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Abstract
We present an atomistically informed parametrization of a phase-field model for
describing the anisotropic mobility of liquid–solid interfaces in silicon. The
model is derived from a consistent set of atomistic data and thus allows to
directly link molecular dynamics and phase field simulations. Expressions for the
free energy density, the interfacial energy and the temperature and orientation
dependent interface mobility are systematically fitted to data from molecular
dynamics simulations based on the Stillinger–Weber interatomic potential. The
temperature-dependent interface velocity follows a Vogel–Fulcher type behavior
and allows to properly account for the dynamics in the undercooled melt.

Keywords: phase-field model, molecular dynamics simulation, interface
kinetics, silicon recrystallization

(Some figures may appear in colour only in the online journal)

1. Introduction

The growth of silicon is relevant for a wide range of technological processes in semiconductor
industry, including the production of polycrystalline silicon for photovoltaics by

Modelling and Simulation in Materials Science and Engineering

Modelling Simul. Mater. Sci. Eng. 25 (2017) 065015 (20pp) https://doi.org/10.1088/1361-651X/aa7862

Original content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the

author(s) and the title of the work, journal citation and DOI.

0965-0393/17/065015+20$33.00 © 2017 IOP Publishing Ltd Printed in the UK 1

mailto:sibylle.bergmann@wias-berlin.de
https://doi.org/10.1088/1361-651X/aa7862
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-651X/aa7862&domain=pdf&date_stamp=2017-07-18
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-651X/aa7862&domain=pdf&date_stamp=2017-07-18
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


electromagnetic casting, edge-defined film feed methods, ingot directional solidification
techniques, and also liquid phase crystallization. Currently, over 90% of the commercial solar
cells are made from single- or multi-crystalline silicon. The production volume of solar cells
using the multi-crystalline silicon is higher than that of single-crystalline silicon. In order to
obtain a detailed understanding of the interplay of process parameters and the resulting
microstructure, computer simulations have become an increasingly important tool. However,
modeling of nucleation processes and growth morphologies requires a quantitatively correct
description of anisotropic interface energies and mobilities of the crystal-melt interface.

Simulations of the solidification of multi-crystalline Si including the evolution of grains
can be divided in macroscopic, microscopic and atomistic methods. On the macroscopic
scale, cellular automata and geometric models were proposed, which are most efficient, but
lack some physical details. Atomistic molecular dynamics simulations have been successfully
applied to simulate solidification of silicon and thus offer a route for revealing details of the
growth kinetics [8, 9, 36]. Because of the enormous computational effort, however, these
models are restricted to relatively small system sizes of typically not more than a couple of
million atoms. This is why for modeling phenomena on the microscopic scale, phase field
models (PFM) have emerged as a promising and powerful tool for simulating free boundary
problems with complex morphological evolution. Since the transport equations for heat and
mass and the phase field are solved simultaneously, the effects of surface tension, none-
quilibrium, and anisotropy can be directly included. PF models are based on physical para-
meters and can take into account anisotropies of interface energies and mobilities.

In the context of silicon grain growth PFM face, however, several challenges. The large
anisotropy of interface energies and directional dependent mobilities determine in a delicate
way the combination of occurring facets. Moreover, the solidification process is in general
much slower than for metallic systems and thus there is smaller thermal gradients. A technical
drawback of PFM lies in the fact that the minimum mesh size has to be smaller than the
interface thickness, while a realistic interface thickness is only on the order of the capillary
length approximately several Ångstrom. The large body of literature on phase-field models
for transitions between liquid and solid phases has been reviewed, for example in Boettinger
et al [5], Wheeler et al [46] and more recently in Moelans et al [32] and in the context of
solidification and dendritic growth by Steinbach [40]. Especially, for the problem of excimer
laser annealing of a Si layer on an amorphous substrate Magna et al [30] and Shih et al [39]
developed specific phase-field models based on coupled equations describing the thermal,
phase and impurity redistribution during the annealing process. A recent review on liquid
thermal annealing was published by Fisicaro et al [15]. However, in the PFM existing studies
dealing with silicon mostly qualitative assumptions on free energy densities, anisotropic
interface energies and mobilities were used. On the other hand, detailed information on
melting points, interface velocity and formation of defects during crystal growth are in
principle available from molecular dynamics simulations and can directly be used. Therefore,
it seems natural to ask if both modeling approaches can be combined to yield quantitative
accurate models, that are amenable to large scale simulations. This has been the concern of a
number of studies in recent years, where it has been shown how atomistic molecular
dynamics computations can be used to obtain quantitative information for kinetic and ther-
modynamic properties to correctly predict the dynamics of the corresponding multi-phase
systems using phase-field models. In the context of dendritic solidification, for example, Hoyt
et al [21] developed a method for extracting anisotropic interface energies from atomistic
molecular dynamics simulations and used them in in a phase-field description with weak
anisotropy of the solid–liquid interface. Similarly, Bragard et al [6], derived PF-parameters
for predicting the dendrite growth velocity as a function of undercooling in pure Ni. A more
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detailed overview on these problems can be found in Hoyt et al [22]. For the solidification of
the alloy systems of NiZr, Danilov et al [10] and Guerdane et al [20] addressed the more
fundamental question if molecular dynamics simulations and the phase-field approach can
give quantitative equivalent results. At least for these specific alloy systems they found good
agreement in quantities such as the melting rates by comparing their numerical results.

