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Abstract

We present results of three-dimensional (3D), radiation-magnetohydrodynamics (MHD) simulations of core-
collapse supernovae in full general relativity (GR) with spectral neutrino transport. In order to study the effects of
the progenitor’s rotation and magnetic fields, we compute three models, where the precollapse rotation rate and
magnetic fields are included parametrically to a 20 Me star. While we find no shock revival in our two
nonmagnetized models during our simulation times (∼500 ms after bounce), the magnetorotational (MR) driven
shock expansion immediately initiates after bounce in our rapidly rotating and strongly magnetized model. We
show that the expansion of the MR-driven flows toward the polar directions is predominantly driven by the
magnetic pressure, whereas the shock expansion toward the equatorial direction is supported by neutrino heating.
Our detailed analysis indicates that the growth of the so-called kink instability may hinder the collimation of jets,
resulting in the formation of broader outflows. Furthermore, we find a dipole emission of lepton number, only in
the MR explosion model, whose asymmetry is consistent with the explosion morphology. Although it is similar to
the lepton number emission self-sustained asymmetry (LESA), our analysis shows that the dipole emission occurs
not from the proto–neutron star convection zone but from above the neutrino sphere, indicating that it is not
associated with the LESA. We also report several unique neutrino signatures, which are significantly dependent on
both the time and the viewing angle, if observed, possibly providing rich information regarding the onset of the
MR-driven explosion.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Magnetohydrodynamical simulations
(1966); Supernova neutrinos (1666); Supernova dynamics (1664); Radiative magnetohydrodynamics (2009)

1. Introduction

The best-studied mechanism to explode massive stars
(8Me) is the neutrino mechanism (Bethe & Wilson 1985;
Wilson 1985), where neutrinos emitted from the proto–neutron
star (PNS) heat the matter behind the stalled bounce shock,
leading to the shock revival into explosion, i.e., the onset of
core-collapse supernovae (CCSNe; see Kotake et al. 2012;
Burrows 2013; Foglizzo et al. 2015; Janka et al. 2016;
Müller 2016; Radice et al. 2018, for reviews). However, the
neutrino mechanism generally fails in spherically symmetric
(1D) simulations (e.g., Liebendörfer et al. 2001; Sumiyoshi
et al. 2005) except for super-AGB stars (Kitaura et al. 2006)
that cover the low-mass end of CCSN progenitors.

Multidimensional (multi-D) hydrodynamics has dramatic
impacts on the neutrino mechanism (see, e.g., Melson et al.
2015; Lentz et al. 2015; Takiwaki et al. 2016; Müller et al.
2017; O’Connor & Couch 2018; Ott et al. 2018; Pan et al.
2018; Summa et al. 2018; Burrows et al. 2019; Vartanyan et al.
2019b). Multi-D instabilities such as neutrino-driven convec-
tion and the standing accretion shock instability (SASI;
Foglizzo et al. 2006; Scheck et al. 2006) increase the dwell
time of matter in the postshock region, which substantially
enhances the neutrino heating efficiency behind the shock.
Turbulence also plays a key role, providing the pressure

support and energy transport in the postshock region (e.g.,
Abdikamalov et al. 2015; Couch & Ott 2015; Müller &
Janka 2015; Roberts et al. 2016; Takiwaki et al. 2016; Radice
et al. 2018; Burrows et al. 2019; Nagakura et al. 2019). Other
possible candidates to foster the onset of neutrino-driven
explosions include inhomogenities in the progenitor’s burning
shells (e.g., Couch & Ott 2015; Müller et al. 2017; Yoshida
et al. 2019), PNS convection (see, e.g., Powell & Müller 2019;
Nagakura et al. 2020), updates in neutrino opacities (e.g.,
Bollig et al. 2017; Kotake et al. 2018), sophistication of
neutrino transport schemes (e.g., Sumiyoshi & Yamada 2012;
Just et al. 2018; Nagakura et al. 2019), and rotation and
magnetic fields. We focus on the final facet in this paper.
A number of effects of rotation in full 3D were first studied

by Fryer & Warren (2004), in which they explored the
rotational effects on, e.g., the rotational instabilities, magnetic
field amplification, and explosion dynamics. Positive effects of
rotation in favor of the onset of explosion include the larger
shock radius due to the centrifugal force (Nakamura et al.
2014), vigorous spiral SASI activity (Summa et al. 2018), and
energy transport via the rotational instability (Takiwaki et al.
2016). On the other hand, rotation weakens the explodability
because it results in a more extended and cooler PNS, which
reduces the neutrino luminosities and energies (Marek &
Janka 2009). These studies show that the impact of rotation on
the neutrino mechanism depends sensitively on the precollapse
rotation rate. Supported by the outcomes from these state-of-
the-art multi-D simulations, we are now reaching a broad
consensus that the multi-D neutrino mechanism is the most
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promising way to account for canonical CCSNe with explosion
energies of the order of 1051 erg (≡1 Bethe, 1 B in short)
or less.

The neutrino mechanism, however, is likely to fail in a
subclass of CCSNe with very energetic explosion of ∼10 B,
which is termed as a hypernova (HN; Iwamoto et al. 1998).
Observationally an HN is associated with the collapse of a very
massive star typically with 30–40Me in the main-sequence
stage (Tanaka et al. 2009). The magnetorotational (MR) driven
mechanism originally proposed in the 1970s (Bisnovatyi-
Kogan 1970; LeBlanc & Wilson 1970; Meier et al. 1976;
Müller & Hillebrandt 1979) has received considerable atten-
tion. The MR explosion mechanism relies on the extraction of
the rotational free energy from the central compact objects via
the magnetic fields (see also Blandford & Znajek 1977;
McKinney 2006, in various contexts).

Rapid rotation of the iron core is a necessary condition for
the working of the MR mechanism (see Kotake et al. 2006 for
collective references of early studies therein). In the collapsing
core, the magnetic fields are amplified to dynamically relevant
field strengths by rotational winding and/or magnetorotational
instability (MRI; Akiyama et al. 2003; Obergaulinger et al.
2009; Masada et al. 2015; Rembiasz et al. 2016). After bounce,
the strong magnetic pressure launches the jets along the
rotational axis (Ardeljan et al. 2000; Burrows et al. 2007;
Takiwaki et al. 2009; Scheidegger et al. 2010; Winteler et al.
2012; Mösta et al. 2014; Obergaulinger et al. 2014). The highly
aspherical explosion is also observationally supported by the
analysis of the line profiles (e.g., Maeda et al. 2008). Note that
in the nonrotating progenitors, Obergaulinger et al. (2014) were
the first to point out that MR-driven pressure support in the
gain region (via turbulence) fosters the onset of neutrino-driven
explosion. This result clearly presents evidence that imple-
mentation of sophisticated neutrino transport is needed for a
quantitative study of MR-driven CCSN modeling.

In the context of purely neutrino-driven models (without
magnetic fields), it becomes certain that two-dimensional (2D)
simulations overestimate the explodability for a wide variety of
progenitors (Hanke et al. 2012, 2013; Couch 2013; Dolence
et al. 2013; Takiwaki et al. 2014). In order to correctly capture
the evolution and dynamics of the postshock turbulence, three-
dimensional (3D) modeling is required. The higher explod-
ability in 2D is also reported in MR models. Mösta et al. (2014)
have shown that a full 3D model leads to the formation of the
less collimated (bipolar) jets than those in the counterpart
octant symmetry model, which mimics 2D. They pointed out
that the less collimated outflow in 3D is an outcome of the so-
called ∣ ∣ =m 1 kink instability (Begelman 1998; Lyubars-
kii 1999; Narayan et al. 2009). It has been demonstrated that
the kink instability displaces the jet center from the rotational
axis and prevents the magnetic field amplification preferentially
on the axis (see also Li 2000). More recently, Obergaulinger &
Aloy (2020) have reported the first 3D special relativistic
magnetohydrodynamics (MHD) simulations with spectral
neutrino transport. Their 3D models showed slightly longer
explosion times, although the explosion energy and ejecta mass
were higher and larger, respectively, compared to those in the
counterpart 2D models. Any remarkable nonaxisymmetic
instabilities, including the kink instability, were not seen in
the 3D models of Obergaulinger & Aloy (2020), which is in
contrast with Mösta et al. (2014). Therefore, the multi-D effects
in MHD models are still controversial, due partly to the limited

number of full 3D MHD CCSN simulations reported so far
(Mikami et al. 2008; Scheidegger et al. 2010; Mösta et al.
2014; Obergaulinger & Aloy 2020).
In this paper, we report first results of full 3D–GR, MR core-

collapse simulations of a 20 Me star with spectral neutrino
transport. We calculate three models: rotating magnetized,
rotating nonmagnetized, and nonrotating nonmagnetized. Our
results show that the MR explosion occurs in the rotating
magnetized model shortly after core bounce, whereas the shock
revival is not obtained in both nonmagnetized models during
our simulation time (∼500 ms after bounce). While our results
basically confirm the previous results (Mösta et al. 2014), our
findings include detailed analysis of the kink instability, the
dipole emission of lepton number in the MR explosion, and the
neutrino signals from the 3D–GR MHD models with self-
consistent neutrino transport.
This paper is organized as follows. Section 2 starts with a

concise summary of our GR MHD neutrino transport scheme,
which is followed by the initial setup of the simulation. The
main results and detailed comparison with previous studies are
presented in Section 3. We summarize our results and
conclusions in Section 4. Note that the geometrized unit is
used in Section 2, i.e., the speed of light, the gravitational
constant, and the Planck constant are set to unity,
c=G=h=1, and cgs units are used in Section 3. The
metric signature is (−, +, +, +). Greek indices run from 0 to 3
and Latin indices from 1 to 3, except ν and ε denoting neutrino
species and energy, respectively. We also use a conventional
expression for spatial coordinates (x1, x2, x3)=(x, y, z).

