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Mária Lukáčová-Medvid’ová2 and Burkhard Dünweg1,4,∗

1 Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
2 Institute of Mathematics, Johannes Gutenberg University Mainz, Staudingerweg 9, 55128 Mainz,
Germany
3 Department of Mathematics, Technical University Darmstadt, Dolivostraße 15, 64293 Darmstadt,
Germany
4 Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia

E-mail: spiller@mpip-mainz.mpg.de, abrunk@uni-mainz.de, habrich@mathematik.tu-darmstadt.de,
egger@mathematik.tu-darmstadt.de, lukacova@mathematik.uni-mainz.de and
duenweg@mpip-mainz.mpg.de

Received 22 December 2020, revised 6 June 2021
Accepted for publication 21 June 2021
Published 8 July 2021

Abstract
We present a detailed derivation of a simple hydrodynamic two-fluid model, which aims at the
description of the phase separation of non-entangled polymer solutions, where viscoelastic
effects play a role. It is directly based upon the coarse-graining of a well-defined molecular
model, such that all degrees of freedom have a clear and unambiguous molecular
interpretation. The considerations are based upon a free-energy functional, and the dynamics
is split into a conservative and a dissipative part, where the latter satisfies the Onsager relations
and the second law of thermodynamics. The model is therefore fully consistent with both
equilibrium and non-equilibrium thermodynamics. The derivation proceeds in two steps:
firstly, we derive an extended model comprising two scalar and four vector fields, such that
inertial dynamics of the macromolecules and of the relative motion of the two fluids is taken
into account. In the second step, we eliminate these inertial contributions and, as a
replacement, introduce phenomenological dissipative terms, which can be modeled easily by
taking into account the principles of non-equilibrium thermodynamics. The final simplified
model comprises the momentum conservation equation, which includes both interfacial and
elastic stresses, a convection–diffusion equation where interfacial and elastic contributions
occur as well, and a suitably convected relaxation equation for the end-to-end vector field. In
contrast to the traditional two-scale description that is used to derive rheological equations of
motion, we here treat the hydrodynamic and the macromolecular degrees of freedom on the
same basis. Nevertheless, the resulting model is fairly similar, though not fully identical, to
models that have been discussed previously. Notably, we find a rheological constitutive
equation that differs from the standard Oldroyd-B model. Within the framework of kinetic
theory, this difference may be traced back to a different underlying statistical-mechanical
ensemble that is used for averaging the stress. To what extent the model is able to reproduce
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the full phenomenology of viscoelastic phase separation is presently an open question, which
shall be investigated in the future.

Keywords: viscoelastic phase separation, two-fluid model, GENERIC, Poisson brackets,
coarse-graining, rheology

1. Introduction

1.1. General background

The kinetics of first-order phase transitions is a fascinating
subject of non-equilibrium thermodynamics, which has found
considerable interest in the last decades [1]. Simple situations
are meanwhile well understood in terms of ‘model A’, ‘model
B’, ‘model H’, etc [2, 3]. We are here interested in a generaliza-
tion of ‘model H’, where the order parameter is conserved and
is, beyond diffusion, convectively coupled to hydrodynamic
flow, while acting back on that flow via bulk and interfacial
stresses. The prototypical physical system that is described by
these equations is an unmixing binary fluid.

The situation becomes much more involved if one of the
unmixing species is macromolecular, such that the time scale
of molecular relaxation becomes comparable to that of domain
coarsening. The interplay of the intramolecular degrees of
freedom with the macroscopic unmixing results in a plethora
of interesting and non-trivial phenomena, which were first dis-
covered by Tanaka [4], given the name ‘viscoelastic phase
separation’, and then extensively studied by him and his col-
laborators [5–14]; reference [10] provides a review. The cru-
cial aspect seems to be dynamical asymmetry, meaning that the
structural relaxation of one component is much slower than
that of the other one. Indeed, a very recent numerical inves-
tigation by Tateno and Tanaka [14] reveals the phenomenon
for a phase-separating colloidal dispersion. For macromolec-
ular systems this implies that they do not necessarily have to
be entangled. On the other hand, though, non-entangled sys-
tems tend to exhibit only small to moderate dynamic asymme-
try, such that they show the typical phenomena of viscoelastic
phase separation only to a small (or even unobservable)degree.
At any rate, the reader should be aware that, for the purposes
of the present paper, we mean by the term ‘viscoelastic phase
separation’ not necessarily the set of characteristic observa-
tions described in e.g. reference [10], but rather simply phase
separation in a system where coupling to viscoelasticity plays
a role.

The attempts to describe the phenomena theoretically by
suitably combining ‘model H’ with viscoelastic models such
as the upper convected Maxwell model, or Oldroyd-B [15,
16] are nearly as old as their experimental investigation.
Such models, which we will call here ‘viscoelastic model H’
(VEMH) systems, have been considered in nearly all of the
papers cited above [4, 6–12] as well as in references [17, 18],
mainly building on older work by Doi and Onuki [19] and
Milner [20]. While these studies have undoubtedly advanced
our understanding significantly, we nevertheless believe that

not all problems have fully been solved already. For this rea-
son, we wish to contribute to the field by developing our own
VEMH, and this is the main purpose of the present paper. As
in most of the existing models, we will base our reasoning on a
so-called ‘two-fluid model’, where each of the components is
assigned its own velocity flow field. The central guiding prin-
ciple is that the formulation should permit a direct comparison
with microscopic or mesoscopic computer simulations, where
the polymer conformations as well as the polymer and sol-
vent velocities appear explicitly. In other words, it should be
possible to ‘measure’ each and every dynamical variable that
appears in the theory.

Before we embark on the details of the derivation, we first
want to explain why we believe that a new and fresh look
at the problem may be helpful. We therefore first outline the
problems that, in our opinion, still affect the existing litera-
ture. On the one hand, we believe that the existing VEMHs
are in some aspects a bit unsatisfactory in terms of their phys-
ical interpretation, and we will explain these aspects in sub-
section 1.2. On the other hand, we believe that the existing
standard methods to derive rheological constitutive equations
have a very subtle conceptual problem, and we will try to eluci-
date this in subsection 1.3. Our work attempts to address both
types of difficulty. We therefore present not only a new set
of VEMH equations, which turns out to be fairly simple, and
quite similar to existing sets, but also a somewhat unconven-
tional method of derivation, which, to the best of our knowl-
edge, has not yet been applied to the VEMH problem, and
which may turn out to be useful even beyond the VEMH con-
text, i.e. for rheology in general. The general ‘philosophy’ of
our strategy will therefore be outlined in subsection 1.4. Sub-
section 1.5 will then provide an overview over the remainder
of the paper.

1.2. Physical problems of existing VEMHs

In reference [18], which, to our knowledge, is the most recent
existing VEMH model, Zhou et al start from a predecessor
model, due to Tanaka and coworkers [11] and criticize it as
violating the second law. They then modify the set of equations
in such a way that they are strictly and provenly dissipative. In
the typical isothermal setting of theories of phase separation,
this means that the associated free energy functional decreases
monotonously with time. This is of course a big advantage, and
a property that a physically sound model should certainly sat-
isfy. However, another condition for soundness is that all terms
in the equations should have clear and well-defined molecu-
lar counterparts, and that all contributions in the free energy
should scale properly, as they are known from mechanics, ther-
modynamics, and polymer physics. We believe that the model
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of reference [18] fails in that respect. The functional features a
putative ‘bulk stress’ and a putative ‘shear stress’, where the
‘shear stress’ enters linearly but the ‘bulk stress’ quadrati-
cally. As stresses are essentially the same objects, regardless of
whether they refer to volume or to shear deformation, the pow-
ers should rather be identical. Furthermore, it is not clear how
these objects are related to the conformations of the macro-
molecules. From polymer physics, i.e., more precisely, the
concept of entropic elasticity, it is known that, for small defor-
mations and in the absence of excluded-volume interactions
and entanglements, the elastic energy should scale quadrati-
cally with the molecular extension, or linearly with the con-
formation tensor, which is the tensor product of the molecule’s
end-to-end vector with itself.