Interestingly, there is no published study in which the thermodynamic parameters of a
phase-field model for solidification of silicon are extracted from atomistic simulations,
although some relevant data are available [4, 7, 13, 19]. Thus, the focus of this study is to
establish a phase-field model, where the complete set of necessary parameters is derived from
molecular dynamics simulations based on the Stillinger–Weber (SW) interatomic potential for
Si [42]. In particular, we incorporate a consistent description of the Vogel–Fulcher-type
temperature dependence of the interface velocity of Si [18, 41, 44]. In order to establish the
necessary phase-field parameters we investigate three distinct planar interface orientations.

2. From an atomistic to a phase-field description

In the diffuse interface description the transition between a liquid and crystalline phase is
introduced by a phase-field variable p tx,( ). It is a function in space and time that varies from
p tx, 0=( ) in the liquid state to p tx, 1=( ) in the crystalline state. In the simplest setting for
a pure melt in the isothermal case a free energy functional

p T F p T p V, ,
2

d , 1
V

2
2ò

s
F = + ( ) ( ) ∣ ∣ ( )

can be derived from thermodynamic considerations [5]. The bulk free energy density F p T,( )
is a function of the phase-field variable and temperature. The gradient energy coefficient σ is
related to the steepness or width of the transition from the liquid to the solid phase. For
anisotropic interfacial energies, this also depends on the orientation angle normal to the
contours of constant p as shown in [26, 31]. Since we consider a one-dimensional model,
different σ parameters are chosen depending on the given interface orientation hkl{ }, denoted
by hkls{ }. Upon minimization of the decreasing free energy functional p T,F( ) the evolution
equation for p tx,( ) is obtained as

p
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where M hkl
PF

{ } denotes the interfacial mobility parameter of the phase field describing the
relaxation dynamics of the interface. The mobility parameter M hkl

PF
{ } depends on temperature

and also on interface orientation.
As schematically sketched in figure 1, the free energy density F is convenientally chosen

as double-well potential with minima at p = 0 for the liquid and p = 1 for the crystalline
phase and with a maximum in between. We choose a fourth order polynomial in p with
temperature dependent coefficients. The temperature dependent minima correspond to the free
energies of the liquid and solid phase and can be calculated from atomistic simulations by
thermodynamic integration (see section 3.2).

By measuring the normal velocity

v MF 3= ( )

of a moving flat interface in a molecular dynamics simulation (see section 3.4) one can
directly determine the orientation dependent mobility M of a solid–liquid interface. The
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driving force F is determined by the free energy difference of the liquid and solid phase at a
given temperature and can be independently calculated. However, the thermodynamic
mobility M obtained in such a manner, cannot be used as parameter in a phase-field model.
The reason is that in a phase-field simulation the system has to overcome the barrier Bkin

dividing the two potential wells of the free energy density F as sketched in figure 1. As we
show in section 4.1 in equations (11) and (14), the kinetic barrier Bkin has a direct effect on the
free energy density. This contributes to the mobility of the phase-field and thusMPF cannot be
identical to M. This is often disregarded in parametrizations for recrystallization phenomena
as e.g. in [15, 39, 46].

The second term of the integrand in equation (1) describes the crystal-melt interfacial
energy, which scales with the coefficient hkls{ }. For a given interfacial energy hklg{ }, which can
again be obtained from molecular dynamics simulations, and a fixed interface width hkle{ }, one
can adjust Bkin and hkls{ }. The relations between B , ,hkl hklkin s g{ } { } and hkle{ } are

B T , 2 ,hkl

hkl
hkl hkl hklkin m

V
g

e
s g e= ={ }

{ }
{ } { } { }

as given in [1].
Again, it should be noted that the parameter σ is often considered as freely adjustable.

Thus, for a given interface energy, rescaling the σ parameter for numerical reasons is
equivalent to rescaling of the interface width, which in turn means that the parameter Bkin

needs to be readjusted, if the interface energy shall remain unaffected.
In this paper, we choose 1 nm111e ={ } as a physical parameter describing the width of

the interface for the 111{ } growth plane and use interface velocities, interfacial energies and
free energy densities obtained from molecular dynamics simulations.

The velocity versus temperature relationship is fitted to an equation describing the
competition between kinetics and thermodynamics of the crystallization process. In
section 4.3, the remaining parameter of the phase-field model, the mobility MPF, is then
obtained by a shooting method applied to (2) in one dimension, such that the crystallization
velocity of the phase-field simulation agrees with the growth velocity calculated by means of
molecular dynamics, which we prove numerically in section 4.4.

Figure 1. Example of the bulk free energy density F and its kinetic barrier Bkin at
temperature 400 K (less than Tm

V). Bkin is the kinetic barrier, that has to be overcomed to
pass from one phase into the other.
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3. Atomistic model and parameter calculation

3.1. Method

Molecular dynamic calculations are performed using the SW interatomic potential for silicon [42],
which describes the structure of the molten phase realistically, and reproduces the experimental
melting point [25, 28, 29, 38]. We calculate thermal properties and interfacial velocities with the
widely used LAMMPS code [35] and obtain free energy densities via using the MD++ code
[37]. In table 1 we present a summary of the thermal properties obtained using the SW potential
along with results form previous simulations and experiments.