2. Numerical Methods and Computational Setup

In our full GR radiation-MHD simulations, we solve the
evolution equations of metric, MHD, and energy-dependent
neutrino radiation. Each of the evolution equations is solved in
an operator-splitting manner, while the system evolves self-
consistently as a whole, satisfying the Hamiltonian and
momentum constraints (Kuroda et al. 2012, 2014, 2016b).

2.1. Basic ν-GRMHD Equations

Regarding the metric evolution, we evolve the standard
BSSN variables g̃ij, w(=e−2f) (Marronetti et al. 2008), Ãij, K,

and G̃i (Shibata & Nakamura 1995; Baumgarte & Sha-
piro 1999). Here ( )f gº ln 12 with γ=det(γij). The gauge
is specified by the “1+log” lapse and by the Gamma-driver-
shift condition. Evolution equations of these variables are
solved with a fourth-order finite-difference scheme in space
(Zlochower et al. 2005) and with a fourth-order Runge–Kutta
time integration. In the Appendix, we show results of the
polarized Gowdy wave test (Alcubierre et al. 2004) to show the
fourth-order convergence of our metric solver.
In the radiation-MHD part, the total stress-energy tensor

( )
abT total is expressed as

( )( ) ( ) ( )
¯

( )òå e= + +ab ab ab

n n n n
n e
ab

Î

T T T d T , 1total matter EM
, ,

,
e e x

where ( )
abT matter , ( )

abT EM , and ( )n e
abT , are the stress-energy tensor of

matter, electromagnetic, and energy (ε) dependent neutrino
radiation field of species ν, respectively. We consider all three
flavors of neutrinos ( ¯n n n, ,e e x), with νx representing heavy-
lepton neutrinos (i.e., νμ, ντ, and their antiparticles). ε
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represents the neutrino energy measured in the comoving
frame. In this paper, although we omit to describe detailed
evolution equations of the neutrino radiation field (we refer the
reader to Kuroda et al. 2016b), we solve spectral neutrino
transport of the zeroth- and first-order radiation momenta,
based on the truncated moment formalism (Shibata et al. 2011)
employing an M1 analytical closure scheme.

In the following, we briefly describe our GR MHD
formulation. The stress-energy tensor of electromagnetic field

( )
abT EM is expressed as

( )( ) = -ab ad
d
b ab

dg
dgT F F g F F

1

4
, 2EM

where abF is the electromagnetic field tensor. Since we
currently consider the ideal MHD case, Maxwell’s equations
are written in terms of the dual tensor =ab abgd

gdF F1

2
* as

( ) =b a
bF 0. 3*

We define the magnetic field four-vector bα as

( )= -a abgd
b gdb u F

1

2
, 4

with abgd and uα being the Levi–Civita tensor and matter four-
velocity, respectively. In addition, for later convenience, the
magnetic field three-vector B i should also be introduced as

( )g aº = - = -m
mB F n F Wb b u , 5i it i

j
j i t i* *

where = - m
mW u n is the Lorentz factor (do not confuse with

w=e−2f of geometrical variables) and ( )a= -mn , 0, 0, 0 is
a unit vector normal to the spacelike hypersurface foliated into
the spacetime. Then, using the orthogonality condition

=a
aB n 0, the time and spatial components of Equation (3)

can be rewritten as

( ) ( )g¶ =B 0, 6i
i

i.e., the solenoidal constraint of B i, and

( ) ( ) ( )g g¶ + ¶ - =B v B B v 0, 7t
i

j
j i j i

respectively, where ºv u ui i t.
Additionally to the evolution Equation (7) of the magnetic

field, we solve the following ideal hydrodynamic equations
(see, e.g., Gammie et al. 2003; Shibata & Sekiguchi 2005)
including electron number conservation:

( ) ( )r r¶ + ¶ =v 0, 8t i
i

* *

⎤
⎦⎥

( ( ) )
[

( ) ˜

( )

( )åò

g g a d a

g a b a f

a g g a e g

¶ + ¶ + - +

= - ¶ - ¶ - ¶

+ - ¶ +f

n
n e
m

m
-

S S v P B B B u u W

S S S

e S P d S

2

2 ,

9

t i j i
j

i
j j

i
k

k i

i k i
k

k
k

i

jk jk i
jk

i

tot
2

0

4
tot ,

⎤
⎦⎥

( ( ) )

[ ( ) ˜

( )( )åò

gt g t b a

g a a g

a a e

¶ + ¶ + + -

= + -

- +

f

n
n e
m

m

-

v P v B B u W

KS e S P A

S D d S n

3

, 10

t i
i i i j k

k

k
k

ij ij
ij

i
i

tot

4
tot

,

and

( ) ( ) ( )

( )
( ) (¯ )òr r ga

e
e

¶ + ¶ = -n e
m

n e
m

mY Y v m
d

S S u ,

11

t e i e
i

u , ,e e* *

where r r g= W
*

, ( )r a= + -S h b Wu b bi i
t

i
2 ,

( )r g= + + -S h b u u P b bij i j ij i j
2

tot , g=S Sk
k ij

ij,

t r= -S W0 , and ( ) ( )r a= + - -S h b W P bt
0

2 2
tot

2. On
the right-hand side of Equation (10), Di represents the
covariant derivative with respect to the three-metric gij. ρ is

the rest mass density, and r= + +h e P1 mat mat is the
specific enthalpy of matter (composed of baryons, electrons,
and photons), with emat and Pmat being the specific internal
energy and pressure of matter, respectively. = a

ab b b2 ,
= +P P Ptot mat mag is the total pressure, =P b 2mag

2 is the
magnetic pressure, ºY n ne e b is the electron fraction (ne and
nb are the number densities of electrons and baryons,
respectively), and mu is the atomic mass unit. ( )rP s Y, , emat

and ( )re s Y, , emat are given by an equation of state (EOS), with
s denoting the entropy per baryon.
We thus evolve the following MHD and radiation con-

servative variables:

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

( )

( )

( )

r
g
gt

g
r
g
g

=

n e

n e

Q

S

B

Y
E

F

, 12

i

i

e

i

,

,

*

*

where ( )( ) ( )n e n eE F, i, , are the zeroth- and first-order moments of
neutrino radiation (Shibata et al. 2011; Kuroda et al. 2016b).
Every time we update the conservative variablesQ, we

obtain the following primitive variables:

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

( )

( )

( )

r

=

n e

n e

P

u
s
B
Y

E

F

13

i

i

e

i

,

,

by Newton’s method.

2.2. Constrained Transport

We solve the conservation Equations (8)–(11) using the HLL
scheme (Harten et al. 1983). Meanwhile, the induction
Equation (7) is solved by a constrained transport (CT) method
(Evans & Hawley 1988) to satisfy the solenoidal condition
Equation (6). For the CT method, we also utilize the HLL
scheme when we reconstruct the electric field that will be
mentioned shortly. To solve the (HLL) Riemann problem, we
need to evaluate the left and right states at cell surface. The left
and right states are interpolated from cell-centered primitive
variablesP and some of the metric terms ( )a b gw, , ,i ij , which
are needed to evaluate the full conservative variablesQ, by a
spatial reconstruction. We use the piecewise parabolic method

3
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(PPM) for the spatial reconstruction (Colella & Wood-
ward 1984, or Hawke et al. 2005 for a more suitable upwind
reconstruction method in GR). After the spatial reconstruction
step, we calculate the fastest left- and right-going wave speeds
(e.g., Antón et al. 2006) and the HLL fluxes.

We also introduce the electric field E i defined by

( ) ( )g= ´E v B 14

for the CT method. Then, Equation (7) can be rewritten as

( ) ( ) ( )g ¶ - ´ =B E 0. 15t
i i

Employing a usual staggered mesh algorithm, we define the
magnetic field B i and the electric field E i at cell surface and
edge, respectively, while the rest of the variables are defined at
cell center. For instance, Bx and Ex are defined at
( )+i j k1 2, , and ( )+ +i j k, 1 2, 1 2 , respectively, where
(i, j, k) denotes the cell center and, e.g., j+1/2 represents a
displaced position from cell center along the y-axis with a half-
cell width. As in the usual manner, the electric field E i defined
on the cell edge is obtained from the HLL flux for B i,
corresponding to the advection term in Equation (7). We use
the nearest four electric fields defined on the cell surface, i.e.,
corresponding terms in the HLL flux, and take their simple
arithmetic average.5

Our numerical grid employs a fixed nested structure, and
there is a boundary between different numerical resolutions.
Therefore, we apply a refluxing procedure for both the HLL
fluxes and the electric field E i (Kuroda & Umeda 2010) before
solving Equations (8)–(11) and (15) to satisfy the conservation
law and solenoidal constraint in the whole computational
domain.