An even more subtle problem occurs in the model by
Taniguchi and Onuki [17]. Here the elastic energy is based
upon a tensor W, whose meaning is explained in the paper by
Milner [20] as a strain. The idea is to start from a set of phan-
tom Gaussian chains, originally in equilibrium, which is being
subjected to an affine deformation that may be parameterized
by W. The partition function before and after the deforma-
tion may be calculated, which in turn permits the calculation
of the free energy as function of W. The harmonic approx-
imation to this expression is the elastic free energy appear-
ing in reference [17]. The problem about this is that W is
not an observable, meaning that its value cannot be straight-
forwardly inferred from the configurations of polymer chains
in, say, a molecular dynamics (MD) simulation. For a solid,
this would be possible, since in this case undeformed ref-
erence positions of all the atoms are known, such that the
strain can be measured by comparing the actual atom posi-
tions with the reference positions. In the present situation,
however, we have a fluid, such that a reference configuration
simply does not exist. We speculate that it might perhaps be
possible to assign a well-defined thermodynamic meaning to
W in analogy to, say, a chemical potential, and to construct
advanced sampling schemes to estimate its value; however, at
present this must be viewed as a completely unsolved problem.
For the purposes of the present paper, we can therefore con-
clude that the formulation in terms of W is not very suit-
able for a direct comparison with miscroscopic or mesoscopic
simulations.

Finally, the work by Elafif et al [21] only discusses the over-
all structure of the theory but does not specify an explicit form
of the elastic energy.

1.3. Rheological modelling

As far as we know, there exist two major streams of research
in the goal to construct rheological models or constitutive
equations for complex fluids. These are nicely separated in
terms of the two volumes of the monograph by Bird et al
[15, 16]. On the one hand there is the ‘phenomenological
paradigm’ (volume 1). Here one starts from known conserva-
tion laws and symmetry principles, which turn out to signifi-
cantly restrict the form of the equation of motion for the stress.
Nevertheless, a significant freedom remains, and this is used
to postulate simple assumptions (like linear relaxation) or to

reproduce experiments. Here one either deliberately refrains
from attempting a molecular interpretation, or invokes molec-
ular kinetic theory, which is however the subject of volume 2.
Interestingly, such ambiguities, which result in a certain free-
dom of choice, occur not only in the construction of rheologi-
cal constitutive equations but also in the definition of two-fluid
models [22]. In both cases, the ambiguity occurs only on the
purely phenomenological level, while it is removed as soon
as a well-defined molecular picture is invoked. For rheology,
this is known from kinetic theory [16], while for the two-fluid
model case the same will become apparent in the course of this
paper.

The kinetic-theory approach to rheology (volume 2) may be
called the ‘distribution function paradigm’. Here one consid-
ers the Brownian dynamics of model chains (e.g. harmonic or
FENE dumbbells, Gaussian chains, etc) in an external flow,
within the framework of a Fokker–Planck equation (FPE),
whose solution is a time-dependent distribution function in
conformation space. This function may then be used for defin-
ing time-dependent thermal averages of observables like the
conformation tensor or the virial. The resulting expression of
the stress is then fed into the momentum equation, while the
FPE results in relaxation equations for observables (e.g. the
conformation tensor components) that are needed to obtain a
closed set. By construction, the method does provide a clear
molecular interpretation.

The conceptual problem that we see in that approach lies
in the fact that the statistical-mechanical averages are done
without any constraint. To elucidate what we mean by this
point, let us, for a moment, go back to the simple hydrody-
namics of a monatomic fluid, and its root in statistical mechan-
ics. The idea is that we may consider a small volume ele-
ment that, despite its smallness, contains a large number of
particles such that we may reasonably treat it in terms of sta-
tistical physics. Furthermore, hydrodynamics assumes that,
within the volume element, all variables are in local equi-
librium, except the hydrodynamic variables like the mass (or
particle number), the total energy, and the total momentum.
These latter variables may therefore be viewed as constraints
that define the appropriate thermodynamic ensemble for the
local volume element. Now, if we introduce, say, the chain
conformation tensor as an additional variable into the hydro-
dynamic description, then, in our opinion, this variable should
occur as a corresponding additional constraint in the definition
of the thermodynamic ensemble. However, here one should
watch out that only independent variables are used as con-
straints. In other words: the stress should not be calculated
as a full average over all chain conformations, but rather as
a restricted average over the constrained ensemble. In this
context, note that in standard statistical physics one typically
ignores this problem by relying on the equivalence of con-
strained and non-constrained ensembles. However, this equiv-
alence holds only in the asymptotic limit of infinite system
size, with error terms which scale linearly with the inverse
number of the involved degrees of freedom. To extend this
notion down to the scale of a single macromolecule seems
somewhat problematic, and we believe that this is more than a
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petty formality. Indeed, the different ensembles do result in dif-
ferent equations of motion on the macroscale. In more explicit
terms, this difference is worked out in appendix C. As one sees
there, the difference boils down, for a Hookean dumbbell, to
the difference between mechanical and thermal equilibrium,
which is substantial for a strongly fluctuating soft-matter sys-
tem like a polymer solution. We believe that a consistent way
to treat the effects of fluctuations is not by doing an uncon-
strained average (as in the derivation of the standard Oldroyd-
B model) but rather by augmenting all macroscopic equations
with Langevin noise. As we will see below, the equations of
motion that result from the constrained average (see appendix
C) are identical to those that are derived in the present paper,
using a completely different approach—but different from the
standard Oldroyd-B model. In the present paper, we ignore
Langevin noise in the macroscopic equations and defer that
aspect to future work.

1.4. Basic ‘philosophy’ of our model

The route that we take is somewhat different from the usual
rheological literature, and it may be called a ‘coarse-graining
paradigm’. Its spirit is similar (although technically simpler) to
analogous developments in the theory of liquid crystals [23].
We start from a microscopic model and then define micro-
scopic expressions for various fields. To give an example for
illustration: for a monatomic fluid of particles located at posi-
tions ri, the expression for the particle number density at posi-
tion r would be

∑
i δ(r − ri). We then subject that system

to coarse-graining and derive corresponding field-theoretic
equations of motion. This is (roughly spoken—for details
see below) done by (i) mapping the microscopic Hamiltonian
onto the corresponding field-theoretic one; (ii) doing an anal-
ogous mapping from a microscopic dissipation rate to a field-
theoretic one; (iii) postulating a dissipative Hamiltonian sys-
tem; (iv) finding the Hamiltonian part of the dynamics via the
Poisson brackets of the fields, which in turn are found via ref-
erence to the microscopic counterparts; and (v) reading off the
dissipative part of the dynamics directly from the dissipation
rate. After that, several fields are identified as fast variables and
therefore eliminated adiabatically, where unknown terms are
replaced by phenomenological dissipative terms. At the end,
we arrive at a model that looks similar to the existing VEMH
equations, but differs in various subtle aspects.

We believe that this is a quite powerful approach and has
potential beyond the immediate application to the VEMH
problem. The Poisson bracket formalism has proven extremely
fruitful in hydrodynamics [24–30]; readers not familiar with
that formalism are advised to briefly consult appendices A and
B. Due to the construction via a dissipative Hamiltonian sys-
tem, whose equation of motion can be found as a by-product
of the GENERIC formalism [31–34], we automatically make
sure that the second law is satisfied. Fully in line with the
arguments put forward in reference [18], we consider this as
very important both from the point of view of fundamen-
tal physical consistency, but also from the point of view of
mathematical analysis and derivation of stable and convergent
numerical algorithms [35, 36].

The hydrodynamic model that we construct in the first step
(before the adiabatic elimination of the fast variables) com-
prises two scalar and four vector fields, which are chosen in
order to be able to take full advantage of Hamiltonian dynam-
ics and the Poisson bracket formalism. The fields are (i) the
mass densities of the two components (solvent and polymer),
(ii) the two associated momentum densities (note we study a
two-fluid model), (iii) a vector field of molecular end-to-end
vectors, and (iv) an associated momentum density. The fast
variables that we eliminate in the second step are the rela-
tive velocity, the internal molecular momentum, plus the fluc-
tuations of the total density (and the associated longitudinal
modes).