We initialize a simulation box containing 4096 atoms in the diamond structure and heat it
up. For doing so, we apply a Nosé–Hoover thermostat with a rate of 1013 K s−1. After melting
occurs, we cool it down with the same rate and calculated the specific heat and latent heat
from the average total energy. Clearly, the specific heat and melting point are in good
agreement with the experimental finding. The latent heat, in contrast, is low compared to
experimental measurements. The reason is that we describe the solid phase and the liquid
phase by a single empirical model despite their different bonding mechanisms [37]. The
melting point Tm

MD calculated from a simulation cell with solid–liquid phases co-existence is
almost exact compared to the experimental value of 1683 K and in good agreement with
earlier simulations [14, 17]. If the intersect of free energies calculated by the adiabatic
switching method at constant volume is used (see section 3.2) the calculated melting point
T 1697.12 Km

V = is slightly higher. In order to be consistent with the free energy data, we use
Tm
V as melting temperature for the phase-field model.

3.2. Free energy densities

For calculating the free energy density, we use a supercell with 512 atoms and periodic
boundary conditions in all three directions. The actual calculation of the free energy is
performed using both adiabatic switching and reverse scaling [11, 45] as implemented in the
MD++ software package by Ryu and Cai [37]. In order to be consistent with our phase-field
model, we modify the code such that an NVT ensemble is used, the initial volume for both
phases—solid and liquid—is equal to the equilibrium volume of the crystalline silicon
supercell at 0 K. The free energy density is calculated then by dividing the obtained free
energies by that same volume. Furthermore, in our approach we include the free energies of
the amorphous state calculated by Broughton and Li [7]. The results are presented in figure 2.
The melting point used in the phase-field model is the one obtained from this free energy
calculation, T 1697.12 Km

V = , which is the temperature at which the amorphous/liquid and

Table 1.Heat capacity, latent heat and melting point of silicon. Tm
MD is the melting point

obtained from moving interface simulations, Tm
V is the melting point obtained at con-

stant volume from the adiabatic switching method (see section 3.2).

cp,solid cp,liquid HmD (kJ mol−1) Tm
MD(K) Tm

V(K)
(J mol−1 K−1) (J mol−1 K−1)

SW-pot. 26.9 28.7 31.7 1683 1697.12

other sim. 30.9 [7] 1682 [17]

Exp. 26–29 [12] 27.2 ± 1.5 [12] 50.25 ± 0.6[12] 1683[42]
Data (900–1687 K)
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solid free energies intersect. We point out that this value does not correspond to the exper-
imental value or to the values obtained from direct interface calculations (see table 1). The
reasons for this discrepancy are the NVT ensemble we used for the free energy calculation
and a numerical error in the adiabatic switching and reverse scaling methods, used for a large
temperature intervals like the one we analyze.

3.3. Interfacial free energies

Interfacial free energies calculated with the SW potential are available in literature from Apte
and Zeng [2], who used molecular dynamics to determine ,100 110g g{ } { } and 111g{ } at the
melting point. Their mean values are given in table 2. The most densily packed 111( )
orientation has the lowest interface energy, while the (110) direction exhibits nearly the same
excess energy. This is obviously at odds with the equilibrium shape of Si grains embedded in
a melt, which show a Wulff shape with (111) and (100) facets only. Thus, 110g{ } is obviously
underestimated by the SW-potential. Since the purpose of this study is to devise model
parameter, which allows us to directly combine phase-field and molecular dynamics simu-
lations with consistent model parameters corresponding to the SW potential, we adopt these
values for our parametrization.

3.4. Interface velocities

We calculate interface velocities from molecular dynamics simulations of moving planar
liquid–solid interfaces with different crystallographic orientations at constant temperature

Figure 2. Minimum values for the free energy density for liquid/amorphous ( f T0 ( ))
and crystalline ( f T1 ( )) equilibrium to the SW potential for a temperature range of
200–2000 K. The free energy equilibrium values are calculated with the codes provided
by Ruy and Cai [37]. For the liquid branch, Tg points out the glass transition. The free
energies for the amorphous phase were calculated by Broughton and Li [7].

Table 2. The crystal-melt interface free energies γ at the melting point Tm
V for the

orientations {100}, {110} and {111} calculated by Apte and Zeng in [2].

Orientation {100} {110} {111}

Tm
Vg ( ) in eV Å−2 0.026 0.0218 0.0212
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T 800, 2000 KÎ [ ]. For this, we initialize a simulation box of about 43 × 43 × 130Å, like
the one shown in the left-hand side of figure 3. Such box contains 12 000–13 000 atoms,
depending on the crystal orientation and has periodic boundary conditions in all three
directions. The box sizes in x- and y-direction are adjusted in order to obtain a single crystal
without lattice defects near the boundaries of the box. We start our simulation with an
equilibration phase using a Nosé–Hoover thermo- and barostat for 10 ps at the desired
temperature in order to consider thermal expansion of the box. One timestep corresponds to
1 fs. The box dimensions are left free to vary independently of each other. For the case of
temperatures below the melting point, as shown in the left-hand side of figure 3, the crys-
talline part of the box (about 1 12) is equilibrated at the desired temperature. The remaining
atoms are melted at 1000 K above the melting point and then cooled to a temperature near
Tm
MD. While melting, the box dimensions in x- and y-direction are fixed, but in z-direction the

box is allowed to shrink or expand. Finally, we run the crystallization for some nanoseconds
with a global thermostat at the desired temperature. The x- and y-dimensions are fixed again,
but not in the growth direction. For the case of temperatures above the melting point the
procedure is analogous. In this case, the lower part of the box (about1 12) is heated up to the
desired temperature and, therefore, is melted, while the upper part of the box is kept crys-
talline with a temperature near Tm

