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Abstract— Challenging tasks in unstructured environments
require robots to learn complex models. Given a large amount
of information, learning multiple simple models can offer an
efficient alternative to a monolithic complex network. Training
multiple models—that is, learning their parameters and their
responsibilities—has been shown to be prohibitively hard as
optimization is prone to local minima. To efficiently learn
multiple models for different contexts, we thus develop a new
algorithm based on expectation maximization (EM). In contrast
to comparable concepts, this algorithm trains multiple modules
of paired forward-inverse models by using the prediction
errors of both forward and inverse models simultaneously.
In particular, we show that our method yields a substantial
improvement over only considering the errors of the forward
models on tasks where the inverse space contains multiple
solutions.

I. INTRODUCTION

In robotics, good models are crucial for planning, control
and prediction. In such contexts, mostly two types of models
are considered: forward models, which compute predictions
for state changes and sensory signals; and inverse models,
which are able to map sensory signals to appropriate ac-
tions [1], [2], [3]. Traditionally, models have been designed
analytically or by hand from experts. While this design
process works well for constrained environments, unexpected
situations and more complex robots require more adaptive
and richer models. Such models will need to be learned on
demand from training data [4].

Supervised learning of models for prediction and con-
trol has long attracted the attention of the sensorimotor
learning and robot learning communities. In particular, lo-
cally weighted methods [5], [6] and Gaussian Processes
[7], [8] have gained popularity. The sensorimotor literature
presents biologically inspired concepts for learning of cou-
pled forward-inverse models [9], [1] and their implications
for robot control. These concepts of coupled forward-inverse
models have been applied to various tasks such as a frame-
work for social interaction and learning from demonstration
[10], [11]. Additionally, they have been extended in a hier-
archical fashion [12]. However, learning those forward and
inverse models is often hard [13] in particular for multi-
valued inverse functions.

Opposed to the forward mapping, where usually a unique
solution for any given input exists, learning inverse models
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Fig. 1. Learning multiple local models from training data can enable
robots to adapt to a multitude of contexts (depicted in gray). In this
paper we introduce a new algorithm to simultaneously learn multiple
coupled modules, each consisting of a forward model (blue) and an inverse
model (red) and their paired contribution for different contexts, namely
responsibilities. In contrast to existing methods, we utilize both forward and
inverse model errors to train model parameters and their responsibilities.

can be problematic due to frequently occurring one-to-
many mappings. This ill-posedness is reflected in robotics,
for example, in the computation of the inverse kinematics
functions of robot arms.

In this paper, we learn paired forward-inverse models in
the context of robotics. In particular, we tackle the problem
of better localizing the multiple models over a multi-valued
space of solutions (such as the inverse kinematics). The
proposed algorithm is inspired by MOSAIC [1], but extends
the original concept of modular control to the case of gen-
eral multi-valued function approximations. To this end, we
present a new objective function and the corresponding EM
optimization scheme. The proposed new objective function
combines the prediction error of both forward and inverse
models, which is used to compute the responsibilities of
each model for different situations. Empirical evaluations in
simulation and on a real robot demonstrate that this new
algorithm can learn a better localization for forward and
inverse models resulting in better models compared to the
original idea from [1] of only using the forward modeling
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errors during training. Summarizing, the contribution of this
paper is a supervised learning algorithm that learns forward
and inverse models, which can cover multiple inverse solu-
tions for multiple coupled forward-inverse models.

II. BACKGROUND AND RELATED WORK

Multiple studies, in particular experiments on the adap-
tation of humans to changing force fields, resulted in the
concept of internal models for representation of the human
body and interactions with the environment [14], [15], [16].
Inspired by those biological insights, a number of approaches
can be found in robotics and neuroscience literature, that
are aiming for implementation of human-like learning by
generating multiple internal models [17], [1], [3], [18], [19].

A direct approach for learning inverse models (referred
to as “direct inverse modeling” [9]) consists in sampling
input commands x (motor/joint) while recording the resulting
output y (e.g. as end-effector forces/positions). By reversing
the inputs and outputs, the mapping y→ x can be trained via
supervised learning. Although simple, this approach presents
a few drawbacks. Not only must enough inputs be sampled to
cover the region in which the desired targets are expected to
lie, but a solution may not be found due to the one-to-many
mapping.