The elastic Hamiltonian is quadratic, but not in terms of the
conformation tensor but rather the end-to-end vector, which we
use as the elementary field to describe the internal relaxation
of the macromolecules. The equation of motion for the end-to-
end vector can, in the final stage, be transformed to an equation
for the conformation tensor. Except for constant prefactors, the
stress tensor is just the product of the conformation tensor and
the polymer density (which makes perfect sense, since there
should be no elastic stress in spatial regions where there is no
polymer). All in all, our new model has the big advantage that
(i) all degrees of freedom have a well-defined molecular mean-
ing, and (ii) its derivation has a solid foundation in Hamiltonian
dynamics and non-equilibrium thermodynamics. As a limita-
tion, the reader should however notice that entanglements are
not considered by the present model.

Phenomenological closures are imposed only in the sec-
ond step, where the fast variables are removed, while in
the first step (the derivation of the six-field hydrodynamics)
no such closure occurs. This is possible since our micro-
scopic model is significantly simplified, compared to a truly
atomistic system. In essence, it is our computer model for
polymer–solvent systems [37–39], in which bead-spring poly-
mer chains are simulated by MD, while the solvent is rep-
resented by an ideal-gas type hydrodynamic background,
simulated by lattice Boltzmann (LB). The coupling between
MD and LB is of a purely dissipative nature, facilitated by
assigning a Stokes friction coefficient to the beads. Starting
from there, we simplify the model even further by replac-
ing the polymer chains by phantom Hookean dumbbells with
non-bonded interactions being replaced by a Van der Waals
mean field model (see below). This model is so simple
that the construction of the six-field hydrodynamics can be
done exactly, except, of course, for the inevitable approxima-
tions that come from the field-theoretic ‘smoothing’ of the
microscopic fields.

1.5. Outline of the remainder of the paper

Section 2 defines the microscopic model and, from there, the
fields and the field-theoretic Hamiltonian. Section 3 discusses
the basic equation of motion of isothermal dissipative Hamil-
tonian systems, which is then used to derive the reversible
(section 4) and the irreversible (section 5) parts of the six-field
hydrodynamics, which is summarized in section 6. In section 7
we transform to new variables (total density and density
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contrast, barycentric velocity and relative velocity). This is the
basis for the application of various approximations and simpli-
fications (outlined in section 8), which, in essence, boil down
to adiabatic elimination of fast variables. Section 9 then pro-
vides a detailed analysis of the resulting VEMH system, show-
ing that it is compatible with the second law and the Onsager
symmetry relations. It is also in this section where the phe-
nomenological terms are specified; again the second law is
here the essential guiding principle. Section 10 sketches the
polymer version of Van der Waals theory, upon which the bulk
part of the Hamiltonian is based, and section 11 provides a few
concluding remarks. Appendices A and B are meant as back-
ground material, where the Poisson bracket formalism, and its
application to derive the standard Euler equations, are outlined.
Finally, appendix C further elucidates the difference between
constrained and unconstrained averages in the derivation of
rheological equations.

At this point, let us emphasize that the present paper is con-
cerned with the derivation of rheological equations of motion,
and not with the question if (or to what extent) the resulting
model is able to reproduce the existing experimental observa-
tions that are known for viscoelastic phase separation. In our
opinion, this question can only be answered by detailed com-
puter simulations, which are however beyond the scope of the
present investigation.

2. Model

2.1. Solvent

The dynamics of the solvent degrees of freedom is always (i.e.
both on the microscopic level and on the fully field-theoretic
level) represented by the isothermal Navier–Stokes equations

∂tρ
(s) +∇ · j(s) = 0, (1)

∂t j(s)
α + ∂β

(
ρ(s)v(s)

α v(s)
β

)
= −∂αp(s) + ηαβγδ∂β∂γv

(s)
δ + f α.

(2)
Here, the upper index ‘(s)’ refers to the solvent, such that ρ(s)

is the solvent mass density etc. . . . The symbol ∂t denotes the
time derivative ∂/∂t, and similarly ∂α the spatial derivative
∂/∂rα. Greek subscripts are Cartesian indexes for which we
assume the Einstein summation convention. j(s) is the solvent
momentum density, related to the solvent velocity flow field
v(s) via j(s) = ρ(s)v(s). p(s) is the solvent partial pressure, for
which the LB model prescribes the equation of state of an ideal
gas, p(s) = ρ(s)c2

s , where cs is the speed of sound of the LB fluid.
ηαβγδ is the fourth-rank viscosity tensor, which for an isotropic
Newtonian fluid (like our LB fluid) reads

ηαβγδ =

(
ηV − 2

3
ηs

)
δαβδγδ + ηs

(
δαγδβδ + δαδδβγ

)
(3)

with bulk viscosity ηV and shear viscosity ηs. Finally, f is a dis-
sipative force density, which comes from the coupling to the
polymer component. If the latter is being described in terms
of Stokes beads, as on the microscopic level, f can be written

down explicitly. On the fully field-theoretic level, the corre-
sponding expression must be constructed with care; section 5
will outline how to do that.

In a shorthand notation, we may write equation (2) as

∂tj(s) +∇ ·
(
ρ(s)v(s)v(s)

)
= −∇p(s) + η

...∇∇v(s) + f . (4)

The Hamiltonian of the solvent is

H(s) =

∫
d3r

((
j(s)
)2

2ρ(s)
+ f (s)

)
, (5)

where f (s) is the free energy density of the solvent; note that
in our isothermal setting we need to interpret the Hamiltonian
as the Helmholtz free energy. The pressure is derived from the
free energy via

p(s) =
(
ρ(s)

)2 ∂

∂ρ(s)

(
f (s)

ρ(s)

)
, (6)

∇p(s) = ρ(s)∇
(
∂ f (s)

∂ρ(s)

)
. (7)

2.2. Polymer component: microscopic description

Each polymer chain is represented by a Hookean dumb-
bell. The center-of-mass coordinate of dumbbell number i is
denoted by r(d)

i , and the two beads are located at the posi-
tions r(d)

i ± qi/2, such that qi is the connector vector of the
two beads. If we assign a mass m to each bead, then the
total mass is m(d) = 2m and the reduced mass m(r) = m/2.
We denote Γ = m(r)/m(d), which takes the value Γ = 1/4 for
our model; however, we would like to keep Γ as a parame-
ter that may perhaps be adjusted. Momenta associated with
the dumbbell are p(d)

i = m(d)ṙ(d)
i for the center-of-mass motion

and p(r)
i = m(r)q̇i = Γm(d)q̇i for the relative motion. Further-

more, the spring constant of the dumbbells is denoted by k.
The Hamiltonian of the dumbbell system is thus given by

Ĥ(d) =
∑

i

⎛⎜⎝
(

p(d)
i

)2

2m(d)
+ Γ−1

(
p(r)

i

)2

2m(d)
+

k
2

q2
i

⎞⎟⎠
+ Unb

(
{r(d)

i }, {qi}
)

, (8)

where Unb is the non-bonded interaction potential, which we
do not need to specify in detail. As a typical example of what
we mean by this, the reader may assume a pairwise bead–bead
interaction that acts in the same way for all pairs of beads. The
associated potential is then characterized by a strong repul-
sive core at short interparticle distances, and an attractive tail
at larger distances. We may then assume that the strength of
the attractive part parameterizes the solvent quality, such that
the polymer component falls out of solution as soon as the
attraction exceeds a critical value.

It is clear that such a model is a simple caricature of a real
polymer solution, and that it certainly is unable to describe
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entanglements. Nevertheless, it is the standard starting point
of many theoretical developments of rheology [16].