MD. Then, for some nanoseconds, the complete simulation
box is connected to global thermostat at the desired temperature above Tm

MD.
To extract the velocity of the interface, one first has to determine its position at each

timestep. There are numerous ways to do so (see [28]), for instance, by monitoring the
particle density or the atomic potential energy. The observed parameter only has to fulfill the
condition that it is sufficiently different in the solid and liquid phase. In this study, we choose
the centrosymmetry parameter [24], which can be calculated for each atom within LAMMPS.
It is zero for an atom in a perfect lattice, and gives a positive value for disturbed atomic
environments. The average of the centrosymmetry parameter over one atomic layer
perpendicular to the growth direction (corresponding to some hundreds atoms) results in a

Figure 3. The schematic of the simulation box used to calculate the interface velocities
is presented in the left figure. For temperatures below the melting point the yellow
region corresponds to the crystalline silicon and the blue region to the melt. In the case
of temperatures above the melting point, the color code is reversed. In the right figure
we show the dependence of the average centrosymmetry parameter of melt and solid on
temperature. The mean value CScrit(T) is used to determine the position of the
crystallization front.
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centrosymmetry of 8.5–11 for a liquid layer and 12–13.5 for a crystalline layer. We find that
the centrosymmetry of melt and crystal is dependent on temperature, as shown in the right-
hand of figure 3.

Therefore, we take the mean value of the centrosymmetry of crystal and liquid as the
critical value CScrit in order to distinguish liquid and solid atoms. Using the centrosymmetry
method, the isothermal interface velocities are finally determined for certain temperatures in
the range 800–2000 K for the SW potential.

The latent heat and the heat capacity determine (together with heat conductivity) how
much heat is generated in a crystallizing sample at the moving interface and how fast it is
conducted away. It was shown by Monk et al [33] that due to the release of latent heat, the
actual interface temperature can differ from the one which is set by the thermostat. Thus,
Monk et al proposed to use multiple thermostats, from which each one only sets the temp-
erature for a volume element smaller than 20Å in thickness. They simulated the scenario for
pure Ni. Our temperature calculations during crystallization show a flat temperature profile
over the whole simulation box. This indicates that heat is taken away fast enough by one
global thermostat and did not influence the crystallization velocity.

Another important feature of silicon is the presence of an amorphous phase, if there is a
significant undercooling. This is captured by our isothermal conditions for the moving
interface and results in a Vogel–Fulcher type dependence of the interface velocity on
temperature [18, 41, 44].

However, in order to feed the PFM with these information, we need an analytical
expression for the growth velocity. The growth velocity is described by the product of driving
force P and mobility M, which is formulated for an atomically flat solid–liquid interface by
Jackson [23] as

v M P f A P, 4n= =· · · · ( )

where f represents the percentage of favorable growth sites (i. e. steps) on the crystal surface,
A 3= W the cube root of the atomic volume, ν the attempt frequency of atom jumps over the
interface and P the driving force for crystallization. Within transition state theory [23] the
interface velocity is given by the difference between the velocities of crystallization and
melting:

v v
Q

kT

G

kT
exp 1 exp , 50= - - -

D⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥· · ( )

where Q is activation energy associated with atomic mobility and GD is the Gibbs free
energy difference between the two phases. The last term in brackets is the thermodynamic
driving force for crystallization F, and can be approximated by a series expansion, which we
develop upto second order to obtain

F
G

kT

G

kT
1 exp . 6= - -

D
»

D⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟ ( )

In [47], Wilson derives the term d n· in equation (4) as D d6 with the diffusion coefficient
D. Frenkel [16] refines this expression further by replacing the diffusion coefficient with the
Stokes–Einstein relation

D
kT

r3
, 7

ph
= ( )

which describes the diffusion of a spherical particle with radius r in a liquid with viscosity η.
As a first approximation, the mobility of a particle in the liquid follows an Arrhenius function.
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However, from the enthalpy as a function of temperature from the section 3.1, we noted the
occurrence of a glass transition. Specifically, when approaching and crossing Tg the mobility
of the atoms in the melt is reduced and diffusion is slowed down drastically. The Arrhenius
description does not describe this behavior of glass-forming melts. To overcome this problem,
Vogel [44] and Fulcher [18] introduced an empirical relation allowing the increase in
viscosity when approaching the glass transition

A

T T
exp , 80

VF
h h=

-

⎛
⎝⎜

⎞
⎠⎟· ( )

where 0h and A are constants and the Vogel temperature, TVF, lies about 50 K below the glass
transition temperature. By replacing the Arrhenius- with the Vogel–Fulcher-expression, we
finally obtain

v f
G

kT

D

d

f H

rd T
T T

A

T T

6 2

3
exp . 9m

0 m
V m

V

VFph
=

D
=

D
- -

-

⎛
⎝⎜

⎞
⎠⎟· · ·

·
· ( ) · ( )

The resulting velocity–temperature relationships are depicted in figure 4, where we fit our
measurements with the Vogel–Fulcher expression (9).