Distal learning [9] learns a forward model to provide
prediction errors. The task prediction error is propagated
back through the forward model, generating an input error
that can be used to learn the inverse model. While distal
learning seems to be useful to learn ill-posed mappings, it
is characterized by the use of a single inverse and forward
model. Single, monolithic models can be problematic if
they do not have sufficient model capacity to capture the
complexity of the real system. Also, they must be retrained
for a different task or context due to the lack of modularity.

Wolpert and Kawato introduced modularity in the learning
of coupled forward-inverse models with the framework of
MOSAIC [1]. The basic ideas of MOSAIC are comparable to
Jacobs’ mixture of experts [20]. Modularity in the learning of
models is appealing for robot control as the learned modules
can be seen as motor primitives. In contrast, learning a large
amount of information with a single network is challenging
because new concepts can destroy what has previously been
learned [21]; modularity alleviates such problem. Adaptation
to new scenarios is very efficient, by simply recomputing the
responsibilities of each module. MOSAIC is intrinsically an
on-line algorithm and leverages on the concept that for a
redundant system (a many-to-one mapping in the forward
direction), a feedback controller realizes one specific input.
MOSAIC then uses this feedback, in the form of a control
error, to train the inverse model, which is an inherited feature
from feedback-error-learning [22].

However, in the training phase MOSAIC relies only on
the forward model errors to learn the decentralized gating of
the models. Figure 2 shows the main structure of MOSAIC
during the training of multiple models, where the information
flow is depicted by the solid black arrows. In particular, if
the inverse space may contain additional information for
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Fig. 2. In the original MOSAIC the responsibilities λk of the k-th
module are exclusively trained on the prediction error of its forward model
ȳk . To achieve better localization of the multiple inverse models, we
propose additionally incorporating the inverse prediction errors x̄k on the
computation of the responsibilities (dashed red lines). Experiments show
that the individual inverse errors x̄k allow for a better distribution of models
even under ill-posed mappings.

localization of single models (as for multi-valued inverse
functions), the forward error might not be sufficient to local-
ize the models in a good way. Instead, a better localization
of models could be achieved if the error of the inverse model
is also taken into account during the learning of the gating
function.

III. COUPLED FORWARD-INVERSE MODEL LEARNING

In this section, we present our new algorithm for Coupled
Forward-Inverse Model Learning (CFIM). In the first part of
this section, we show how to learn multiple coupled forward
and inverse models through expectation maximization (EM).
The EM algorithm [23], [24] is a common way to learn max-
imum likelihood solutions for models with latent variables.
Formalizing the responsibilities of mixture components as
latent variables for EM is also a well-known approach [25],
[26], [27], [26].

We extend the objective, that was used in MOSAIC and
also similarly in [28], to additionally minimize the error of
the inverse models when updating the responsibilities in the
E-Step. In the second part of this section, we derive the
formulas for an application with Gaussian linear models,
which we also use for experimental evaluation.

A. EM For Multiple Coupled Forward-Inverse Models

We consider a data set D = {X,Y} with input data
X = [x1, ..., xN ]T and output data Y = [y1, ...., yN ]T.In
contrast to existing approaches, CFIM learns the forward
and inverse model parameters and responsibilities not only
from errors of the forward models but also from errors
of the inverse models. To minimize these combined model
errors, we maximize a combination of the conditional log-
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Fig. 3. We formalize the problem of learning multiple coupled forward-
inverse models as an Expectation Maximization algorithm, where in the E-
step we learn model responsibilities on a combination of forward and inverse
modeling errors wF and wI . In the M-step, we update the model parameters
of inverse and forward models through weighted regression based on the
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likelihoods over the data set

log

(
N∏

n=1

p(xn|yn,ΘI,k)

)
+ log

(
N∏

n=1

p(yn|xnΘF,k)

)

=

N∑
n=1

log (p(xn|yn,ΘI,k)p(yn|xn,ΘF,k)) , (1)

where ΘF,k denotes the parameters of the k-th forward
model and ΘI,k the parameters of the k-th inverse model.
We formulate the problem of learning the parameters of K
coupled forward-inverse models as a probabilistic model with
observable variables xn, yn and latent variables zn, where
the latent variables hold information about responsibilities
of the models for particular data points. For each observable
data point {xn, yn}, the latent variable zn is a K-dimensional
vector which represents the model assignment using the one-
hot encoding. We incorporate the latent variables in Eq. (1)
and introduce a distribution over the latent variables q(znk)
to derive an EM algorithm. Hereby, we obtain the following
optimization problem for the E-step:

argmax
q(znk)

N∑
n=1

K∑
k=1

q(znk)log

(
p(xn,znk|yn,ΘI,k)p(yn,znk|xn,ΘF,k)

q(znk)

)

s.t.