Since the interaction between solvent and dumbbell system
is purely dissipative, the total Hamiltonian is just the sum of
the individual Hamiltonians

Ĥ = H(s) + Ĥ(d). (9)

2.3. Polymer component: microscopic expressions for fields

We can now construct microscopic expressions for various
fields associated with the dumbbell degrees of freedom. These
are: (i) the dumbbell mass density

ρ(d)(r) = m(d)
∑

i

δ
(

r − r(d)
i

)
, (10)

(ii) the dumbbell momentum density

j(d)(r) =
∑

i

p(d)
i δ

(
r − r(d)

i

)
, (11)

and analogous vector fields for the polymer extension, i.e. (iii)
the elastic force density

k(r)(r) = k
∑

i

qiδ
(

r − r(d)
i

)
, (12)

and (iv) the relative momentum density

j(r)(r) =
∑

i

p(r)
i δ

(
r − r(d)

i

)
. (13)

2.4. Polymer component: field-theoretic description

After coarse-graining (‘smoothing’), these fields are replaced
by continuous functions, and we will consider these smoothed
fields, together with ρ(s) and j(s), as the independent degrees of
freedom of the continuum theory that we wish to construct. We
thus assume that the orientation and stretching of the polymer
chains in the flow can be reasonably described by a smooth
vector field k(r)(r), and the internal motions by a correspond-
ing smooth vector field j(r)(r). Now, it is clear that on the
microscopic level the physics does not change if we replace
qi by −qi (we call this a ‘flip’), which also means q̇i →−q̇i

and p(r)
i →−p(r)

i . Therefore, on the field-theoretic level, the
physics should not change under the analogous flip transfor-
mation k(r)(r) →−k(r)(r) and j(r)(r) →− j(r)(r). This, in turn,
means that the model should be ‘flip covariant’, meaning that,
within a given equation of motion, all occurring terms must
have the same transformation behavior under flip—they must
all be even, or they must all be odd. As can be easily checked
throughout the derivation that we will present below, this is
indeed the case, step by step. It does not imply, though, that
only even terms are permitted. To illustrate that point, just con-
sider Newton’s equation of motion, where both the force and
the acceleration have the same transformation behavior under
reflection—but both are odd, not even.

The intuitive picture that we associate with the assumption
of a smooth vector field k(r)(r) is this: we arbitrarily pick one

particular dumbbell, and then arbitrarily pick one of its two
possible orientations. This defines the connector vector for that
particular dumbbell. Now we go to another dumbbell in the
immediate vicinity of the first one, and again pick its orien-
tation. We are now no longer free to pick it arbitrarily, but
rather must choose it in such a way that its alignment with
the already assigned orientation is as good as possible. This
is dictated by the requirement that the coarse-grained vector
field is supposed to be smooth. In this way, we scan the whole
system and assign one well-defined orientation after the other.
In some cases, frustration might occur, but we assume that
such cases are rare. The resulting connector vectors enter the
definition of the field k(r)(r). We believe that, with this pic-
ture in mind, the assumption of a smooth vector field is quite
reasonable.

At this point, one might ask if it would not be more advis-
able to rather assign a conformation tensor to each molecule
(this is even under flip), and then subject these quantities to
coarse-graining, such that one obtains a smooth conformation
tensor field. This would obviously eliminate the difficulties
mentioned above. However, upon considering this idea in more
detail, we found ourselves unable to construct suitable canon-
ical momenta, and a Hamiltonian theory based upon them,
without running into severe algebraic difficulties, of which
we do not know if they can be resolved or not. The main
problem is that the components of the conformation tensor are
not all independent; rather the very construction of the tensor
implies that it has only three independent parameters. A sim-
ilar difficulty also appears in the Fokker–Planck description,
see appendix C. We therefore found it much easier to rather
base our considerations on vector fields.

The transition from the microscopic model to the field the-
ory then consists of replacing the dumbbell Hamiltonian by an
analogous field-theoretic expression:

H(d) =

∫
d3r

[(
j(d)
)2

2ρ(d)
+ Γ−1

(
j(r)
)2

2ρ(d)

+
m(d)

k

(
k(r)

)2

2ρ(d)
+ f (d) +

κ

2

(
∇ρ(d)

)2

]
. (14)

Here the first two terms describe the kinetic energy of the
center-of-mass motion and the relative motion, respectively,
while the third term describes the elastic (or spring) energy.
The fourth and fifth term are the replacement for the non-
bonded interaction Unb, where f (d) is the bulk part of the
configurational free energy density. The last term is meant
to penalize the occurrence of interfaces; the parameter κ
is called ‘interfacial stiffness’. Such terms always occur in
the field-theoretic description of phase separation (both stat-
ics and dynamics) [2] and there is a well-defined statistical-
mechanical procedure to derive them. For a simple approach
the reader is referred to reference [40], while a more advanced
machinery is found in reference [41]. For the bulk free energy
density we will assume that f (d) = f (d)(ρ(d)) and that f (d) can
be constructed from a Van der Waals model, which is the sim-
plest well-known model for a fluid that undergoes a gas–liquid
transition. This choice is inspired by the fact that the solvent is

6
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just an ideal gas (i.e. thermodynamically inert), such that the
decomposition between polymer and solvent may be viewed
(from the point of view of thermodynamics, not hydrodynam-
ics) as just a gas–liquid transition of the polymer component.
The structure of the theory is completely independent of the
precise form of f (d); therefore one may as well assume a dif-
ferent function for f (d) (possibly even an empirical function
derived from simulation results).

After this ‘smoothing operation’, we can then define further
fields: (i) the dumbbell velocity flow field

v(d)(r) =
j(d)(r)
ρ(d)(r)

=
δH

δj(d)(r)
(15)

(here δ . . . /δ . . . denotes the functional derivative), (ii) the
‘relative flow field’

v(r)(r) = Γ−1 j(r)(r)
ρ(d)(r)

=
δH

δj(r)(r)
, (16)

and (iii) the ‘extension field’

q(r) =
m(d)

k
k(r)(r)
ρ(d)(r)

=
δH

δk(r)(r)
. (17)

We also note

δH
δρ(d)

=
∂ f (d)

∂ρ(d)
− κ∇2ρ(d)

− 1
2

[(
v(d)

)2
+ Γ

(
v(r)

)2
+

k
m(d)

q2

]
. (18)

3. General equation of motion

In the present paper, we will be concerned with equations of
motion for a set of fields Φi = Φi(r, t) in three-dimensional
space, of the form

∂tΦi = Li −Mi. (19)

We will assume a domain with periodic boundary condi-
tions, such that integrations by parts will never involve sur-
face terms. The symbols Li = Li

(
{Φk} , r

)
= Li(r), Mi =

Mi

(
{Φk} , r

)
= Mi(r) denote fields that depend on the field

degrees of freedom and describe the dynamics. The functional
H = H

(
{Φk}

)
is of central importance, and we will call it the

Hamiltonian of the system. Since we study the system in the
isothermal ensemble, it may also be called the (Helmholtz) free
energy functional. We require that the dynamics is dissipative,
i.e. that dH/dt � 0. The fieldsLi andMi have been introduced
to denote the conservative (Li) and the dissipative (Mi) parts
of the dynamics. Obviously,

dH
dt

=
∑

i

∫
d3r (Li(r) −Mi(r))

δH
δΦi(r)

. (20)

Furthermore, we require∑
i

∫
d3rLi(r)

δH
δΦi(r)

= 0, (21)

∑
i

∫
d3rMi(r)

δH
δΦi(r)

� 0. (22)

We will always require that the dissipative terms can be
described in terms of linear Onsager theory, where the dis-
sipative responses Mi are proportional to the driving forces
δH/δΦ j:

Mi(r) =
∑

j

∫
d3r′ Mi j(r, r′)

δH
δΦ j(r′)

, (23)

where the elements Mi j form a matrix that is symmetric with
respect to the simultaneous exchanges i ↔ j, r ↔ r′; this
expresses the Onsager reciprocity relations. Furthermore, the
second law requires that the matrix is positive-semidefinite.
The total dissipation rate therefore takes the form

dH
dt

= −
∑

i j

∫
d3r

∫
d3r′

δH
δΦi(r)

Mi j(r, r′)
δH

δΦ j(r′)
� 0.