The small velocity of the {111} interface is related to its dense packed structure and low
energy, which does not provide favorable sites for the attachment of atoms. Therefore, a
nucleation step has to take place before a new {111} layer can grow.

On the contrary, the {110} and {100} interfaces are rough because of the formation of
{111} facets. Since the growth in these directions is not nucleation limited, it is faster, which
is in agreement with results reported in previous studies [3, 43]. In figure 5 the atomic
configuration of an {110} interface under growth conditions is shown. The formation of
crystalline {111} can be clearly seen as well as the formation of faulted planes on these facets.
As a rule of thumb, the relation between the maximum velocities v v v: :100 110 111{ } { } { } of the
fitted curves is about 1:0.8:0.4 for this potential. The difference in growth velocity of {100}
and {110} is related to the factor f in equation (4) since all other terms are bulk properties and
not orientation dependent. To approach the factor f theoretically, we calculated the density of
favorable sites by the density of {111} planes ending at a {100} surface. This is given by

Figure 4. Crystallization velocity over temperature for silicon with the Stillinger–
Weber potential, fitted by a Vogel–Fulcher equation (9).
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sin
,100

100r
a
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{ }

where d is the distance of {111} planes and 100a{ } the angle between the {111} and {100}
plane. If one compares 100r{ } and 110r{ } a relation of 1: 1 2 or 1:0.7 is found, which is in
rough agreement with the relation derived from the simulation. Alternatively one can count
the number of broken bonds per area at the surface, which gives an identical result.

Compared to literature values for MD simulations, we find values of 18–20 m s−1 for
Stillinger {100} and 9–14 m s−1 for {111} [25, 28, 29], which is in good agreement with the
above measured values. From experiments, velocities of 1.6 m s−1 are reported by Kuo [27]
and 14 m s−1 by Ohdaira [34], so that we conclude that the results for the SW potential are a
good representation of the anisotropic growth velocity of silicon crystals.

4. Atomistically informed phase field parameters

In this section, we derive the parameters for the phase-field model

p
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p
p T, , 10hkl hkl
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¶
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¶
¶

⎛
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⎞
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where the one dimensional phase-field variable p : 0, 0, 1 t´ ( ) [ ] varies between 0
and 1 to describe the two bulk states: liquid (p= 0) and solid (p= 1) and the interface region
between the bulk states ( p0 1< < ), as already mentioned in section 2.

Our main focus is that (10) reproduces the interface velocities calculated in section 3.4,
while all parameters are carefully chosen, such that they are consistent with molecular
dynamics with the SW potential. Since we have from molecular dynamics information about
the three crystallographic orientations {100}, {110} and {111}, we also derive the model
parameters for this orientations, which are indicated with the indices hkl in (10).

Figure 5. The atomic configuration of the {110} interface while crystal growth occurs.
It is possible to see the rough character of the interface evidenced by the presence of
{111} facets. Furthemore, stacking faults (SF) occur on these facets (red atoms). A
similar behavior is observed for the {100} interface.
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At the first step we derive the bulk free energy density F with the help of our molecular
dynamical results described in section 3.2. In section 4.2, we incorporate interface energies
from literature, which are also calculated via molecular dynamics with the SW potential.
Finally, in section 4.3, we adapt the mobility parameter MPF, such that the model reproduces
interface velocities from section 3.4, which we prove numerically in section 4.4.

4.1. Polynomial describing the bulk free energy density

A free energy density F p T,( ), which has the form of a double-well potential in p, can be
established as a polynomial of fourth degree, which is one of the common forms for F. Here,
the coefficients may depend on the temperature and we assume the expression

F p T a T a T p a T p a T p a T p, .0 1 2
2

3
3

4
4= + + + +( ) ( ) ( ) ( ) ( ) ( )

Since the equilibrium states for the bulk free energy density are represented by the two
minima of the double-well polynomial, we choose the coefficients a a, ,0 4¼ , such that

F T0, 0,( ( )) and F T1, 1,( ( )) are the minima points of F. Then, we equip the free energy
density F of the phase-field model with the equilibrium values of the atomistic free energy
and via polynomial interpolation, such that we obtain two polynomials, f T1 ( ) for the
crystalline values in figure 2 at p = 1 and f T0 ( ) for the amorphous/liquid values at p = 0.
With respect to the condition, that f1 and f0 represent the minima of F, the free energy density
has the form

F p T f T a T p a T H T p a T H T p, 2 2 3 , 110
2 3 4= + - + + +( ) ( ) ( ) ( ( ) ( )) ( ( ) ( )) ( )

where H T f T f T0 1= -( ) ( ) ( ). Note here, that H T T 0m
V< >( ) . For the remaining degree of

freedom a(T) in (11) yields:

a T
T T

H T T T

0 0,

6 .
12m

V
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V
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This expression for F fulfills F T f T0, 0=( ) ( ) and F T f T1, 1=( ) ( ) for the minima. Details
of the derivation of (11) and (12) are given in the appendix A.1.