2.3. Initial Setup

We study the frequently used solar-metallicity model of the
20 Me star “s20a28n” from Woosley & Heger (2007).
Although one of our final aims is to understand the HN
explosion mechanism of very massive stars (30Me), this
progenitor star is widely used in previous studies (e.g., Melson
et al. 2015; Ott et al. 2018; O’Connor & Couch 2018; Burrows
et al. 2019), and our nonrotating, nonmagnetized model (see
below) could thus be a reference model to calibrate our 3D ν-
GRMHD code. For the nuclear EOS, we use SFHo of Steiner
et al. (2013). The 3D computational domain is a cubic box with
3×104 km width in which nested boxes with 10 refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is Δx=458 m. In the
vicinity of the stalled shock at a radius of ∼100 km, our
resolution achieves Δx∼ 1.9 km, i.e., the effective angular
resolution becomes ∼1°. The neutrino energy space ε
logarithmically covers from 1 to 300MeV with 12 energy
bins. Regarding neutrino opacities, the standard weak interac-
tion set in Bruenn (1985), which consists of the absorption and
emission process

( )n « -n e p, 16e

¯ ( )n « +p e n, 17e

( )n « ¢-A e A , 18e

isoenergy scattering of neutrinos off nucleons and heavy nuclei

( )n n«n n, 19

( )n n«p p, 20

( )n n«A A, 21

inelastic neutrino electron scattering

( )n n«e e, 22

and thermal neutrino pair production and annihilation

¯ ( )nn«- +e e , 23

is taken into account. In addition, nucleon–nucleon brems-
strahlung (Hannestad & Raffelt 1998)

¯ ( )nn«NN NN 24

is also included (for more details, see Kuroda et al. 2016b).
The original progenitor model “s20a28n” assumes neither

rotation nor magnetic fields. We thus artificially add them to
the nonrotating progenitor model. We employ a widely used
cylindrical rotational profile (Dimmelmeier et al. 2002)

( ) ( )v= W - Wfu u , 25t
0
2

0

where vº Wfu 2 with v = +x y2 2 . Ω is the angular
frequency of the fluid element. Using Ω, the rotational
component of the initial four-velocity is simply set by
( ) ( )= Wu u u y x, , , , 0x y z . ϖ0 and Ω0 indicate the size and
angular frequency of a rigidly rotating central cylinder,
respectively. Note that Ω0 and Ω are measured by an Eulerian
observer. This rotational profile gives the angular frequency
falling off with ϖ−2 beyond ϖ0, i.e., the specific angular
momentum asymptotically reaches a constant value v W0

2
0.

For the initial magnetic fields that should satisfy the
solenoidal constraint, we use the following purely toroidal
vector potential:

( )q=
+

fA
B R

r R
r

2
sin , 260 0

3

3
0
3

( )= =qA A 0. 27r

Here (r, θ, f) denote the usual coordinates in the spherical polar
coordinate system. By defining these vector potentials on the
cell edge and taking their curl =  ´B A, the magnetic field
defined on the numerical cell surface automatically satisfies the
solenoidal constraint. This vector potential gives nearly
uniform magnetic field parallel to the rotational axis (i.e., z-
axis) for rR0 and dipolar magnetic field for rR0.
We set ϖ0=R0=108 cm corresponding roughly to the

iron core size at the precollapse stage. We calculate three
models: rotating magnetized, rotating nonmagnetized, and
nonrotating nonmagnetized. For the rotating models, we set
Ω0=1 rad s−1. This value is very reasonable compared to the
one of a rotating 20 Me model in Heger & Langer (2000) that
gives Ω0∼3 rad s−1. Regarding the magnetic field strength at
origin, we set B0=1012 G, which can be amplified strongly
enough to affect the dynamics through simple linear amplifica-
tion mechanisms, i.e., compression and rotational wrapping,
during collapse and is also widely used in most of the previous
MHD simulations (Burrows et al. 2007; Takiwaki et al. 2009;
Scheidegger et al. 2010; Mösta et al. 2014; Obergaulinger &

5 Although we used a simple arithmetic average in this study, we later found
that the upwind reconstruction (e.g., White et al. 2016) could significantly
reduce numerical oscillations seen in the reconstructed electric field, especially
outside the SN shock surface where the flow is supersonic, which eventually
led to the crash of current MHD simulations.

4
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Aloy 2020). Three models are labeled as R0B00, R1B00, and
R1B12, where the integer after R denotes Ω0. B00 and B12
represent B0=0 and 1012 G, respectively.

3. Results

In this section, we explain our main results. Sections 3.1 and
3.2 are devoted to explaining general hydrodynamic properties
in the postbounce evolution. In Section 3.3, we discuss
nonaxisymmetric instabilities in the PNS and MHD outflow,
which is relevant to the neutrino signals in Section 3.4. The role
of neutrino heating in the MR mechanism is addressed in
Section 3.5. We explain the dipole emission of lepton number
in our MR explosion model in Section 3.6.

3.1. Postbounce Evolution

We begin with a brief description of the postbounce
evolution of all three models in this work. After the start of
calculation (t= 0), the core bounce occurs at t=0.261, 0.264,
and 0.265 s for models R0B00, R1B00, and R1B12, respec-
tively. The central (maximum) rest mass density ρmax reaches
4.42×1014 g cm−3 (model R0B00), 4.37×1014 g cm−3

(R1B00), and 4.35×1014 g cm−3 (R1B12). A monotonic
feature that rapid rotation and high initial magnetic field delay
the bounce time and decrease ρmax is due to the stronger
centrifugal force and magnetic pressure at bounce. The lapse
function at the center also shows a similar trend, where it takes
the smallest and highest value for models R0B00 and R1B12,
respectively. For the computed three models, ρmax and the
(minimum) lapse function evolve with time after bounce,
keeping the above trend at bounce (e.g., smallest ρmax for
model R1B12 relative to other models).

To visualize the postbounce evolution, Figure 1 shows the
volume-rendered entropy (top three panels) and inverse of the
plasma β for model R1B12 in the logarithmic scale (bottom
three panels) at selected postbounce times (tpb). Here the
plasma β is defined by the ratio of the gas to the magnetic
pressure, i.e., b º P Pgas mag. After bounce, the formation of the
bipolar flow can be clearly seen in the left panels. Inside the
expanding blobs, the magnetic pressure dominates over the gas
pressure as shown by the yellowish region ( b- log 0.510

1 ) in
the bottom panels. This is a clear evidence of the MR-driven
shock revival for model R1B12. As an important 3D effect, we
see that the shock morphology is less collimated compared to
the previous 2D axisymmetric studies, although similar initial
rotation and magnetic fields were adopted (Burrows et al. 2007;
Takiwaki et al. 2009; Mösta et al. 2014; Obergaulinger &
Aloy 2017). The middle panels show that the jet head is not
aligned with the rotational axis at tpb∼100 ms but is displaced
from the axis (indicated by the deviation from the white line).
In Section 3.3, we will discuss the reason for this in more
detail.

Figure 2 shows the volume-rendered entropy structure for
models R0B00 (top panels) and R1B00 (bottom panels) from
tpb∼245–500 ms. Comparing with the uni-/bipolar-like
structure seen in the magnetized model R1B12, the shock
morphology of these two nonmagnetized models is obviously
different. Models R0B00 and R1B00 show roundish and oblate
shock morphology, respectively. During our simulation time up
to tpb∼500 ms, we do not find a shock revival in these two
nonmagnetized models.

3.2. Shock Wave Evolution

Figure 3 shows the maximum (thick lines) and averaged
(thin) shock radii in the top panel and the time evolution of the
diagnostic explosion energy Eexp and mass accretion rate ( M)
in the bottom panel for models R0B00 (black line), R1B00
(blue line), and R1B12 (red line), respectively. Here Eexp is
defined by

( )ò gt=
t>

E dx , 28exp
0

3

which is analogous to Equation(2) of Müller et al. (2012) but
takes into account the additional contribution from magnetic
fields. For the mass accretion rate, we first measure the mass
flux just above the shock surface on the negative z-axis and
positive x-axis and then multiply them by pR4 shock