(24)

If in addition the conservative part of the dynamics has a
Hamiltonian structure, then we have a dissipative Hamiltonian
system. In this case, the Poisson brackets {Φi(r),Φ j(r′)} form
a closed system (i.e. they can be expressed in terms of the
fields Φi, with no reference to additional ‘hidden’ degrees of
freedom), and we have

Li(r) =
∑

j

∫
d3r′ {Φi(r),Φ j(r′)}

δH
δΦ j(r′)

. (25)

For more details on the Poisson bracket formalism, see
appendices A and B. The conservative nature of this dynamics
is then a direct consequence of the antisymmetry of the Pois-
son brackets. It should be noted that equation (19) with the
specific forms equations (23) and (25) can be derived from the
GENERIC formalism [31–34].

We will use these general considerations in two ways. In
the first part of the paper, where we consider the six-field
hydrodynamics, we will be able to construct, by reference to
the underlying microsopic model, the Poisson brackets, the
functional derivatives of the Hamiltonian, and the dissipation
rate dH/dt. The latter can be written in a form that matches
equation (24), which will enable us to read off the matrix ele-
ments Mi j. In the second part, i.e. the VEMH where the fast
degrees of freedom have been eliminated, we know Li (and
we can explicitly show that this is indeed conservative), but
we know Mi only up to unknown phenomenological terms.
We can then find expressions for these terms by assuming a
simple but consistent model, where the matrix is diagonal and
positive-definite.

4. Equations of motion I: Hamiltonian part

We first focus on the Hamiltonian part of the dynamics. We
note that on the Hamiltonian level our model implies that the
polymer system and the solvent system are completely decou-
pled, and may therefore be treated separately. For the sol-
vent system, the conservative part of the dynamics is given by

7
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the Euler equations. These are known to be Hamiltonian, and
this can be shown straightforwardly by means of the Poisson
bracket formalism, see appendix B.

We therefore need to execute the same methodology for the
dumbbell system. The functional derivatives of the Hamilto-
nian have already been evaluated in section 2; therefore the
next step is to calculate the Poisson brackets by insertion of
the microscopic expressions, plus reference to the Poisson
brackets of coordinates and momenta, as they are known from
classical mechanics. The evaluation is somewhat tedious but
straightforward and yields{

ρ(d)(r), j(d)
β (r′)

}
= −ρ(d)(r′)∂βδ(r − r′), (26){

k(r)
α (r), j(d)

β (r′)
}
= −k(r)

α (r′)∂βδ(r − r′), (27){
j(r)α (r), j(d)

β (r′)
}
= − j(r)α (r′)∂βδ(r − r′), (28){

j(d)
α (r), j(d)

β (r′)
}
= j(d)

β (r)∂ ′
αδ(r − r′)

− j(d)
α (r′)∂βδ(r − r′), (29){

k(r)
α (r), j(r)β (r′)

}
= δαβ

k
m(d)

ρ(d)(r′)δ(r − r′). (30)

The remaining Poisson brackets that have not been listed
simply vanish.

We then insert the Poisson brackets, plus the functional
derivatives of the Hamiltonian with respect to the fields, into
the general equation of motion. After some algebra (quite a
few terms cancel) we arrive at the following set.

For the dumbbell density and the dumbbell momentum den-
sity, we recover the standard Euler equations (cf also appendix
B), augmented by the interfacial force term:

∂tρ
(d) +∇ · j(d) = 0, (31)

∂t j(d)
α + ∂β

(
ρ(d)v(d)

α v(d)
β

)
= −∂αp(d) + κρ(d)∂α∇2ρ(d),

(32)

where p(d) is the dumbbell partial pressure, defined as

p(d) =
(
ρ(d)

)2 ∂

∂ρ(d)

(
f (d)

ρ(d)

)
. (33)

It should be noted that the interfacial force term does conserve
the total momentum, i.e. its spatial integral is zero, as can be
shown by integration-by-parts.

The equation of motion for the force density is found to be

∂tk
(r)
α + ∂β

(
k(r)
α v(d)

β

)
=

k
m(r)

j(r)α ; (34)

this takes a somewhat more intuitive form after transforming
to the corresponding equation for the extension field, which
reads, by taking into account the mass conservation equation
for ρ(d),

∂tqα + v(d)
β ∂βqα = v(r)

α ; (35)

note that the left-hand side is just the convective derivative of
qα.

Finally, we find for the relative momentum density

∂t j(r)α + ∂β

(
j(r)α v(d)

β

)
= −k(r)

α . (36)

Again transforming to the corresponding velocity field, we find

m(r)
(
∂tv

(r)
α + v(d)

β ∂βv
(r)
α

)
= −kqα, (37)

which is essentially Newton’s equation of motion for the
oscillator, taking into account convection with v(d).

In summary, we thus find a set of equations which has not
only been derived with a well-founded formalism, but is also
intuitively quite plausible.

5. Equations of motion II: dissipative part

To take into account dissipation, and in particular the dissipa-
tive coupling of the dumbbell system to the background sol-
vent fluid, we first need to consider the dumbbell number i in
the solvent flow field v(s). The two beads are located at the
positions r(d)

i ± qi/2, which means that the relevant terms for
the coupling are proportional to the difference between bead
velocity ṙ(d)

i ± q̇i/2 and the flow velocity at the position of

the bead, v(s)
(

r(d)
i ± qi/2

)
. Ignoring the (Hamiltonian) part

that comes from the spring force, we may thus write down the
equations of motion for the two beads:

m
d
dt

(
ṙ(d)

i + q̇i/2
)
= −ζu(1)

i , (38)

m
d
dt

(
ṙ(d)

i − q̇i/2
)
= −ζu(2)

i ; (39)

here m denotes the bead mass and ζ is the friction coefficient,
whose value controls the strength of the coupling, while

u(1)
i = ṙ(d)

i + q̇i/2 − v(s)
(

r(d)
i + qi/2

)
, (40)

u(2)
i = ṙ(d)

i − q̇i/2 − v(s)
(

r(d)
i − qi/2

)
. (41)

Introducing

u(0)
i =

(
u(1)

i + u(2)
i

)
/2

= ṙ(d)
i −

[
v(s)

(
r(d)

i + qi/2
)
+ v(s)

(
r(d)

i − qi/2
)]

/2,

(42)

Δui = u(1)
i − u(2)

i

= q̇i −
[
v(s)

(
r(d)

i + qi/2
)
− v(s)

(
r(d)

i − qi/2
)]

,

(43)

and a relaxation time τ associated with the coupling, τ = m/ζ,
we may rewrite the equations as

τ
d
dt

ṙ(d)
i = −u(0)

i , (44)

8
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τ
d
dt

q̇i = −Δui. (45)

Scaling the equations with the masses m(d) and m(r), respec-
tively, we find

τ
d
dt

p(d)
i = −m(d)u(0)

i , (46)

τ
d
dt

p(r)
i = −Γm(d)Δui. (47)

We now expand v(s) by a Taylor series with respect to qi. This
can be formalized by introducing the operators

Ω+(q) = 1 +
1
8

qαqβ∂α∂β + · · · , (48)

Ω−(q) = qα∂α +
1

24
qαqβqγ∂α∂β∂γ + · · · , (49)

which allows us to write

u(0)
i = ṙ(d)

i − Ω+(qi)v
(s)(r)

∣∣
r=r(d)

i
, (50)

Δui = q̇i − Ω−(qi)v
(s)(r)

∣∣
r=r(d)

i
. (51)

We can now calculate the rate at which the microscopic dumb-
bell Hamiltonian changes, again taking into account only the
dissipative part of the dynamics:

d
dt

Ĥ(d) =
∑

i

[
ṙ(d)

i · ṗ(d)
i + q̇i · ṗ(r)

i

]
, (52)

i.e.