Furthermore, the maximum point of F is T F T T, ,m m( ( ) ( ( ) )) with

T
a T

a T H T2 6
0, 1 . 13m =

+
Î( ) ( )

( ) ( )
( ) ( )

The calculation of (13) is described in appendix A.2. Hence, as we indicated in section 2, for
the line g(p) which is tangent to both of the minima of F, the energy barrier Bkin, that has to be
exceeded to get from one equilibrium phase to the other, is the difference of the function
values of the maximum F m( ) and g m( ). At the melting point Tm

V, the two minima of F have
the same function value and thus B Tkin m

V( ) is the difference of the function value of the
maximum of F and the function value of the minima. Since the function values of the minima
are then f T f T0 m

V
1 m

V=( ) ( ), with equation (13) the maximum point at Tm
V has the simple

expression

T F T f T a T, 1 2, 16 .m
V

m
V

0 m
V

m
Vm m = +( ( ) ( ( ))) ( ( ) ( ) )

Hence, the kinetic barrier at the melting point has the form

B T
a T

16
. 14kin m

V m
V

=( )
( )

( )
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The kinetic barrier closely relates to the interface energy γ, which we discuss in section 4.2,
where we also determine Bkin and hence with (14) the remaining degree of freedom for the
bulk energy.

4.2. Interfacial free energy and width

We derive the gradient energy coefficient σ and the degree of freedom a in the free energy
density (11) consistent with the interfacial energies obtained in Apte and Zeng [2], who used
molecular dynamic simulations. We note that for the calculation of σ and a, we presently use
only the values for the equilibrium state and hence make a independent on the temperature,
since there is no literature with values of temperature dependent interface free energy cal-
culated by means of molecular dynamics with SW potential for Si. But after all, the mobility
parameter MPF will compensate the missing temperature dependence at this point.

Since Allen and Cahn [1], we know the relations between the interfacial energy coef-
ficient σ in the PFM, the modeled interface thickness ε, the interfacial free energy γ and the
modeled kinetic barrier Bkin.

At the melting point T Tm
V= the relations are

T B T
B T

1

2
,

2
.hkl hkl hkl

hkl
m
V

kin m
V

kin m
V

g s e
s

» »( ) ( )
( )

{ } { } { }
{ }

For convenience we set

a
B T

T
T

16
, 2 . 15hkl hkl hklkin m

V 111 m
V

111
m
V

g

e
s g e= = =( )

( )
( ) ( ){ }

{ }
{ } { } { }

For the crystal orientations {100}, {110} and {111}, Apte and Zeng [2] obtained the
crystal-melt interfacial free energy γ, see table 3. We assume for orientation {111} an
interface thickness of 1 nm111e ={ } and find a kinetic barrier of B 0.002 eVkin

3» -Å . Hence,
the interface thickness of orientation {100} results in 12.35100e » Å{ } and of {110} in

10.29110e » Å{ } . In table 3, the values ,g e, and the resulting model parameters σ and a are
given for all three considered orientations. Figure 6 shows the resulting double-well potential
at different temperatures.

4.3. Realization of interface velocity in the phase-field model via the mobility parameter

In the previous subsections, we derived the bulk energy and the gradient energy of the phase-
field model (10) by explicit use of the results from molecular dynamics. In this section, we
calculate the mobility parameter M Thkl

PF ( ){ } of the phase-field model (10), such that the model

Table 3. The crystal-melt interface free energies γ at the melting point Tm
V for the

orientations {100}, {110} and {111} calculated by Apte and Zeng in [2]. With the help
of γ and (15), we calculate the model constants a and σ for the three orientations. For
that we choose an interface thickness of 1 nme = for orientation {111}.

Orientation {100} {110} {111}

Thkl m
Vg ( ){ } in eV Å−2 0.0262 0.0218 0.0212

hkle{ } in Å 12.35 10.29 10

hkl
2s{ } in eV Å−1 0.8042 0.6702 0.6512

a in eV Å−3 0.0339
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reproduces the atomistic velocities v Thkl
MD ( ){ } from section 3.4. But in the phase field, the interface

velocity is not a parameter which can be directly incorporated as the interface energy hklg{ } in
hkls{ } or the free energy minima in F. Hence, we implement a shooting method, where we vary

M Thkl
PF ( ){ } until all required conditions are fulfilled for a fixed temperature and orientation. This

procedure is repeated for all three considered directions (100), (110) and (111), where we make
measurements for the temperatures T 800, 850, 900, ,1950, 2000 K= ¼ .

For the shooting method, we first define boundary values for (10), such that we have
crystal material at the left boundary, and liquid material at the right:

M T
p

x
M T

F

p

p

t
p t p t0 , , 1, , 0. 16hkl hkl hkl

PF 2
2

2
PFs=

¶
¶

-
¶
¶

-
¶
¶

-¥ = +¥ =( ) ( ) ( ) ( ) ( ){ } { } { }

We now fix the temperature and the orientation arbitrarily. Hence, M ,PF s and also the
velocity MDn are constants. The phase field is a traveling wave solution and can be expressed
as

p x t x t, .MDf n f x= -( ) ( ) ≕ ( )

Substitution of f in (16) leads to the boundary value problem:

M M F0 , 1, 0, 17PF 2 PF MDs f n f f f=  - ¢ + ¢ -¥ = ¥ =( ) ( ) ( )

where d

d
f¢ = f

x
and F F¢ =

f
¶
¶
.