2 . Here Rshock

is the corresponding shock position. Since model R1B12 shows
unipolar-like explosion mainly toward the negative z-axis, we
show the value measured on that axis. The value on the positive
x-axis can be considered as a typical value along the equatorial
plane.
From the top panel, one can see that the shock revival is not

obtained for the nonmagnetized models R0B00 (black line) and
R1B00 (blue line) for the simulation time, whereas the shock
propagates outward in the magnetized model R1B12 (red line).
The shock is slightly energized at ~t 180pb ms for model
R1B12 and at tpb∼200 ms for models R0B00/R1B00, when
the Si/O interface accretes onto the shock. This leads to the
runaway shock expansion for model R1B12, whereas it only
results in the slight shock expansion maximally up to the radius
of ∼400 km for model R1B00, gradually shifting to the
standing shock later on (see blue and black lines). The time
when the Si/O interface accretes onto the shock differs by
about ∼20 ms between model R1B12 and the other two
models. The time lag is because of the difference in the
(maximum) shock position (∼4×107 cm) at tpb∼180 ms.
Since the typical accretion velocity is ∼2×109 cm s−1 there,
this can be translated into the crossing time of ∼20 ms, which
is consistent with the time difference. The mass accretion rate
in Figure 3 also supports this. In the bottom panel, the mass
accretion rate measured on the negative z-axis ( ) -M Z for
model R1B12 (red thin solid line) shows the fastest time of
accretion of the Si/O interface at Tpb∼182 ms, while it
accretes at Tpb∼205 ms in model R0B00 (black thin lines)
and also along the equatorial plane in model R1B00 (blue thin
dashed line, which is overlapped by the black lines). Therefore,
the aforementioned shock expansion can be explained by a
sudden reduction of mass accretion rate in association with the
accretion of the Si/O interface.
The diagnostic explosion energy in the bottom panel

basically correlates with the shock evolution. In the successful
explosion model R1B12, the diagnostic explosion energy
increases significantly faster than the other two nonexplosion
models already at ∼20 ms after bounce. It reaches ∼1050 erg
around tpb∼100 ms. The value Eexp∼1050 erg at the time
when the shock reaches Rshock∼1000 km is very similar to the
ones in previous 2D (Takiwaki et al. 2009; Obergaulinger &
Aloy 2017) and 3D (Obergaulinger & Aloy 2020) studies with
the similar initial rotation and magnetic fields strength. In the
nonmagnetized models R0B00 and R1B00, Eexp temporally
reaches ∼1049 erg at Tpb∼220 ms when the Si/O interface
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accretes and a temporal shock expansion occurs, though it soon
decreases.

We can also find a typical signature of SASI in the evolution
of shock radii. From the top panel of Figure 3, a time
modulation is visible in the maximum shock radii, particularly
in model R0B00 (thick black line) for tpb100 ms.

Such a modulation reflects the appearance of SASI (Foglizzo
et al. 2006; Scheck et al. 2006). To see more quantitatively the
shock morphology and also the dominant SASI mode, we plot
time evolution of normalized mode amplitudes ºA c cℓm ℓm 00

of spherical polar expansion of the shock surface Rshock(θ, f)
for several dominant modes in Figure 4. Here we adopt the
same definition for cℓm as in Burrows et al. (2012), with ℓ and m
representing the quantum number with respect to the real
spherical harmonics of Yℓ

m, respectively.
In the top panel, the dominant mode is (ℓ, m)=(2, 0) (black

line) for the first ∼120 ms after bounce. Since its sign is
positive, the shock morphology is prolate, as also shown in the
left and center columns in Figure 1. However, for tpb120 ms
in the same model R1B12, (ℓ, m)=(1, 0) (red line) gradually
takes over as the dominant term with its sign being negative.
Therefore, the shock morphology at the end of simulation time
is unipolar toward the negative z-axis, which is again consistent
with the right column in Figure 1. In the middle panel, R1B00
shows that A20 becomes negative for tpb50 ms, which
reflects a rotating oblate spheroid (see bottom panels in
Figure 2). At the same time, (ℓ, m)=(1,±1) (blue and green
lines) also show comparable amplitudes with that of (2, 0), but

with clear quasi-periodic oscillations. Between these two
∣ ∣ =m 1 modes, i.e., (ℓ, m)=(1, 1) and ( )-1, 1 , a phase shift
seemingly with ∼π/2 exists that indicates that the spiral SASI
motion appears (Blondin & Mezzacappa 2007). In the
nonrotating model R0B00, all three modes with ℓ=1 and
m=0,±1 show basically the same amplitude with almost no
phase shift up to tpb∼120 ms. Therefore, the dominant SASI
mode is the sloshing mode first after bounce. Afterward the (1,
0) mode gradually decouples from the other two different
azimuthal modes. There seems to be a phase shift of ∼π/2
between (1, 0) (red line) and the other two with (1,±1) (green
and blue). This can be explained by the dominant SASI motion
changing from the sloshing motion to the spiral one around
tpb∼120 ms. Note that the growth of the spiral SASI in the
nonrotating progenitors (Blondin & Mezzacappa 2007) is
consistent with the outcomes of previous 3D core-collapse
models (Hanke et al. 2013; Kuroda et al. 2016a; Ott et al.
2018).

3.3. Nonaxisymmetric Instabilities inside the MHD Outflow

In this subsection, we discuss nonaxisymmetric instabilities
inside the MHD outflow and their potential impact on the shock
evolution. In a 3D–GR model using similar precollapse rotation
rate and magnetic fields to our model R1B12, Mösta et al.
(2014) observed the appearance of the kink instability (Begel-
man 1998; Lyubarskii 1999; Narayan et al. 2009). According to
their analysis, the linear growth of the kink instability shortly
starts after bounce, which is followed by the nonlinear phase

Figure 1. Snapshots of the volume-rendered entropy (top panels) and inverse of the plasma β in the logarithmic scale ( b-log 1; bottom panels) for model R1B12. From
left to right panels, the postbounce times of tpb∼56, 100, and 250 ms are depicted, respectively. In the top panels, the central bluish spherical/spheroidal object
roughly corresponds to the unshocked PNS core. Note that the inclination angle of the coordinates is not fixed in each time snapshot to visualize the expansion
morphology more clearly. The white line denotes the length scale that is parallel to the rotational axis (z-axis).
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already at tpb∼20 ms. At that moment, the jet barycenter
showed a significant displacement from the rotational axis,
which is one of the main features of the growth of the kink
instability, leading to a broader and less energetic outflow
compared to the counterpart axisymmetric case. We also check

whether this instability appears and affects the dynamics of
outflow in model R1B12.
The condition ∣ ∣ v>fb b Lz , i.e., the well-known Kruskal–

Shafranov criterion, is the major factor that determines whether
the system is unstable to the most dominant screw mode, i.e.,
for ∣ ∣ =m 1 mode with a condition mbf<0. Here L and ϖ
denote the inverse of minimal wavenumber of the unstable
mode propagating parallel to the rotational axis and distance
from the rotational axis, respectively. In a sufficiently rapidly
rotating case, one should also take into account the rotational
stabilizing effect that relaxes the Kruskal–Shafranov criterion
to ∣ ∣ v> Wfb bz (Tomimatsu et al. 2001), where Ω is the
angular frequency in geometric units. In our magnetized model
R1B12, the toroidal magnetic field dominates over the poloidal
one ∣ ∣ >fb b 1z just above the PNS core (z∼10−50 km).
Such a configuration is usually seen in the magnetized collapse
model, as the initial poloidal field can be very efficiently
converted into the toroidal one mainly through the field
wrapping. As a consequence, the value ∣ ∣ ( )vWfb bz inside the
MHD outflow reaches ( )- 10 102 3 in our model. We therefore
consider that the MHD outflow that appeared in our model
R1B12 can also be subject to the kink instability.
Following Mösta et al. (2014), we monitor how the

barycenter of MHD outflow is displaced from the rotational/
magnetic field axis, i.e., z-axis. We take the same definition for
the barycenter x ic written by (Mösta et al. 2014)

( ) ( )ò
ò

=x z
ds x P

ds P
, 29i

i

c
mag

mag

Figure 2. Same as Figure 1, but for only entropy of nonmagnetized models at different time slices tpb∼245, 370, and 500 ms. The top and bottom panels are for
models R0B00 and R1B00, respectively. Note again that the white line denotes the length scale that is parallel to the rotational axis (z-axis).

Figure 3. Top: maximum (thick lines) and averaged (thin) shock radii (Rshock)
plotted as a function of the postbounce time. Bottom: time evolution of the
diagnostic explosion energy (Eexp; thick lines) and the mass accretion rate ( M ;
thin solid/dashed lines) for all models. In each panel, the color indicates the
model name: red (R1B12), blue (R1B00), and black (R0B00). For the mass
accretion rate, we first measure the mass flux just above the shock surface on
the negative z- and positive x-axes and then multiply them by pR4 shock

2 . Here
Rshock is the corresponding shock position.
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for i=1 and 2, where we perform the surface integral ò ds
over the domain with ∣ ∣ x y, 50 km at z=±50 km. In
addition, to see the mode propagation direction properly in a
rotating system, we map the original Cartesian coordinates x i to
a rotating frame x̄i by

¯ ( )=x Q x , 30i
j
i j

with Qi
j being the usual rotation operator with respect to z-axis

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )=

Q Q
- Q QQ
cos sin 0
sin cos 0
0 0 1

. 31j
i

Θ(t, z) measures the cumulative rotation angle of the system at
a given slice ( ¯)=z z after core bounce and is given by the
following rough estimation:

( ) ¯ ( )ò wQ = ¢t z dt, , 32
t

t

cb

where ¯ ( )w t z, is the mean angular frequency of the plane. Since
the PNS differentially rotates, the rotational angle Θ(t, z) is just
a rough measurement. We evaluate the mean angular frequency
¯ ( )w t z, simply by

¯ ( ) ( )ò
ò

w
w r

r
=t z

ds

ds
, , 33

z

where w = +v x yz z 2 2 is the angular frequency measured
in the Eulerian frame and we use the rest mass density as a

weight. After mapping, we plot the barycenter x i
c on the

rotating plane ¯ ¯xy at ¯ = z 50 km.
In the top and bottom panels of Figure 5, we show the

trajectory of the barycenter of MHD outflow (solid lines) on the
original xy and rotating ¯ ¯xy planes at z=±50 km. To highlight
the initial linear growth phase, we show only from the bounce
time up to tpb=30 ms, which is indicated by the arrow. In
addition, we show the direction of bf averaged over ϖ40
km by the dashed–dotted line for reference. Because of our
initial purely poloidal magnetic field with dipole-like structure
orienting toward positive z-axis, the direction of the toroidal
component generated after core collapse mainly through the
field wrapping is basically clockwise (bf<0) and counter-
clockwise (bf>0) for z>0 and z<0, respectively, on these
planes. Note that the positive z-axis points toward us, and from
the condition mbf<0 that selects the leading mode to
develop, the propagation direction of the most unstable mode
in a comoving frame is expected to be counterclockwise
(m= 1) and clockwise (m=−1) for z>0 and z<0,
respectively.
From the top panel of Figure 5, both of the solid lines show a

basically counterclockwise propagation direction, i.e., the
m=1 mode. In the top panel, the mode propagation direction

Figure 4. Time evolution of normalized mode amplitudes Aℓm of spherical
polar expansion of the shock surface Rshock(θ, f). The top, middle, and bottom
panels are for models R1B12, R1B00, and R0B00, respectively. Note that we
plot only several dominant modes, (ℓ, m)=(1, 0), (1,±1), and (2, 0), denoted
in the bottom panel.