τ
d
dt

Ĥ(d) = −m(d)
∑

i

[
ṙ(d)

i · u(0)
i + Γq̇i ·Δui

]
. (53)

Let us now consider the solvent. Again we ignore the
Hamiltonian part of the dynamics. We also ignore the con-
tribution by viscous dissipation (∝ ηαβγδ), because this can
be considered separately from the dissipative coupling to
the dumbbells—it is known that the viscous term is dis-
sipative, conserves the momentum, and just yields a well-
known additive contribution to the overall dissipation rate. We
thus obtain

∂tρ
(s) = 0, (54)

∂tj(s) = f , (55)

with

f (r) =
∑

i

[
δ(r − r(d)

i − qi/2)F(1)
i

+ δ(r − r(d)
i + qi/2)F(2)

i

]
, (56)

F(1)
i = ζu(1)

i , (57)

F(2)
i = ζu(2)

i . (58)

The rate of change of the solvent Hamiltonian, coming from
the dissipative coupling, is then calculated to be

d
dt

H(s) =
∑

i

[
v(s)

(
r(d)

i + qi/2
)
· F(1)

i

+ v(s)
(

r(d)
i − qi/2

)
· F(2)

i

]
, (59)

or

τ
d
dt

H(s) = m
∑

i

[
v(s)

(
r(d)

i + qi/2
)
· u(1)

i

+ v(s)(r(d)
i − qi/2) · u(2)

i

]
. (60)

In terms of u(0)
i and Δui, this is rewritten as

τ
d
dt

H(s) = m
∑

i

[
2u(0)

i · Ω+(qi)v
(s)(r)

∣∣
r=r(d)

i

+
1
2
Δui · Ω−(qi)v

(s)(r)
∣∣
r=r(d)

i

]
, (61)

or, taking into account 2m = m(d), Γ = 1/4,

τ
d
dt

H(s) = m(d)
∑

i

[
u(0)

i · Ω+(qi)v
(s)(r)

∣∣
r=r(d)

i

+ ΓΔui · Ω−(qi)v
(s)(r)

∣∣
r=r(d)

i

]
. (62)

Combining equations (53) and (62), we find for the total dissi-
pation rate that comes from the dumbbell–solvent coupling in
the microscopic model:

τ
d
dt

(
Ĥ(d) + H(s)

)
= −m(d)

∑
i

[(
u(0)

i

)2
+ Γ(Δui)2

]
,

(63)

showing that the coupling is strictly compatible with the sec-
ond law.

On the field-theoretic level, we postulate the analogous
expression

τ
d
dt

(
H(d) + H(s)

)
= −

∫
d3rρ(d)(r)

[(
u(0)(r)

)2
+ Γ(Δu(r))2

]
(64)

with the field analogues of equations (50) and (51),

u(0)(r) = v(d)(r) − Ω+(q(r))v(s)(r), (65)

Δu(r) = v(r)(r) − Ω−(q(r))v(s)(r). (66)

Decomposing the dissipation rate into the various contribu-
tions, we find

− τ
d
dt

(
H(d) + H(s)

)
=

∫
d3rρ(d)

(
Ω+v

(s)
)2

+ Γ

∫
d3rρ(d)

(
Ω−v

(s)
)2

9
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+

∫
d3rρ(d)

(
v(d)

)2
+ Γ

∫
d3rρ(d)

(
v(r)

)2

− 2
∫

d3rρ(d)v(d) · Ω+v
(s)

− 2Γ
∫

d3rρ(d)v(r) · Ω−v
(s). (67)

At this point, we introduce the adjoint operators

Ω†
+ = 1 +

1
8
∂α∂βqαqβ + · · · , (68)

Ω†
− = −∂αqα −

1
24

∂α∂β∂γqαqβqγ − · · · ; (69)

this allows us to write

− τ
d
dt

(
H(d) + H(s)

)
=

∫
d3rv(s) ·

[
Ω†

+ρ
(d)Ω+ + ΓΩ†

−ρ
(d)Ω−

]
v(s)

−
∫

d3rv(s) · Ω†
+ρ

(d)v(d) − Γ

∫
d3rv(s) · Ω†

−ρ
(d)v(r)

+

∫
d3rv(d) · ρ(d)v(d) −

∫
d3rv(d) · ρ(d)Ω+v

(s)

+ Γ

∫
d3rv(r) · ρ(d)v(r) − Γ

∫
d3rv(r) · ρ(d)Ω−v

(s).

(70)

Recalling v(s) = δH/δ j(s), v(d) = δH/δ j(d), and
v(r) = δH/δ j(r), one sees (cf equation (24)) that this is
precisely the form that is required by the general formalism.
This, in turn, allows us to directly read off the contin-
uum equations of motion (again, we emphasize that we
here ignore the Hamiltonian contribution and the viscous
part ∝ ηαβγδ):

∂tρ
(s) = 0, (71)

∂tρ
(d) = 0, (72)

∂tk(r) = 0, (73)

τ∂tj(s) = Ω†
+ρ

(d)
[
v(d) − Ω+v

(s)
]

+ ΓΩ†
−ρ

(d)
[
v(r) − Ω−v

(s)
]

, (74)

τ∂tj(d) = −ρ(d)
[
v(d) − Ω+v

(s)
]

, (75)

τ∂tj(r) = −Γρ(d)
[
v(r) − Ω−v

(s)
]
. (76)

One can show that these equations are compatible with
momentum conservation. To this end, we note that Gauss’
theorem implies∫

d3rΩ†
+(. . .) =

∫
d3r1(. . .), (77)∫

d3rΩ†
−(. . .) = 0. (78)

Therefore

τ
d
dt

∫
d3r j(s)

=

∫
d3rρ(d)v(d) −

∫
d3rρ(d)Ω+v

(s), (79)

τ
d
dt

∫
d3r j(d)

= −
∫

d3rρ(d)v(d) +

∫
d3rρ(d)Ω+v

(s), (80)

τ
d
dt

∫
d3r

(
j(s) + j(d)

)
= 0; (81)

the last equation obviously implies conservation of the total
momentum—note that the relative motion of the beads with
respect to each other does not contribute to the overall momen-
tum balance.

6. Final set of equations

Let us summarize what we have achieved so far. We started
from an extremely simple microscopic dumbbell model for
viscoelastic phase separation. We then defined a set of fields
(two scalar fields, four vector fields) which can be explicitly
constructed from the microscopic configurations in real and
momentum space. The microscopic dynamics then allowed us
to evaluate the Poisson brackets of the fields; from there it
turned out that the field-theoretic set of variables is closed,
meaning that the Poisson brackets do not generate addi-
tional variables. We then applied four important approxima-
tions and assumptions, which allowed us to go from the
microscopic model to field theory. These are: (i) replace-
ment of the non-bonded interactions with a Van der Waals
free energy, augmented with an interfacial stiffness term; (ii)
replacement of the particle Hamiltonian with the correspond-
ing field-theoretic expression; (iii) a similar replacement for
the dissipation rate, and (iv) the assumption that the molec-
ular conformations may be represented by a smooth vector
field. No further assumptions or approximations were made.
The formalism of dissipative Hamiltonian systems then made
it possible to construct the field-theoretic equations of motion
in a somewhat tedious but straightforward fashion. We thus
arrive at a set of equations which are fully compatible with
non-equilibrium thermodynamics, conserve the momentum,
and have a well-defined transformation behavior under flip
(which is easily checked by inspection). In total, the resulting
equations read:

∂tρ
(s) +∇ · j(s) = 0, (82)

∂tρ
(d) +∇ · j(d) = 0, (83)

∂tk
(r) +∇ ·

(
k(r)v(d)

)
=

k
m(r)

j(r), (84)

∂tj(s) +∇ ·
(
j(s)v(s)

)
= −∇p(s) + η

...∇∇v(s) +
1
τ
Ω†

+ρ
(d)
[
v(d) − Ω+v

(s)
]

10



J. Phys.: Condens. Matter 33 (2021) 364001 D Spiller et al

+
Γ

τ
Ω†

−ρ
(d)
[
v(r) − Ω−v

(s)
]

, (85)

∂tj(d) +∇ ·
(
j(d)v(d)

)
= −∇p(d) + κρ(d)∇∇2ρ(d) − 1

τ
ρ(d)

[
v(d) − Ω+v

(s)
]

,

(86)

∂tj(r) +∇ ·
(
j(r)v(d)