To receive an initial-value problem, we integrate the ordinary differential equation in (17)
with the left boundary 1f -¥ =( ) , which holds as our first initial condition, and the right
boundary s, which represents the new space-dependence variable for the shooting method.
Furthermore, we define F Fx f x¢ ¢˜ ( ) ≔ ( ( )), thereby we are able to integrate the derivative of
the potential F in ξ. For the calculation of the integral we use the second initial conditions

0f¢ -¥ =( ) . The both initial conditions guarantee, that we have crystal material at the left
boundary. Applying all described conditions, we receive

c M M Fd d d , 18
s s s

1
PF 2 PF MDò ò òs f x x x n f x=  - ¢ + ¢

-¥ -¥ -¥
˜ ( ) ( )

Figure 6. The double-well potential at different temperatures. At the melting point Tm
V,

the two minima of the bulk free energy density have the same value.
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c M s M F s F s0 1 . 192
PF 2 PF MDs f n f= ¢ - - - -¥ + -( ( ) ) ( ˜( ) ˜( )) ( ( ) ) ( )

By choosing c M F2
PF= -¥˜( ), our initial value problem has the form:

F s
s

F s

M
s F s1

1 , 20MD

PF 2 2
f

f
n

s
f

s

¢
¢

=
¢

- +

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

˜ ( )
( )

( ( ))

( ( )) ˜( )
( )

1, 21f -¥ =( ) ( )

0. 22f¢ -¥ =( ) ( )

We calculate the mobility MPF via a bisection method. Therefore we vary MPF until the right
boundary condition 0f ¥ =( ) is fulfilled for the numerical solution of (20)–(22). Thereby
we solve the initial value problem with Runge-Kutta 4/5. We apply this method for each of
the three orientations {100}, {110} and {111} and use the respective value of hkls{ } listed in
table 3. Thereby we calculate MDn for the respective temperature and orientation with the fits
shown in figure 4. Our results are shown in figure 7 and listed in appendix A.3.

4.4. Numerical solution of the phase-field model and velocity reproduction tests

We solve model (10) numerically at fixed temperatures T 1050, 1100, , 2000 K= ¼ for the
three crystallographic orientations. During the simulation, we measure the velocity of the
interface region by interpolating the position of p = 0.5. In fact, the model reproduces the
velocities v Thkl

MD ( ){ } from molecular dynamics, see figure 8.
As for the molecular dynamical simulations, we also have periodic boundary conditions

for the phase-field model for p x t,( ), which we solve numerically using a Fourier spectral
method. Our equidistant grid guarantees that enough grid points are located on the interface to
secure an accurate solution. For velocities close to zero, we lower the time step for a better
result.

As initial condition we simply define a jump function J(x): for T Tm
V< we set J(x) equal

to one close to the boundaries and zero in between. For T Tm
V> we define J(x) the other way

around. In both cases, one has to take care that the intervals where J x 1=( ) or J x 0=( ) are

Figure 7. The extracted mobilities of the phase-field model as a function of temperature
and orientation. The concrete values are listed in appendix A.3 in table A1.
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wider than the interface thickness, else the system evolves to an equilibrium state before the
traveling wave is established.

Our results of the numerical velocity measurement match accurately with the results from
molecular dynamics. On the left-hand side of figure 8, the velocities from the phase-field
simulation of model (10) are located directly on the line of the Vogel–Fulcher fit of the
molecular dynamical data. For a better comparison, we calculate the relative error, which is

R T
v T v T

v T
. 23hkl

hkl hkl

hkl

MD PF

MD
=

-
( )

( ) ( )
( )

( ){ }
{ } { }

{ }

The relative error is shown on the right-hand side of figure 8. We observe, that the maximal
relative error is 0.0013, which is at T 1650 K= for orientation {110}. 95% of the errors are
even lower than 10−3.

5. Conclusion and outlook

In this study we have extracted the necessary parameters to obtain a phase-field model that
can accurately describe the solid–liquid interface kinetics. In particular, using molecular
dynamics simulations with the interatomic potential by SW, we derived an expression for the
bulk free energy, the interfacial width of the liquid-crystal interface and the crystallization
velocity and hence the corresponding anisotropic mobility parameter for three different
orientations in silicon as a function of temperature. To properly capture the behavior of the
temperature-dependent viscosity near the glass transition a Vogel–Fulcher fit is used for the
SW potential. We show that these results are essential to obtain an accurate temperature
dependence of the mobility parameter in the corresponding phase-field model for liquid-phase
crystallization.

Our approach is presently being extended to two- and three-dimensional setting. Further
extensions include the amorphous and poly-crystalline structure as well as defects such as
stacking faults, in the free energy density and are expected to prove useful for validation
against experimental results of Si recrystallization in the future.