Figure 5. Solid lines: trajectories of the barycenter of MHD outflow on the
original x-y plane (top) and on the rotating ¯ ¯xy plane (bottom). The color
represents the position of the planes either at z=50 km (blue lines) or at
z=−50 km (red lines). Time evolution is indicated by the arrow. Dashed
−dotted lines show the direction of bf, averaged over ϖ40 km, which is
clockwise (bf<0) and counterclockwise (bf>0) for z>0 and z<0,
respectively, on these planes.
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(blue solid arrow) is counterclockwise (i.e., m= 1) and is
opposite to that of bf(<0) (blue dashed–dotted arrow), for the
region with z>0, meaning that it is consistent with a linear
analysis mbf<0. On the other hand, in the same top panel,
both solid and dashed–dotted red arrows are pointing toward
the same counterclockwise direction on the plane at z=−50
km, which is not in accordance with the theoretical expectation
mbf<0. We think that this inconsistency seen in red arrows
(top panel) is apparent, as, from the bottom panel, the red solid
arrow in the rotating frame is showing a clockwise propagation
direction (i.e., m=−1) opposite to that of bf(>0). These facts
support that the kink instability likely appears, displaces the
shock center, and consequently makes the shock morphology
broader compared to the corresponding 2D model.

We should also mention another relevant nonaxisymmetric
instability that might influence the growth of the above kink
instability. As we have already mentioned, the ratio of
rotational to gravitational potential energy after bounce in both
of our rotating models reaches several percent, which makes
the PNS core subject to the low-T/W instability (Watts et al.
2005; Saijo & Yoshida 2006). Once the instability appears, it
produces an instability mode that propagates in the same
direction as the fluid motion, i.e., this time with the m=1
mode in both the northern and southern hemispheres. There-
fore, it means that the two different instabilities, namely, the
low-T/W and kink instabilities, could simultaneously exist
possibly with the same m=+1 mode for z>0 and with two
opposite m=±1 modes for z<0, breaking the parity
between northern and southern hemispheres.

It is beyond the scope of this paper to quantify how the two
instabilities coexist, how they affect the PNS core dynamics,
and the disruption of the bipolar flows as seen in model R1B12.
Once the bipolar flows are disrupted, the mass accretion rate
becomes higher on the weaker explosion side as a consequence
of deflection of mass accretion on the stronger explosion side.
This could explain a relatively weak explosion
(Eexp∼1050 erg) of model R1B12. Apparently we need more
studies that vary the initial magnetic fields and rotational

profiles systematically in order to clarify the disruption
mechanism of the MHD outflows.

3.4. Rotational Effects on Neutrino Profiles

The time modulation of CCSN neutrino signals reflects the
hydrodynamics evolution of the postbounce core (e.g.,
Tamborra et al. 2013; Walk et al. 2019; and Mirizzi et al.
2016 for a review). In this section, we describe how we can
make the connection between the core dynamics and neutrino
signals. In Figure 6, we plot the neutrino luminosity Lν (top
row) and mean neutrino energy εν (bottom row) for specific
observer angles for electron type (left), antielectron type
(middle), and heavy-lepton-type neutrinos (right). Here we
evaluate these signals by averaging the neutrino’s energy flux
at r=400 km following Tamborra et al. (2014). We choose
three observer angles relative to the rotational axis that are
denoted by N (north pole), E (equatorial plane, here represented
by the positive x-axis), and S (south pole). To prevent too many
lines, we plot only spherical-averaged values for the nonrotat-
ing model R0B00 (solid black line), as it shows basically no
significant asymmetry.
Common features among all models are as follows. The

neutrino luminosities of all flavors plateau at tpb∼50–100 ms.
At that moment, the luminosities reach Lν∼6×1052 erg s−1

for νe and n̄e and Lν∼3.5×1052 erg s−1 for νx. Although such
values depend on the progenitor star, EOS, and neutrino matter
interactions employed, the peak luminosities are in good
agreement with those in recent studies with detailed neutrino
transport (Müller et al. 2017; O’Connor & Couch 2018;
Summa et al. 2018; Vartanyan et al. 2019b). The luminosities
become nearly constant at tpb∼220 ms when the mass
accretion decreases suddenly. We can also see how the
progenitor rotation and magnetic field affect the neutrino
signals. The nonrotating model R0B00 shows basically the
highest luminosity and mean energy in all flavors of neutrinos
(see black lines). Meanwhile, the rotating magnetized model
R1B12, which explodes shortly after bounce, shows the lowest

Figure 6. We plot (viewing-angle-dependent) neutrino luminosity Lν (top row) and mean neutrino energy εν (bottom row) at specific observer angles for νe (left), n̄e

(middle), and νx neutrinos (right). These quantities are estimated at a radius of r=400 km. We choose three observer angles denoted by N (north pole), E (equatorial
plane, here represented by positive x-axis), and S (south pole). For the nonrotating model R0B00, we plot only spherical-averaged values (solid black line) for
simplicity.
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values in both luminosities and mean energies, though there is a
slight observer angle dependence. The model R1B00 appears in
between them. Such features stem from the fact that the most
compact PNS of R0B00 without being subject to the rotational
flattening emits higher neutrino luminosities and energies
owing to its hotter core temperature. On the other hand, the
rotating magnetized model R1B12, which shows a lower mass
accretion rate owing to the centrifugal force and also
experiences the mass ejection through bipolar outflow, has a
less compact PNS, leading to lower neutrino energies and
luminosities.

Next, we focus on the viewing angle dependence of the
neutrino signals. In Figure 7, we show a magnified view of
Figure 6 from tpb=120 to 180 ms. In both the rotating models
R1B00 and R1B12, the neutrino luminosity and energy
observed along the equatorial plane (solid red and blue lines)
show the lowest value compared to those along the rotational
axis (dashed–dotted and dotted lines labeled by N and S). This
is because of the rotational flattening of the PNS, where the
neutrino sphere radius along the equatorial plane is located
outward from that of the rotational axis, making the neutrino
temperature seen along the equator lower than that from the
rotational axis (e.g., Kotake et al. 2003; Ott et al. 2008; Harada
et al. 2019).

To show the viewing angle dependence more quantitatively,
we plot the rms variation dá ñnL 2 around the angle-averaged

neutrino luminosities á ñnL in Figure 8, where dá ñnL 2 is defined
by

( ) ( )òdá ñ ºn p =

- á ñ
á ñ

n n

n
L ds . 34

R

L L

L
2 1

4 400km

2

As we have mentioned, the rotational flattening of the PNS
produces the larger viewing angle dependence that is clearly
seen by larger rms values in R1B00 than those in R0B00.
Furthermore, model R1B12 shows the largest variance owing
to its highly aspherical explosion morphology. Another
remarkable feature is that there is a hierarchy by neutrino
species of ¯n n n> >e e x, which is most significant in model
R1B12 and is diminished in nonrotating nonexploding model
R0B00. We note that the hierarchy is different from the

previous report n̄ n n> >e e x by Vartanyan et al. (2019a).
Although we do not know the exact reason of the difference,
the hierarchy basically indicates how large each of the neutrino
spheres deforms and, thus, may depend on both the adopted
neutrino opacities and transport method.
There is yet another neutrino signature for model R1B00.

Seen from the equatorial plane (blue solid line), a clear periodic
time modulation can be seen. On the other hand, the
modulation is hard to see from the rotational axis (blue
dashed–dotted and dotted lines). Furthermore, the degree of the

Figure 7. Same as Figure 6, but for the postbounce time from tpb=120 to 180 ms.