)
= −k(r) − Γ

τ
ρ(d)

[
v(r) − Ω−v

(s)
]
. (87)

By making use of the mass conservation equations, we can
transform these equations for ‘extensive’ fields (k(r), j(s), j(d),
j(r)) to equivalent equations for the corresponding ‘intensive’
fields (q, v(s), v(d), v(r)). Here it is useful to introduce the
convective derivatives

D(s)
t = ∂t + v(s) · ∇, (88)

D(d)
t = ∂t + v(d) · ∇. (89)

Straightforward transformation yields

D(s)
t ρ(s) + ρ(s)∇ · v(s) = 0, (90)

D(d)
t ρ(d) + ρ(d)∇ · v(d) = 0, (91)

D(d)
t q = v(r), (92)

ρ(s)D(s)
t v(s) = −∇p(s) + η

...∇∇v(s)

+
1
τ
Ω†

+ρ
(d)
[
v(d) − Ω+v

(s)
]

+
Γ

τ
Ω†

−ρ
(d)
[
v(r) − Ω−v

(s)
]

, (93)

ρ(d)D(d)
t v(d) = −∇p(d) + κρ(d)∇∇2ρ(d)

− 1
τ
ρ(d)

[
v(d) − Ω+v

(s)
]

, (94)

D(d)
t v(r) = − k

m(r)
q − 1

τ

[
v(r) − Ω−v

(s)
]
. (95)

It should be noted that for the case q = 0, v(r) = 0
(which implies Ω+ = 1, Ω− = 0) we recover a simple non-
viscoelastic two-fluid model:

D(s)
t ρ(s) + ρ(s)∇ · v(s) = 0, (96)

D(d)
t ρ(d) + ρ(d)∇ · v(d) = 0, (97)

ρ(s)D(s)
t v(s) = −∇p(s) + η

...∇∇v(s)

+
1
τ
ρ(d)

[
v(d) − v(s)

]
, (98)

ρ(d)D(d)
t v(d) = −∇p(d) + κρ(d)∇∇2ρ(d)

− 1
τ
ρ(d)

[
v(d) − v(s)

]
. (99)

7. Transformation to new variables

It is instructive to transform the equations to a new set of
variables that is adapted to the kinematics of the two-body
problem. We start by defining the total mass density

ρ = ρ(d) + ρ(s) (100)

and the reduced mass density

ρ(red) = ρ−1ρ(d)ρ(s). (101)

In velocity space, we introduce the mass-averaged velocity

V = ρ−1
(
ρ(d)v(d) + ρ(s)v(s)

)
(102)

and the relative velocity

w = v(d) − v(s). (103)

The inverse transformation is given by

v(d) = V +
ρ(red)

ρ(d)
w, (104)

v(s) = V − ρ(red)

ρ(s)
w. (105)

Furthermore, we define a new convective derivative via

Dt = ∂t + V · ∇, (106)

such that

D(d)
t = Dt +

ρ(red)

ρ(d)
w · ∇, (107)

D(s)
t = Dt −

ρ(red)

ρ(s)
w · ∇. (108)

The mass conservation equations for ρ(d) and ρ(s) are thus
written as

Dtρ
(d) + ρ(d)∇ · V +∇ ·

(
ρ(red)w

)
= 0, (109)

Dtρ
(s) + ρ(s)∇ · V −∇ ·

(
ρ(red)w

)
= 0. (110)

For the total mass density this implies the simple relation

Dtρ+ ρ∇ · V = 0. (111)

Apart from ρ, we need yet another combination of ρ(d) and
ρ(s) to describe the dynamics of the density contrast. ρ(red) is
not suitable for that purpose, due to its invariance with respect
to the exchange ρ(d) ↔ ρ(s). We therefore take the normalized
density difference

c = ρ−1
(
ρ(d) − ρ(s)

)
. (112)

This implies

ρ(d) =
ρ

2
(1 + c), (113)

ρ(s) =
ρ

2
(1 − c), (114)

11
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ρ(red) =
ρ

4

(
1 − c2

)
, (115)

v(d) = V +
1
2

(1 − c)w, (116)

v(s) = V − 1
2

(1 + c)w, (117)

D(d)
t = Dt +

1
2

(1 − c)w · ∇, (118)

D(s)
t = Dt −

1
2

(1 + c)w · ∇. (119)

From the equations of motion for ρ(d) and ρ(s) we can find
the equations of motion for c and ρ(red):

ρDtc = −2∇ ·
(
ρ(red)w

)
, (120)

1∂tρ
(red) +∇ ·

(
ρ(red)V

)
= c∇ ·

(
ρ(red)w

)
. (121)

We now turn to the velocity equations. We already have
derived the dynamics for v(d) and v(s), which we abbreviate
as

ρ(d)D(d)
t v(d) = f (d), (122)

ρ(s)D(s)
t v(s) = f (s). (123)

This information, together with the equations of motion for the
densities, is sufficient to construct the equations of motion for
V and w. After some lengthy algebra we finally find

ρDtV +∇ ·
(
ρ(red)ww

)
= f (d) + f (s), (124)

Dtw +w · ∇V − cw · ∇w − 1
2
ww · ∇c

=
1
ρ(d)

f (d) − 1
ρ(s)

f (s). (125)

The equations for q and v(r) may also be transformed; how-
ever, we believe this does not provide lots of insight. For this
reason, we do not mention the explicit expressions here.

8. Approximations

We now subject the derived equations of motion to a number of
approximations, and by this try to find guidelines to construct
a simplified field-theoretic model.

(a) Overdamped harmonic oscillator. We assume that inertial
effects for the motion of q are negligible. This is a standard
assumption in the theory of polymer dynamics, e.g. the
Rouse model (see, e.g., reference [42]). This means that
in equation (95) we set D(d)

t v(r) = 0. This yields

1
τ

[
v(r) − Ω−v

(s)
]
= − k

m(r)
q (126)

and

v(r) = Ω−v
(s) − kτ

m(r)
q = Ω−v

(s) − 1
τq

q; (127)

here we have introduced the relaxation time τ q =
m(r)/(kτ ), which may be viewed as the configurational
relaxation time of the polymer chains. We may thus write
k/m(r) = 1/(ττ q); note that we should view τ as a rather
small time and τ q as a large time such that the product ττ q

is of order unity.
In the other equations, we thus eliminate v(r). On the

one hand, we obtain a first-order equation of motion for
q:

D(d)
t q = Ω−v

(s) − 1
τq

q, (128)

while on the other hand the force expression for the
solvent is simplified:

f (s) = −∇p(s) + η
...∇∇v(s)

+
1
τ
Ω†

+ρ
(d)
[
v(d) − Ω+v

(s)
]
− Γ

ττq
Ω†

−ρ
(d)q.

(129)
(b) Lowest-order viscoelastic coupling. The operators Ω+

and Ω− represent the Taylor expansion of the flow field
on the scale of the extension of the macromolecules.
It is reasonable to assume that the flow field does not
vary extremely strongly on that scale, such that a low-
order Taylor expansion should be sufficient. We here
assume that actually an expansion up to linear order is
good enough, which means that we set Ω− = q · ∇ and
Ω+ = 1. This simplifies the force expressions signifi-
cantly:

f (s) = −∇p(s) + η
...∇∇v(s)

+
1
τ
ρ(d)w +

Γ

ττq
∇ ·

(
ρ(d)qq

)
, (130)

f (d) = −∇p(d) + κρ(d)∇∇2ρ(d) − 1
τ
ρ(d)w, (131)

which means (p = p(s) + p(d) denotes the total pressure)

f (d) + f (s) = −∇p+ η
...∇∇v(s)

+ κρ(d)∇∇2ρ(d) +
Γ

ττq
∇ ·

(
ρ(d)qq

)
,

(132)

1
ρ(d)

f (d) − 1
ρ(s)

f (s) = −∇p(d)

ρ(d)
+

∇p(s)

ρ(s)

− η

ρ(s)

...∇∇v(s) + κ∇∇2ρ(d)

− 1
τ

2
1 − c

w − Γ

ττq

1
ρ(s)

∇ ·
(
ρ(d)qq

)
.