Figure 8. The points in the left figure are the mesured velocities from the numerical
solution of equation (10) which we calculate with the Fourier-spectral method. The
solid lines are the fitted velocities from molecular dynamics. Clearly, model (10) with
the atomistic informed parameters reproduces exactly the kinetic inteface-behavoir. As
shown in the right figure, only 5% of the relative errors of the velocities are greater than
10 3- . The highest error is about 0.0013 for the {110} orientatin at T 1650 K= .
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Appendix

A.1. Determination of the bulk free energy density F

Our approach for the free energy density is a polynomial of fourth degree in p

F p T a T a T p a T p a T p a T p, , A.10 1 2
2

3
3

4
4= + + + +( ) ( ) ( ) ( ) ( ) ( ) ( )

which attains the values in figure 2 at the equilibrium states p = 0 (liquid phase) and p = 1
(crystalline phase). So we need to consider the derivatives of F with respect to p:

F

p
p T a T a T p a T p a T p

F

p
p T a T a T p a T p

, 2 3 4 ,

, 2 6 12 .

1 2 3
2

4
3

2

2 2 3 4
2

¶
¶

= + + +

¶
¶

= + +

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

From the conditions for the existence of minima at p = 0 and p = 1 follows

a T 0, A.21 º( ) ( )

a T 0, A.32 >( ) ( )

a T a T a T
2

3

4

3
, A.43 2 4= - -( ) ( ) ( ) ( )

a T a T2 . A.52 4<( ) ( ) ( )
The polynomials f T0 ( ) and f T1 ( ) pass the equilibrium values in figure 2 for liquid/
amorphous and crystalline Si, respectively. For the minima, we need for (A.1) the equalities
F T f T0, 0=( ) ( ) and F T f T1, 1=( ) ( ) and hence

f T F T a T0, , A.60 0= =( ) ( ) ( ) ( )

f T F T f T a T a T1,
1

3

1

3
. A.71

A.2,A.4,A.6
0 2 4= = + -( ) ( ) ( ) ( ) ( ) ( )( )

With (A.4) and (A.7) the two coefficients a3 and a4 have the form

a T a T f T f T a T H T2 4 2 4 , A.83 2 0 1 2= - - - = - -( ) ( ) ( ( ) ( )) ( ) ( ) ( )

a T a T f T f T a T H T3 3 . A.94 2 0 1 2= + - = +( ) ( ) ( ( ) ( )) ( ) ( ) ( )

Together with (A.9) we can verify the inequality (A.5):

a T H T6 , A.102 > -( ) ( ) ( )
where the right-hand side of (A.10) is negative if and only if T Tm

V< , as one can observe in
figure 2. Hence, for temperatures below the melting point, a2 has to fulfill (A.3). Finally,
together with (A.8), (A.9), the double-well potential (A.1) has the form
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F p T f T a T p a T H T p a T H T p, 2 2 3 , A.110 2
2

2
3

2
4= + - + + +( ) ( ) ( ) ( ( ) ( )) ( ( ) ( )) ( )

where

a T
T T

H T T T

0

6 .
A.122

m
V

m
V


>

- >

⎪

⎪

⎧
⎨
⎩

( )
( )

( )

The formulations (A.11) and (A.12) are equivalent to (11) and (12), respectively, by renaming
a T2 ( ) to a(T).

A.2. Derivation of the maximum argument μ

In the following, the calculation of μ is described, where the notation of (11) and (12) is used.
We first note that with (12) we have

a T H T3 0, A.13+ >( ) ( ) ( )

which can be seen easily by using the restrictions on a in (12):
First of all we note that for T Tm

V>

a T H T H T H T H T3 6 3 3 0
T T12 m

V

+ > - + = - >
>

( ) ( ) ( ) ( ) ( )
( )

and for T Tm
V ,

a T H T H T3 0 3 0.+ > +( ) ( ) ( )
Besides that p = 0 and p = 1, the first derivative of F

F

p
p T p p a T a T H T p, 2 1 2 6

¶
¶

= - - +( ) ( )[ ( ) ( ( ) ( )) ]

has a third root Tm ( )

T
a T

a T H T2 6
.m =

+
( ) ( )

( ) ( )
Since (A.13) holds, the denominator of Tm ( ) can not become zero. Hence, with (12) we have

T 0m >( ) . Further, the condition

T
a T

a T H T2 6
1 A.14m =

+
<( ) ( )

( ) ( )
( )

is equivalent to

a T H T6 A.15> -( ) ( ) ( )

and together with (12) we have T 0, 1m Î( ) ( ) for all T 0 . In addition, for a maximum in
Tm ( ), the second derivative of F in Tm ( ) has to be less than zero, i.e.

F

p
T T

a T a T H T

a T H T
,

6

3
0. A.16

2

2
m

¶
¶

=
+

- -
<( ( ) ) ( )( ( ) ( ))

( ) ( )
( )

!

Since (A.13) holds, the denominator of (A.16) is negative and we get, since a T 0>( )

a T H T6 . A.17> -( ) ( ) ( )
With (12), the last condition is a always true. Hence, the second derivative of F in Tm ( ) is less
than zero, so T F T T, ,m m( ( ) ( ( ) )) is a maximum point of F.

Modelling Simul. Mater. Sci. Eng. 25 (2017) 065015 S Bergmann et al

17



A.3. Listed mobility values

In section 4.3 we describe the calculation of the mobility parameters for the phase-field model
(10). The mobility values are shown in figure 7 and listed in table A1.
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