger values of
N and l.

The results are shown in figure 5. A significant fraction of networks did not reach fmax,
which can be potentially due to three reasons:

(i) the evolution got stuck in a local fitness maximum;
(ii) the global fitness maximum of the network is smaller than fmax;

(iii) the algorithm stopped before the optimization reached fmax.

For N = 10, the fraction of networks that did not reach fmax decreases monotonically with
increasing l, which indicates that the probability of reaching fmax increases with the growth
of the search space. We tried to optimize these networks further with a simulated annealing
algorithm [20] by introducing a probability p = e−|1 f |/T of accepting a negative mutation in
order to leave a local maximum. As this never resulted in better values of fitness and since all
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process for those networks that did not reach fmax (middle). Average deviation
from fmax after the evolutionary process for all networks; the dashed curves were
obtained by evolving the functions based on the approximate fitness f ? (bottom).
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Figure 6. Evolution via approximate fitness of a network with N = 20 and
l = 4.3, and with sample sizes of ξ = 20 and ξ = 40. Vertical lines mark the
instances when new sets of perturbed nodes were chosen.

networks suffered their last positive mutation after approximately 10% of total running time of
the algorithm, we concluded that reason (ii) is more probable than either (i) or (iii). The fraction
of networks that did not reach fmax increases with l for N = 15 and N = 20. These networks
often suffered their last positive mutation almost at the end of the optimization run, and thus
one could increase the fitness if we would evolve them further, but it would take a much longer
time for it to increase significantly. However, despite the fact that many networks did not reach
the values of fmax, the deviation from fmax for the final values of fitness are very small, as can
be seen in figure 5. This deviation is worsened if the approximate fitness is used, as seen in
the bottom graph, which can be improved only if the number of samples ξ is increased, as
the change from ξ = 40 to 80 shows. The total number of mutations needed for evolving the
networks can be as large as a few thousands, for larger N and l, and is therefore much larger
than in the work of Szejka and Drossel [19]. This is due to the fact that the optimization done
here is much more restricted, as we only search through the space of possible update functions,
whereas in [19] both the topology and dynamics were allowed to change, and there was no
particular trajectory imposed on the system.

3.3. Update functions

We evaluated the frequency of the possible update functions that occur in the optimized
networks. Let us first discuss the functions with k = 2. Before and after optimization for
robustness, the distribution is almost entirely dominated by the eight canalizing functions that
have three bits of one type and one bit of the other type in the truth table. The reasons for the
dominance of these functions were explained in [9]. For functions with larger k, we evaluated the
homogeneity d , which is equal to the number of entries in the truth table that have the minority
bit. This parameter encapsulates the ‘simplicity’ of a Boolean function: lower values of d
correspond to simpler functions, which have the same output value for most input combinations,
whereas larger values correspond to functions with more output variability. Figure 7 shows the
distribution of d before and after the optimization process. Before the optimization process,
functions with smaller values of d dominate. After the process, the number of functions with
higher values of d is significantly larger. This means that the distribution of functions has
become more random, as there exist many more functions with larger d, their number being

2
(

2k

d

)
for d < 2k−1 and

(
2k

d

)
for d = 2k−1.
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Figure 7. Distribution of functions with different values of d, for different l and
N = 10 before the evolutionary optimization (left), after evolution (middle) and
after homogenization (right).

In order to investigate whether the differences in homogeneity are a fundamental property
of the optimized networks or an artifact of neutral mutations, we tried to decrease the values of d
while retaining the value of the fitness. Functions with smaller values of d may also be preferred
by evolution, since they are simpler to implement. In order to decrease d , we let the evolutionary
algorithm continue from the final configuration, with the modification that a mutation is only
accepted if it simultaneously does not lower the fitness and increases the homogeneity of the
randomly chosen update function. This was done for the evolved networks with N = 10 and
N = 15. The distribution of d after homogenization is shown in the right column of figure 7.
It can be clearly seen that the shift to less homogeneous functions can be reversed to a large
extent, except for l = 2. This means that the increase of the values of d during the evolutionary
process is mainly due to neutral mutations. The fact that it is possible to homogenize the update
functions after reaching the global optimum fmax gives insights into the fitness landscape: the
global optimum is a plateau, instead of isolated peaks, on which the networks can move via
neutral mutations, similar to what was found in [19].

3.4. State space

Lastly, we investigated the influence of the optimization and homogenization processes on the
state space of the minimal networks. We evaluated the entire state space for optimized networks
of size N = 10 and 15, and we sampled the state space for N = 20, under parallel update. In
particular, we enlisted the attractors and the sizes of their basins of attraction (i.e. the number
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Figure 8. Average basin size 〈ωr〉 of the reliable attractors for different values
of N and l. The dotted line shows the averages after the evolutionary process.
The dashed lines represents networks evolved via the approximate fitness.

Figure 9. Influence of the evolution and homogenization on the state space of a
network with N = 10 and L = 68.

of states leading to the attractor). As expected, the optimization process increases the average
basin size of the reliable trajectory ωr, as can be seen in figure 8. Figure 9 shows the state
space of a typical network with N = 10 nodes and l = 6.8, before and after evolution and after
homogenization. Before evolution, the state space is divided into six basins of attraction; five
of them belong to fixed points and one is the basin of the reliable attractor. The network has an
unevolved fitness of f ≈ 0.64. The short transients of T ≈ 1.3 steps on average indicate that the
system resembles an RBN in the frozen phase. After the evolutionary process, the basin of the
reliable trajectory occupies the entire state space, leading a fitness of f = 1. The dynamics are
less frozen, with the average transient time to the attractor having increased to T ≈ 10.1. After
homogenization, the transient time has decreased to T ≈ 2.9.

4. Conclusion

We have shown that there exists a large ensemble of minimal Boolean networks that show
reliable and robust dynamics. The networks are minimal in the sense that the number of
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connections of a node is not larger than necessary for obtaining a desired reliable trajectory.
A reliable trajectory is an attractor of the dynamics of the network that does not change when
the update schedule is changed or randomized. This means that under parallel update, at each
time step only one node changes its state. The reliable trajectories were chosen at random,
given a fixed average number of flips per node. High robustness was achieved by using an
evolutionary algorithm that modifies the update functions and that accepts only those changes
that do not decrease robustness. For all investigated parameter sets, we obtained networks with a
robustness close to 100%, in spite of the minimality of the networks, and without modifying the
network structure during the evolutionary algorithm. The set of update functions associated with
the final robustness value is not unique, but can be varied over a broad range of homogeneity
values. (Homogeneity is quantified by the average number of bits in the truth table of the update
function that differ from the majority bit.) The state space of the resulting networks is dominated
by the basin of attraction of the reliable trajectory.

The methods employed in this work can easily be generalized to more than one reliable
attractor and to networks with more than the minimum number of connections or with different
network structures. Dynamical reliability and robustness to noise are important features of
biological networks, such as gene regulation networks. While the networks constructed by our
procedure are random in many respects and still far from the very specific networks found
in biological systems, the present study isolates the necessary properties for robustness and
shows that there exist many solutions to the task of constructing such networks. In fact, the
central characteristics of the reliable trajectories considered (small Hamming distance between
successive states) are markedly present in real systems, such as the yeast cell cycle network,
which, when modelled as a BN, shows robust behavior against fluctuations, both in the update
sequence and in the Boolean values [5, 21].
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