Figure 8. Time evolution of the rms variation dá ñnL 2 around the angle-
averaged neutrino luminosities for all neutrino flavors. From top to bottom, we
show the value in models R1B12, R1B00, and R0B00.
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rotational effect differs depending on the neutrino flavor. It is
particularly strong in νe and becomes weaker in order of n̄e and
νx. Figure 7 shows that νe signals have a time modulation with
amplitudes of ∼5×1051 erg s−1 and ∼0.5 MeV for the
luminosity and mean energy, respectively, while those values
decrease to ∼1×1051 erg s−1 and ∼0.2MeV for νx. Such a
modulation was first discussed in Takiwaki & Kotake (2018)
and is associated with the growth of the so-called low-T/W
instability (Ott et al. 2005; Watts et al. 2005; Saijo &
Yoshida 2006) and the (one-armed) spiral flows. In both of
our rotating models, the ratio of rotational to gravitational
potential energy after bounce reaches several percent, which is
close to the onset of the low-T/W instability. The neutrino
spheres of all flavors are located above the PNS core surface at
R∼10 km, where the low-T/W instability starts to (typically)
develop, and also below the shock that is deformed by the
spiral SASI (for model R1B00). Once the two instabilities
appear, they can deform the neutrino spheres and potentially be
the origin of the neutrino time modulation (see Kazeroni et al.
2017 for the possible connection of the two instabilities).
However, we note that the smaller modulation in the νx signals
seems to favor that the outermost νe sphere is more strongly
affected by the spiral SASI.

Indeed, there is quantitative evidence that the deformation of
the neutrino sphere creates the time-modulated neutrino
signals. In Figure 9, we plot spectra of the (angle-dependent)
neutrino luminosity n̄L e corresponding to the blue solid line in
the top middle panel of Figure 7, of normalized mode
amplitudes of the number luminosity n̄N m,e for m=1, 2, and
of the normalized mode amplitude of spherical polar expansion
of the isodensity surface R11 for mode (ℓ, m)=(1, 1). Here
n̄N m,e is evaluated by

( )¯
¯

¯

ò
ò

f

f
=n

n
f

n
N

d N e

d N
35m

im

,e

e

e

at R=400 km and θ=90°, with Nν being the number
luminosity estimated in the same way as the luminosity Lν

(Tamborra et al. 2014). Although we here use the number
luminosity Nν, we can do the same discussion using the
luminosity Lν. R11 is the isodensity surface extracted at the rest
mass density of ρ=1011 g cm−3 corresponding roughly to the
neutrino sphere. The normalized mode amplitude of spherical
polar expansion of R11 is evaluated exactly in the same manner
as that of the shock surface. Here we focus on the n̄e signals
(120 ms�tpb�180 ms), bearing in mind the detectability
(Abbasi et al. 2011; Abe et al. 2016). The detectability for
models in this study will be reported elsewhere.
The black line in Figure 9 shows that the time modulation

seen in Figure 7 peaks at F∼125 Hz. This component is
mainly composed of m=1 neutrino number flux, as the two
peaks of red and black lines are appearing at nearly the same
frequency. The peak of n̄N e with m=2, which is a daughter
mode of m=1, appears closely at a double frequency
F∼240 Hz of that of m=1 as expected, but the m=2
mode seems to contribute less to the total neutrino signals than
the m=1 mode. Finally, as is obvious from the peak at
F∼125 Hz in the green line, the origin of these time
modulations of the neutrino signals is m=1 deformation of
the neutrino sphere represented by R11. We thus conclude that
the strong spiral SASI appearing in R1B00 deforms the
neutrino sphere with the same m=1 mode and leads to the
characteristic neutrino signals.
We also mention that we observe a clear north–south

asymmetry in neutrino signals in model R1B12 for tpb120
ms, i.e., between dashed–dotted and dotted red lines, which
cannot be seen in the corresponding lines of R1B00. In this
model R1B12, the neutrino emission toward the north pole is
significantly stronger than the one toward the south. The excess
toward the north is consistent with the one-sided explosion to
the south pole (see the red line in the top panel of Figure 4 for
A10 mode). Due to the shock expansion mainly toward the
south, the mass accretion is stronger in the northern hemi-
sphere, which results in higher accretion luminosities and
neutrino energies in the north pole.

3.5. The Role of Neutrino Heating

Next, we make a comparison of the energetics and discuss
the role of neutrino heating among the models, particularly how
the neutrinos contribute to the shock expansion. In Figure 10,
we plot the mass in the gain region Mgain (top left); heating rate
Q (top middle); gain and shock radii Rgain and Rshock,
respectively (top right); specific heating rate z = Q Mgain

(bottom left); heating efficiency ( )¯h = +n nQ L Le e , which
measures how much of the emergent νe and n̄e contribute to the
matter heating (bottom middle); and the ratio of advection to
heating timescale τadv/τheat (bottom right) for each model. To
obtain these values, we first define the gain radius Rgain(θ, f) at
each radial direction (θ, f). Rgain is defined at the first point
where the net energy deposition rate q becomes zero behind the
shock, with q being defined by

( )( ) ò åa g eº
n

n e
m

mq d S n . 36,

Then, each value is defined by

( )
( ) ( )ò r=
q f q f< <

M dx , 37
R r R

gain
, ,

3

gain shock

*

Figure 9. Spectra of the (viewing-angle-dependent) neutrino luminosity n̄L e

(black line) corresponding to the blue solid line in the top middle panel of
Figure 7; of normalized mode amplitudes of the number luminosity n̄N m,e , with
the lower index m being the azimuthal mode either m=1 (red) or m=2
(blue); and of the normalized mode amplitude of spherical polar expansion of
the isodensity surface R11, extracted at the rest mass density of
ρ=1011 g cm−3, for (ℓ, m)=(1, 1) (green). The vertical axis is in arbitrary
units. Here R11 is roughly representing the neutrino sphere. The spectra are
obtained by the Fourier transformation for the time interval of 120
ms�tpb�180 ms.
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where the surface integral ò ds appearing in the denominator of
Equation (38) is performed in front of the shock surface and v r

is the radial component of the three-velocity v i. In the top right
panel, we show spherical-averaged shock (solid lines) and gain
radii (dashed). In the rest of the panels, to illustrate how the
values vary relative to the rotational axis, we divide the space
into two equal-volume regions, polar and equator, and show the
values evaluated in each region. Here we define the polar
region (labeled by “Pol”) by the cone angle of 60° around the
rotational axis, i.e., θ�60° or θ�120°, and the equatorial
region (labeled by “Equ”) by 60°<θ<120°. These ranges
are used in the volume and surface integrals in
Equations (37)–(40). When we evaluate ( ( ))¯h = +n nQ L Le e ,
ζ, and τadv/τheat, we first evaluate every quantity, e.g., Q and

¯+n nL Le e, in each region and then take their ratio. Regarding
the model R0B00, we show its values integrated over all solid
angles (labeled by “4π”) since it has basically no significant
angle dependence. Note that we show half values for extensive
variables, i.e., Mgain and Q, for model R0B00 to compare with
other models.

Figure 10 clearly shows how the rotational and magnetic
field effects appear in general and also how they change the
values relative to the rotational axis. The (spherically averaged)
gain radius is located more inward in rotating models R1B12
(red dashed line in the top right panel) and R1B00 (blue dashed
line) than the nonrotating model R0B00 (black dashed line). As

can be seen in the top left and top middle panels, the more
inward Rgain and larger Rshock produce a more extended gain
region and consequently a larger mass and total heating rate
integrated over that region. The nonrotating model R0B00
shows smallest Mgain and Q, typically several times smaller
than the other two. The specific heating rate ζ (bottom left
panel) also shows a rotational dependence. In general, R0B00
presents higher ( )z =Q Mgain , although Mgain and Q themselves
are smaller than the other two. On the other hand, from the
perspective of neutrino heating efficiency, ( ( ))¯h = +n nQ L Le e

in R0B00 shows the least efficiency (bottom middle). There-
fore, rotation works to lower the specific heating rate ζ but raise
the heating efficiency η. Such a trend is consistent with
previous rotating models with detailed neutrino transport in
Summa et al. (2018).
In the bottom right panel, all these features mentioned above

are aggregated in a value τadv/τheat. Higher τadv/τheat
represents that the dwell time of matter in the gain region is
relatively long in terms of heating timescale. It thus leads to a
more favorable condition for the explosion. Particularly
τadv/τheat larger than 1 can be a measurement of the onset of
runaway shock expansion due to neutrino heating (see Müller
et al. 2017; Ott et al. 2018; Summa et al. 2018 for the latest 3D
successful explosion models and also O’Connor & Couch 2018
for the 3D nonexplosion models). In the bottom right panel,
model R1B12, which has the largest gain region, shows the
highest t tadv heat (red lines), while model R0B00 shows the
lowest value (black line). Therefore, our result also shows that
rotation makes τadv/τheat higher. This tendency is again
consistent with Summa et al. (2018). In addition, the magnetic
fields also assist the expansion of the shock surface and
produce higher τadv/τheat than the corresponding nonmagne-
tized model R1B00.
Next, we discuss how rotation affects the energetics in each

region relative to the rotational axis. First, in the model R1B00,
both Mgain and Q show significantly higher values along the
equator (blue dashed lines) than those in the polar region (blue
solid). The blue dashed and solid lines start to diverge when the
second shock expansion takes place at tpb∼220 ms. The

Figure 10. We plot Mgain (top left), Q (top middle), Rgain and Rshock (top right), ζ (bottom left), η (bottom middle), and τadv/τheat (bottom right) for each model. See
text for their definitions. The solid and dashed lines represent that the volume/surface integral is performed around the polar axis (labeled by “Pol”) and equatorial
plane (labeled by “Equ”), respectively. Regarding the nonrotating model R0B00, we integrate over all solid angles (solid black line labeled by “4π”). Note that we
show half values for extensive variables, i.e., Mgain and Q, for model R0B00 for comparison with other models.
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higher values seen in the equatorial region are again due to the
rotational shock expansion. These rotational effects were
already discussed by Nakamura et al. (2014), though with a
very simplified neutrino light bulb method, and we obtain a
consistent result in our self-consistent M1 neutrino transport
simulations. The heating efficiency η in the equatorial region is
also nearly twice as high as that in the polar region. As a
consequence, τadv/τheat exceeds 1 only in the equator (blue
dashed line) and not in the polar region (blue solid line). If the
neutrino heating were more efficient and could actually aid the
second shock expansion, it would directly lead to the shock
runaway phase. Model R1B00, however, deflates and does not
enter the runaway phase during our simulation time up to
tpb∼500 ms.