K∑
k=1

q(znk) = 1.

From here, we derive a closed form solution using the
method of Lagrangian multipliers for the distribution over
the latent variables, namely the responsibilities of the coupled
models

q∗(znk) =
p(xn, znk|yn,ΘI,k)p(yn, znk|xn,ΘF,k)∑K
k=1 p(xn, znk|yn,ΘI,k)p(yn, znk|xn,ΘF,k)

.

(2)

The subsequent M-step computes weighted maximum
likelihood solutions for the model parameters ΘI,k and ΘF,k

respectively by solving

argmax
Θ

N∑
n=1

K∑
k=1

q∗(znk)log

(
p(xn,znk|yn,ΘI,k)p(yn,znk|xn,ΘF,k)

q∗(znk)

)
We show how to derive closed-form solutions for Gaussian

linear models in the next section. Figure 3 illustrates our new
algorithm.

B. Application for Gaussian Linear Models

In this subsection we derive solutions of our new algorithm
for the case of Gaussian linear models.
We introduce an augmented transformation of the inputs
x̃n = [1, xn]

T and outputs ỹn = [1, yn]
T. We assume K

components, each consisting of a forward model, which
predicts ŷk,n and an inverse model, which predicts x̂k,n

ŷnk = Akx̃n and x̂nk = Bkỹn, (3)

where Ak and Bk are matrices that represent the model pa-
rameters of the k-th forward and inverse model, respectively.

For Gaussian linear models we obtain the likelihoods

p(yn|znk, xn,ΘF,k) = N (yn|ŷnk,ΣF,k) =: wF,nk and

p(xn|znk, yn,ΘI,k) = N (xn|x̂nk,ΣI,k) =: wI,nk. (4)

We define ΘF,k := {Ak,ΣF,k}, ΘI,k := {Bk,ΣI,k}, where
ΣF,k denotes the covariance of the k-th forward model and
ΣI,k denotes the covariance of the k-th inverse model.
In the E-step, we calculate the responsibilities λnk of com-
ponent k for the n-th data point by using uninformed priors
in Eq. (2) which leads to

λnk =
p(xn|znk, yn,ΘI,k)p(yn|znk, xn,ΘF,k)∑
z
p(xn|znk, yn,ΘI,k)p(yn|znk, xn,ΘF,k)

. (5)

In the M-step, we update the model parameters of the
forward and the inverse models using a weighted maximum
likelihood estimate

Anew
k = (X̃T

ΛkX̃)−1X̃T
ΛkY,

Bnew
k = (ỸT

ΛkỸ)−1ỸT
ΛkX,

X̃ = [x̃1, x̃2, ..., x̃N ]T , Ỹ = [ỹ1, ỹ2, ..., ỹN ]T ,

Λk = diag(λk),

Σnew
k,fwd =

∑N
n=1 λn,k(yn − Anew

k x̃n)(yn − Anew
k x̃n)

T∑N
n=1 λnk

,

Σnew
k,inv =

∑N
n=1 λn,k(xn − Bnew

k ỹn)(xn − Bnew
k ỹn)

T∑N
n=1 λnk

. (6)

To initialize the model parameters we compute the range
of input and output variables as ∆F = (max(Y)−min(Y))
and ∆I = (max(X) − min(X)). The initial models are
uniformly distributed over this range which results in the
initial model matrices

Ak =

[
µ(Y) + (k − 1)

0.9∆F

K − 1
− 0.45∆F , 0

]
,

Bk =

[
µ(X) + (k − 1)

0.9∆I

K − 1
− 0.45∆I , 0

]
, (7)
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Fig. 4. We compare training responsibilities of the models only on the forward modeling errors (as proposed by MOSAIC) to CFIM, where we
train responsibilities on both forward and inverse modeling errors. (a) When using only the forward error no accurate inverse function is learned for the
approximation of the sine curve. (b) CFIM yields significant improvement in the approximation of the inverse function and also results in better localization
of the single models. (c) The NRMSE for different numbers of models on the training data shows that CFIM achieves better results.