We see an interesting feature in model R1B12. In this
rotating magnetized model, as we have explained in
Section 3.2, it exhibits a rapid shock expansion toward the
rotational axis soon after core bounce. Therefore, τadv/τheat in
the polar region (red solid line) shows a slightly higher value
than the equatorial one (red dashed line). However, the higher
value in the red solid line only persists during the first ∼100 ms
after bounce, and afterward the red dashed line takes over the
solid one with largely exceeding 1. Interestingly, τadv/τheat in
the polar region shows basically less than unity until tpb∼200
ms, although the shock runaway already occurs mainly toward
the polar region. The trend is thus completely opposite to that
of R1B00, in which the region with larger shock expansion
exhibits larger τadv/τheat. We interpret these behaviors as that
the neutrino heating is not the main mechanism of the bipolar
shock expansion in R1B12, but the magnetic fields play the
leading role to aid the shock expansion. On the other hand, as
the red dashed line is exceeding unity, the shock expansion
along the equator is mainly supported by neutrino heating.

3.6. The Asymmetry of Lepton Number Emission

Tamborra et al. (2014) reported the existence of the lepton
number emission self-sustained asymmetry (LESA). This
phenomenon is characterized by a spherical symmetry breaking
of the lepton number emission, basically dominated by a dipole
mode. Their analysis exhibited that LESA appears together
with a partial distribution of Ye in the PNS convection zone
(r∼25 km), suggesting that the partial distribution can
possibly be the primary cause of LESA. In their subsequent
paper (Glas et al. 2019), they also explained the origin of the
partial distribution of Ye by the PNS convection. They showed
that the PNS convection excites preferentially the lower-order
multipole modes, including the dipole one that drives partial
distribution of Ye. In addition, once such a partial distribution
of Ye is fully established, it results in a lepton number emission
with a prominent dipole mode that heats more materials on the
opposite side to the dipole mode, enhancing a globally
deformed shock surface. Consequently, nonspherical mass
accretion, basically with low mode ℓ=1, onto the PNS core
surface continues to replenish the lepton-rich matter and
sustains the partial distribution of Ye (Tamborra et al. 2014).

O’Connor & Couch (2018) and Vartanyan et al. (2019b) also
reported the appearance of LESA using the M1 neutrino
transport method, i.e., full multi-D neutrino transport. O’Con-
nor & Couch (2018) pointed out the importance of velocity-
dependent terms in the neutrino transport, as the models
without that term do not show any conclusive evidence for
LESA. Vartanyan et al. (2019b) also showed that the dipole

mode can be comparable to the monopole one in the late
postbounce phase tpb∼650 ms. Therefore, although the
growth rate of dipole magnitude may actually depend on the
detailed neutrino transport scheme (Glas et al. 2019), the LESA
seems to be a common phenomenon in CCSNe.
Following O’Connor & Couch (2018) and Vartanyan et al.

(2019b), we plot the ratio of monopole to dipole mode of the
lepton number emission as a function of the postbounce time in
Figure 11. To plot the figure, we first evaluate the net lepton
number flux via neutrinos ¯º -n n n  e e at r=400 km and
then obtain the coefficient ℓm of spherical polar expansion of
n as we do in Figure 4. In the top panel, we plot the dipole

magnitude ∣ ∣1 normalized by the monopole one 0, where we
take the following definition (O’Connor & Couch 2018):

∣ ∣ ( )åº
=-

 3 . 41
m m1 1

1
1
2

In the lower three panels, we plot the value  3 m1 0 for each
quantum number m in each model to discuss the correlation
with the shock morphology.
From the top panel, we see that the absolute magnitude of

the normalized dipole mode in model R1B12 shows a
significantly larger value than the other two nonexplosion
models. In this model R1B12, the dominant contribution to the
total dipole mode is mainly coming from m=0 mode (blue
line in the second panel). Since it basically exhibits the positive
value for tpb100 ms, the relative n̄eʼs number flux is less
toward positive z-axis and higher toward negative z-axis. From
Figure 4, the shock morphology with (ℓ, m)=(1, 0) mode
becomes stronger for tpb100 ms with a negative value that
reflects that the shock expansion takes place relatively stronger
toward the negative z-axis (also see the final snapshot of the
shock morphology in Figure 1). It is thus opposite to the dipole
mode of the lepton number flux.
Although the anticorrelation between the orientation of the

excess of the lepton number emission (positive z-axis) and the
shock expansion (negative z-axis) seen in model R1B12 is
consistent with the mechanism of LESA, the highest value
∼0.4 (red line in top panel) is significantly smaller than the
values of Tamborra et al. (2014), in which they find the excess
of dipole mode in all models irrespective of the explosion.
Therefore, to see if LESA is actually the mechanism of the
excited dipole mode of the lepton number emission in model
R1B12, we show in Figure 12 the distribution of Ye in the PNS
at four different time slices Tpb=144 (top left), 205 (top
right), 225 (bottom left), and 251 ms (bottom right). In
addition, we also show the distribution on x-y (bottom left), x-z
(top left), and y-z (top right) planes in every minipanel. We note
that, from the first and second panels in Figure 11, the strong
excess of lepton number emission mainly orienting toward
positive z-axis is observed for Tpb100 ms. Therefore, if
LESA is the origin of the excess, we would expect that the
partial distribution of Ye has a dipole mode that orients opposite
to the excess (see the schematic Figure 15 in Tamborra et al.
2014), i.e., toward the positive z-axis in model R1B12.
From the Ye distribution at Tpb=144 and 205 ms, we do not

see any clear dipole-like structure of Ye on the x-z and y-z
planes. A clear dipole-like structure appears only near the end
of the simulation time (see bottom two panels, Tpb225 ms).
The reason for the apparent inconsistency, namely, the dipole
lepton number emission without the existence of noticeable
partial distribution of Ye, can be understood from Tamborra
et al. (2014). According to their study, the dipole emission of
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total lepton number is produced mainly at two different
regions, the PNS convection zone R20 km, where the main
dipole emission (∼70%–80%) occurs, and the entropy-driven
convection zone several 10 kmRRshock, where the dipole
emission reaches its asymptotic value. At the latter location, the
partial distribution of Ye is established mainly by a

replenishment of rich Ye material that is transported with
stellar mantle deflected by the deformed shock surface.
Figure 13 shows the radial profile of the total lepton number

flux ( )¯= -n n n  e e at three representative time slices
Tpb=144 (solid lines), 205 (dashed), and 251 ms (dotted).
Here n is a hemispheric integration of the total lepton number
flux measured in the comoving frame. The hemispheric
integration is performed for northern and southern hemi-
spheres, where we observe the excess and reduction of
asymptotic n , respectively. By comparing the red and black
lines at each time slice, they are almost overlapping just above
the PNS convection zone R∼20 km, while the difference
gradually appears with radius especially at R50 km, i.e., in
the entropy-driven convection zone. Such a profile, namely, the
minor contribution from the PNS convection zone to the dipole
emission, is completely different from the one in Tamborra
et al. (2014), which shows that a larger difference than ours
already appears at R∼20 km. We therefore conclude that the
dipole emission seen in model R1B12 did not originate from
LESA but from the accretion-induced partial distribution of Ye
above the PNS convection zone.

4. Discussion and Conclusions

We have presented the first 3D–GR MHD simulations of a
20 Me star with spectral neutrino transport. For the nuclear
EOS and neutrino opacities, we used SFHo of Steiner et al.
(2013) and a baseline set of weak interactions (Bruenn 1985;
Rampp & Janka 2002), where nucleon–nucleon bremsstrahlung
is additionally taken into account, respectively. Neutrino
transport is handled by the M1 closure scheme with the red
and Doppler shift terms being fully considered.
We calculated three models, nonrotating nonmagnetized,

rotating nonmagnetized, and rotating magnetized, to explore
the effects of a progenitor’s rotation and magnetic field on both
the dynamics and neutrino profiles. Regarding the dynamics,
while no shock revival was observed in two nonmagnetized
models during our simulation times, the shock expansion
initiated shortly after bounce in a rotating magnetized model.
Initially the shock morphology takes a bipolar structure, which
was eventually taken over by a unipolar one. The shock front
reached 1000 km at tpb∼220 ms and still continued expansion
at the end of our simulation time. From our analysis for the
rotating magnetized model, we interpreted that the polar
expansion is driven mainly by the magnetic pressure, while
the equatorial expansion is facilitated by the neutrino heating.
Although we did not see the shock revival in two nonmagne-
tized models, the standing shock is located further outward in
the rotating model, which expands the gain region and
increases the mass in the region. Therefore, we obtained a
consistent result with previous studies that the (moderate)
rotation makes the condition more favorable for the explosion
than the nonrotating case.
Using the same (or very similar) nonrotating 20 Me

progenitor star as in this study, some previous 3D studies
have shown a successful explosion (Melson et al. 2015; Ott
et al. 2018; Burrows et al. 2019), while others have not
(Tamborra et al. 2014; Melson et al. 2015; O’Connor &
Couch 2018). It is thus worth comparing our nonrotating and
nonexploding model R0B00 with these previous studies. One
of the major limitations in this work is its relatively lower
numerical resolution compared to the previous ones. It has been
thoroughly examined that insufficient resolution can potentially

Figure 11. Normalized dipole magnitude (top panel) and contributions from
each quantum number m for each model (bottom threes). In the top panel, the
color represents the model name, while it indicates the quantum number
m=0,±1 in other plots. We can see that model R1B12 (red line in the top
panel) shows a clear excess in its dipole magnitude.
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inhibit the shock revival due to less turbulent pressure (e.g.,
Couch & Ott 2015; Müller & Janka 2015; Roberts et al. 2016;
Takiwaki et al. 2016; Burrows et al. 2019; Nagakura et al.
2019). For instance, Ott et al. (2018) performed full relativistic
3D calculations with M1 neutrino transport and obtained the
shock revival. This might be possibly due to their higher
numerical resolution within the shock surface that achieves a
factor of ∼2−4 higher than ours. The higher numerical
resolution allows the growth of turbulence, leading to an
additional pressure support. It should be also noted that more
up-to-date neutrino opacities, e.g., a strangeness-dependent
contribution to the axial-vector coupling constant or many-

body corrections to neutrino-nucleon scattering (Burrows &
Sawyer 1998; Horowitz et al. 2017), generally benefit in
facilitating the shock revival (e.g., Kotake et al. 2018; Burrows
et al. 2019). We are currently conducting CCSN simulations
with better neutrino opacities following Kotake et al. (2018),
which will be reported elsewhere in the near future.
We investigated the effect of the precollapse rotation and

magnetic fields on the neutrino signals. In general, both of the
rotation and magnetic fields decrease the neutrino luminosity
and energy, as they make the PNS core less compact owing to
the centrifugal force and/or mass ejection. In addition, the
rotation produces angle-dependent neutrino signals relative to

Figure 12. Distribution of Ye in the PNS at four different time slices Tpb=144 (top left), 205 (top right), 225 (bottom left), and 251 ms (bottom right). In each panel,
there are three minipanels that depict x-y (bottom left), x-z (top left), and y-z (top right) planes. Although the partial distribution of Ye seemingly with higher-order
modes is visible initially (say, Tpb=144 and 205 ms; top two panels), we cannot see any clear dipole-like structure. At around the end of our simulation time
(Tpb220 ms), the dipole mode seems to gradually grow with orienting toward positive z-axis. The structure is not destroyed by the PNS convection and persists at
least for a few tens of milliseconds until the end of our simulation time in model R1B12.
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the rotational axis. The neutrino luminosity and energy along
the equator are significantly lower than those along the
rotational axis. We observed a quasi-periodic time modulation
in the neutrino signals, especially in model R1B00 toward the
equator, that is greatly suppressed along the rotational axis.
From our spectral analysis, the peak frequencies of the time-
modulated signals and of the m=1 deformation of neutrino
sphere(s) have nearly the same value. Therefore, together with
the less modulation in heavier-type neutrino signals, we
consider that the spiral SASI mode deforms the neutrino
spheres, leading to the quasi-periodic signals. Our results
showed clear dependencies of neutrino signals on the
progenitor’s rotation, magnetic field, and observation angle.
A more systematic study (such as changing the progenitor
model, the initial MR strength, and the inclination between the
rotation and magnetic axis) is needed for clarifying the multi-
messenger signals from MR-driven CCSNe.

We also witnessed the dipole emission of lepton number for
our MR explosion model, albeit weak. Although it is similar to
the LESA phenomenon (Tamborra et al. 2014; O’Connor &
Couch 2018; Glas et al. 2019; Vartanyan et al. 2019b), from
our detailed analysis on the Ye distribution in the PNS
convection layer and also on the spatial origin of dipole
emission, we found that it is not associated with LESA. We
consider that the strong unipolar explosion in model R1B12
supplies rich Ye material on one side and produces the partial
distribution leading to the dipole emission from the entropy-
driven convection zone. We, however, stress that more MHD
simulations with sophisticated neutrino transport are indeed
necessary to mention the robustness of the unipolar explosion
seen in our model R1B12 and of the dipole emission associated
with it.

As an important 3D effect, we showed that the kink
instability is most likely to appear in the magnetized model that
can potentially broaden the expanding blob, leading to weaker
bipolar jets. However, the PNS core may also be subject to the
low-T/W instability; we could not disentangle the outcomes of
these two possibly coexisting instabilities. Further numerical
simulations by other independent groups, preferably with finer

numerical resolutions, are definitely required to clarify the
interplay between the two instabilities.
In the end of our discussion, we briefly mention the possible

role of MRI. Although the stellar magnetic field configuration
and its strength at precollapse phase are poorly understood,
strong initial magnetic fields of ∼1012 G as employed in this
study might be too strong according to magnetized stellar
evolution calculations by Heger et al. (2005), which give
109 G (but also see Peres et al. 2019, for a possible scenario
for considerably stronger initial magnetic fields). To see how
the MRI amplifies such plausibly weak magnetic fields,
Obergaulinger et al. (2009) conducted local shearing disk
simulations. Their results showed that the initial seed magnetic
fields inside the PNS ( ) 1012 G can be amplified to
dynamically relevant strengths ( ) 1015 G within several
milliseconds. Since the main magnetic field amplification
mechanism during core collapse is compression, their initial
seed magnetic fields inside the PNS ( ) 1012 G could originate
from the precollapse phase ( ) 109 G, which seems compatible
with the stellar evolution calculation.
Sawai & Yamada (2014) have shown in their global 2D

axisymmetric simulations that the MRI can not only amplify
the initial seed magnetic fields but also produce a global
magnetic field in the postshock region. Later, a globally
ordered field amplification in the PNS was found in full 3D–
GR MHD simulations by Mösta et al. (2014). Furthermore,
Raynaud et al. (2020) just recently reported the first numerical
evidence of generation of magnetic fields inside the PNS
convection zone with dynamically relevant strengths ( ) 1015 G
irrespective of the initial seed magnetic field strengths. All
these facts indicate that model R1B12 in this study is not too
extreme but might be plausible, although the typical length
scale of the MRI ( ) 10 m is far too small to resolve by our
current numerical grid size (simply limited by our currently
available computational resources). Other than the MR
explosion scenario, the turbulence in the MRI could enhance
the neutrino heating efficiency, which could impact the
neutrino mechanism (Sawai & Yamada 2014; Masada et al.
2015). All these subjects remain to be studied. As such, we can
see a vast untouched (research) territory lying in front of us,
into which we have just made a first jump with a newly
developed tool (our 3D–GR MHD code) in hand.
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JP18H01212 (K.K. and T.T.); and JICFuS as a priority issue to
be tackled by using the Post “K” Computer. Numerical
computations were carried out on Cray XC50 at CfCA, NAOJ.

Appendix

In this appendix, we show that our metric evolution
implementation has a fourth-order convergence in space by
checking the well-known polarized Gowdy wave test (Alcu-
bierre et al. 2004). We omit to write the Gowdy wave metric
and initial condition that can be found elsewhere (e.g.,
Alcubierre et al. 2004). We evolve the collapsing Gowdy

Figure 13. Radial profile of the total lepton number flux ( )¯= -n n n  e e at
three representative time slices Tpb=144 (solid lines), 205 (dashed), and 251
ms (dotted). We plot n integrated over the northern (red lines) and southern
(black) hemispheres at a given radius R. Here, from Figure 11, the northern
(southern) hemisphere corresponds to where we observe the excess (reduction)
of n , i.e., with relatively higher (¯ )n ne e number flux.

16

The Astrophysical Journal, 896:102 (18pp), 2020 June 20 Kuroda et al.



wave metric backward in time using the harmonic slicing
condition with zero shift vector β i=0 as for the gauge
condition. Although the Gowdy wave is a plane wave, we
perform the test in both full 1D and 2D space. In the latter 2D
case, we tilt the propagation direction of the plane wave at 45°
in the x-y plane. We employ two different grid spacings
dx=1/N with N=64 or 128 to check for the numerical
convergence. Figure A1 shows the L2 norm of violation of the
Hamiltonian constraint ∣ ∣ 2 for the coarser spacing model with
N=64 (black line) and the finer one with 128 (red). For finer-
resolution models (red lines), we multiply ∣ ∣ 2 by 24, since we
use fourth-order spatial finite differencing. From the figure, we
see that there is almost a perfect overlap during the first ∼180
and ∼40 crossing times in the 1D and 2D tests, respectively,
which shows that our metric evolution scheme actually
achieves a fourth-order convergence in space.
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