Algorithm 1 CFIM
Input: D = {X,Y} = {(x1, y1), ..., (xN , yN )}
Initialize Ak,Bk,Σk,F,Σk,I, according to (7) and (8)
repeat

for k = 1 to K do
for n = 1 to N do

compute wF,nk and wI,nk according to (4)
end for

end for
compute λk according to (5)
update Ak,Bk,Σk,F,Σk,I according to (6)

until convergence of likelihood
return Ak,Bk,Σk,F,Σk,I,λ

where µ(·) denotes the mean and the initial covariance
matrices

Σk,F = std(Y)/N Σk,I = std(X)/N, (8)

and iterate between E-step and M-step until convergence of
the combined conditional likelihood.

Finally, the combined output predictions ŷn and input
predictions x̂n are computed by weighting the components
predictions with their corresponding responsibilities

ŷn =

K∑
k=1

λnkŷnk x̂n =

K∑
k=1

λnkx̂nk. (9)

Pseudo code for our EM based learning of coupled forward-
inverse models is presented in Algorithm 1.

IV. EXPERIMENTS

In this section, we present our experimental results for
learning multiple coupled forward and inverse models. First,
we evaluate the performance of CFIM for learning a one-
dimensional function. We compare CFIM to MOSAICs ap-
proach of only using the forward model errors during training
and show that our algorithm yields significantly better results
in particular for learning the inverse models.

As we consider our new algorithm in particular suited for
problems where the inverse space is not unique, in the second
part of this section we show results for learning forward
and inverse kinematics of robot arms. While the forward
kinematics is usually a unique mapping, the inverse kine-
matics is usually not. In this case, the inverse space might
contain additional information about the context of a task
and incorporating the inverse modeling error in the learning
of model responsibilities can result in better localization of
the single models. The learning in all experiments is done
offline.

A. CFIM for 1D artificial data

The sine function is a non-linear function with one-
to-many mappings in the inverse space and therefore an
interesting benchmark function for learning coupled forward
and inverse models. In Figure 4 we present the results of
approximating a sine function with 8 linear models. The
figure shows the 300 training data points (pink), the single
model estimates (light colors) and the combined predictions
(black) for the forward function (upper row) and the inverse
function (lower row). Figure 4(a) illustrates that the approach
to only use the forward errors does not learn a precise inverse
model of the given data, and the single models do not adapt
themselves optimally to the data set. CFIM results in sig-
nificantly better inverse modeling as illustrated in Figure(b).
Our new algorithm also achieves better localization of the
models in both, forward and inverse space.

Figure 4(c) shows the corresponding NRMSE on the
training set for different numbers of models. The figure com-
pares the NRMSE for only leveraging on the forward error
(orange) and our new algorithm CFIM (green) on the data
set from Figure 4 (a),(b). We evaluate the NRMSE for the
forward models (upper row) as well as the NRMSE for the
inverse models (lower row). It shows that for an increasing
number of models the NRMSE of both approaches decrease.
However, CFIM achieves significantly lower NRMSE in
particular on the inverse models. Additionally, the error of
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Fig. 5. (a) We consider training data that differs in the inverse space but is overlapping in the forward space, generated by two different elbow configurations
(red, blue) (b) CFIM achieves accurate tracking for both configurations due to better localization of the single models in the inverse space. (c) Evaluations
on 100 randomly generated test trajectories in task space show that CFIM (green) achieves better results in terms of tracking performance than the approach
to only use forward model errors (orange) during training. Moreover, the mean tracking errors for 15 and 20 models show that using only the forward
errors results in over fitting of the training data for a higher number of models. Please note that the y-axis is a logarithmic scale.

the forward models can be improved due to the improved
localization of the coupled models.

B. Application for Learning Kinematics

We consider a given traning set D =
{(q1, c1), ..., (qN , cN )} with joint positions q and Cartesian
positions of the endeffector c. The forward and inverse
models are defined as

fwd : q → c inv: c→ q (10)

We use the learned inverse models to generate point-to-point
movements in task space. Therefore, the current position of
the robot (ct, qt) is used to predict the responsibilities for
the following time step according to Equation (5) and the
model estimates according to Equation (3)

ct, qt → λtk, ct+1 → qt+1
k . (11)

This responsibilities and model estimates can be used to com-
pute the next joint positions to reach the desired Cartesian
target.

qt+1 =

K∑
k=1

λtkq
t+1
k (12)

In the next parts of this section, we present results for a
for a simulated 2-link robot and on a hand over task with a
real robotic arm.

1) 2-Link-Robot: As illustrated in Figure 5 (a), we collect
3780 training data points with two different elbow configu-
rations (red, blue) but in an overlapping task space region.
We compare CFIM to the approach from MOSAIC to train
responsibilities only on the prediction errors of the forward
models. When investigating the localization of the single
models it shows that our new algorithm is more capable
of capturing the bi-modal nature of the inverse space. This
is shown in Figure 6 which illustrates an example of the
localization of 10 models for the first joint (left) and the
second joint (right). Figure 6 compares the localization of
the models when using CFIM (upper row) against only
using forward errors for learning responsibilities (lower row).
While CFIM captures the two distinct regions in the inverse

-2

-1

0

1

2

0.2 0.60y
x

0.50.4-0.2

-2

-1

0

1

2

0.2 0.60
y x

0.50.4-0.2

0.2

-2

0.4
y

0

0

x
0.5

2

0.6 -0.2

0.2

-2

0.4
y

0

0

x
0.5

2

0.6 -0.2

training data

q1

q1

single inverse models

(a)

(b)

q2

q2
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the results for CFIM. Note that the training data are concentrated in two
distinct regions. The algorithm captured these regions (two for each link)
by localizing the planes according to the data. (b) Using the same training
data, multiple paired models trained only on the errors of the forward models
have difficulties to localize themselves over the multiple inverse solutions.
Rather, many modules tend to lie at the average of the output space.

space, using only the forward model error results in a
localization of the models somewhere in the average of the
training data.
Figure 5 (c) and (b) show results of testing the learned inverse
models for point-to-point motions. We evaluated our method
on 100 randomly generated point-to-point motion trajectories
for both elbow configurations. Figure 5(c) compares only
using the forward error during training to CFIM. Figure 5(b)
shows that CFIM is able to generate motions with both elbow
configurations by activating different local models.

2) Local IK FK Real Robot: We demonstrate how to
use CFIM to learn a handover task with a robotic arm.
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We considered a setup, where a human co-worker can be
located in two different areas of the work space, giving need
to different elbow configurations of the robot. We track the
exact x,y position of the robot hand, where the hand over
object is located with an motion capturing marker as depicted
in Figure 8. The method is used on the 3 joints of the arm
which are the most significant for the task.

Figure 7 (a) and (b) show the NRMSE for forward and
inverse models on the training data for 4, 10 and 15 models.
CFIM (green) yields significantly better results compared to
only using the forward model errors. Figure 7 (b) shows for
only using the forward model errors even with increasing
number of models the NRMSE is not decreasing signif-
icantly. To evaluate on test data, Figure 7 (c) shows the
mean tracking errors and standard deviation for 10 randomly
generated task space trajectories for each elbow context. The
plot presents results for 4, 10, and 15 models where CFIM
again outperforms the approach of only using the forward
error.

Figure 8 illustrates that CFIM learns kinematic solutions to
follow trajectories for both elbow configurations. In Table 2
we show the corresponding tracking errors for each elbow
configuration and compare to results when only using the
forward error. The tracking error was computed for 10 ran-
domly generated trajectories when using 15 paired models.

V. CONCLUSION AND FUTURE WORK

In this paper, we derived a new EM based algorithm for
learning multiple coupled forward-inverse models. This new
algorithm trains both forward and inverse models simul-
taneously, and achieves significant improvements over the
comparable MOSAIC due to the combined use of forward
and inverse model errors. Experimental results show that
this use of both inverse and forward errors can help to
achieve better localization of the models. Furthermore, we
demonstrated how the proposed algorithm can be used to
learn local forward and inverse kinematic solutions on robot
arms.

CFIM can be used whenever forward and inverse models
need to be trained simultaneously. We believe the ideas
which we presented in this paper can extend the scope of
methods based on multiple paired forward-inverse models.
In particular, efficient learning of multiple coupled forward-

Fig. 8. CFIM can learn inverse kinematics for a hand over task where
the robot needs to adapt its elbow configuration to the position of the
human. The activation of single local models hereby depends on the start
configuration of the elbow and trajectories for both configurations (upper
row and lower row) were learned.

TABLE I
TRACKING ERROR REAL ROBOT

(15 MODELS, MEAN AND STD /M)

EB1 EB2
only fwd error 0.2267 ± 0.1021 0.1954± 0.1397
CFIM 0.0075 ± 0.0056 0.0113± 0.0101

inverse models can help to learn advanced modular context
dependent control architectures.

Transferring the insights provided by this paper to appli-
cations in high-dimensional sensorimotor learning is hereby
an exciting line of future work.
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