(133)

The equation of motion for q gets simplified further:

D(d)
t q = q · ∇v(s) − 1

τq
q. (134)

12
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(c) Incompressibility. We assume that the total mass den-
sity is spatially and temporally constant. The conservation
equation for the total mass then simplifies to

∇ · V = 0. (135)

The pressure is therefore no longer derived from an
equation of state, but rather acts as a Lagrange multiplier
to enforce the incompressibility constraint.

(d) Small w. The relative velocity w is a non-hydrodynamic
variable, which is therefore expected to relax fairly
rapidly. Therefore it is expected to never deviate very
much from its value at local thermal equilibrium, which
is zero. Let us therefore inspect the so-far derived dynam-
ics for terms linear or quadratic in w. For this purpose, we
replacew → εw, where ε is a scalar expansion parameter.
This allows us to sort the expressions in terms of powers
of ε.

Firstly, we have the conservation of total mass,

∇ · V = 0, (136)

and, secondly, the conservation of the composition, which
we represent by the dynamics for ρ(d):

Dtρ
(d) = O(ε). (137)

Thirdly, we have the overdamped dynamics for q:

Dtq = q · ∇V − 1
τq

q + O(ε). (138)

In the fourth place, we need to consider the momentum
balance

ρDtV = −∇p+ η
...∇∇V + κρ(d)∇∇2ρ(d)

+
Γ

ττq
∇ ·

(
ρ(d)qq

)
+ O(ε)

= −∇p+ ηs∇2V + κρ(d)∇∇2ρ(d)

+
Γ

ττq
∇ ·

(
ρ(d)qq

)
+ O(ε). (139)

And finally we need to consider the equation of motion
for w (cf equation (125)), which we do not write down
explicitly here.

(e) Overdamped dynamics for w. It is assumed that w is a
fast variable and that it may therefore be adiabatically
eliminated for time scales significantly larger than τ , sim-
ilar to the adiabatic elimination of v(r) at the beginning of
this section. To do this systematically is however a daunt-
ing task, and probably (if possible and successful) only
of limited value, since the resulting set is probably not
fully consistent with non-equilibrium thermodynamics.
We therefore take a simpler approach and rather replace
the terms O(ε) with unknown phenomenological terms
which need to be chosen in order to ensure consistency
with non-equilibrium thermodynamics.

Based upon this philosophy, we thus obtain a set of dynamic
equations for the three fields ρ(d), V, and q. They read:

∇ · V = 0, (140)

Dtρ
(d) = −∇ · j(int), (141)

ρDtV = −∇p+ ηs∇2V + κρ(d)∇∇2ρ(d)

+
Γ

ττq
∇ ·

(
ρ(d)qq

)
+∇ · σ, (142)

Dtq = q · ∇V − 1
τq

q + Q. (143)

Here we have introduced three phenomenological terms: (i) the
interdiffusion current j(int), (ii) a stress tensor σ, and (iii) the
vector Q, which describes the influence of w on the dynamics
of q. Note that divergence operators have been introduced in
order to keep the conservation laws for the dumbbell mass and
the overall momentum.

We have thus gone from a set for two scalar fields and four
vector fields to a simplified set that involves only one scalar
field and two vector fields as the system’s state variables, plus
the pressure that acts as a Lagrange multiplier for incompress-
ibility. The arguments presented in this section should not be
viewed as rigorous but rather as heuristic. It should be noted
that the term∇ ·

(
ρ(d)qq

)
is symmetric under time reversal and

hence conservative. The prefactor has been written in terms
of two relaxation times; however, physically this should be
viewed as the square of an oscillation frequency.

9. Simplified model

It is natural to ask to what extent Poisson brackets might
be helpful in deriving equations (140)–(143). To answer this
question, let us consider a compressible system (we do not
wish to deal with the mathematical complications that arise
from an incompressibility constraint), where the dynamical
variables are the fields ρ, ρ(d), j = ρV and q with Hamiltonian

H =

∫
d3r

[
j2

2ρ
+ f +

κ

2

(
∇ρ(d)

)2
+

k
2
ρ(d)

m(d)
q2

]
; (144)

here f is the free energy density depending on both ρ and ρ(d).
For the non-vanishing Poisson brackets we find

{ρ(r), j(r′)} = −ρ(r′)∇δ(r − r′), (145){
ρ(d)(r), j(r′)

}
= −ρ(d)(r′)∇δ(r − r′), (146)

{qα(r), jβ(r′)}

=

[
ρ(d)(r′)
ρ(d)(r)

qα(r) − qα(r′)
]
∂βδ(r − r′), (147)

{ jα(r), jβ(r′)}

= jβ(r)∂ ′
αδ(r′ − r) − jα(r′)∂βδ(r − r′), (148)

13
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while the functional derivatives of the Hamiltonian are

δH
δj

= V, (149)

δH
δρ

= −1
2

V2 +
∂ f
∂ρ

, (150)

δH
δρ(d)

=
∂ f
∂ρ(d)

− κ∇2ρ(d) +
k

2m(d)
q2, (151)

δH
δq

= k
ρ(d)

m(d)
q. (152)

We can now insert these results to calculate the conserva-
tive equations of motion, as they are produced by the Pois-
son bracket formalism. After some lengthy but straightforward
algebra we find

∂tρ = −∇ · (ρV) , (153)

∂tρ
(d) = −∇ ·

(
ρ(d)V

)
, (154)

Dtqα = qα
1
ρ(d)

V · ∇ρ(d), (155)

∂t jα = −∂β
(

jαVβ

)
− ∂αp+ κρ(d)∇2ρ(d)

− k
m(d)

q2∂αρ
(d); (156)

here the pressure involves contributions from both ∂ f /∂ρ and
∂ f /∂ρ(d). Comparing this with the set of equations that we
heuristically derived in the previous section, we see that (i) the
equation of motion for q couples to the flow field in a signif-
icantly different fashion, and that (ii) the elastic force term in
the momentum equation looks different, and does not conserve
the momentum. Such an equation is however simply unsuit-
able for hydrodynamics. We therefore conclude that for the
simplified (or reduced) set of equations of motion we have to
abandon the Poisson bracket formalism. In other words: it is
impossible to eliminate the undesired velocities adiabatically,
and at the same time maintain the Hamiltonian structure of the
theory. Given the fact that momentum variables play a deci-
sive role in Hamiltonian dynamics, and the fact that we have
removed them, this result is hardly surprising. It is perhaps
possible to do the development within some Hamiltonian for-
malism with constraints, but this is beyond the scope of the
present paper.

We therefore go back to equations (140)–(143), which we
consider as a reasonable starting point for further develop-
ments. The Hamiltonian

H =

∫
d3r

[
ρ

2
V2 + f +

κ

2

(
∇ρ(d)

)2
+

k
2
ρ(d)

m(d)
q2

]
=

∫
d3r

[ρ
2

V2 + f +
κ

2

(
∇ρ(d)

)2

+
1
2

Γ

ττq
ρ(d)q2

]
(157)

must be viewed as a functional of V, q and ρ(d); its derivatives
are

δH
δV

= ρV, (158)

δH
δρ(d)

=
∂ f
∂ρ(d)

− κ∇2ρ(d) +
1
2

Γ

ττq
q2, (159)

δH
δq

=
Γ

ττq
ρ(d)q. (160)

We now consider a reduced version of the dynamic
equations equations (140)–(143), where we discard the phe-
nomenological terms j(int), σ and Q, as well as the viscous
dissipation and the dissipative relaxation of q (∝ 1/τq):

∇ · V = 0, (161)

Dtρ
(d) = 0, (162)

ρDtV = −∇p+ κρ(d)∇∇2ρ(d)

+
Γ

ττq
∇ ·

(
ρ(d)qq

)
(163)

Dtq = q · ∇V. (164)

In what follows, we wish to demonstrate that this system is
conservative, i.e. is characterized by dH/dt = 0.

We first notice that for any field φ the relation∫
d3rφV · ∇φ = 0 (165)

holds, as can be seen from integration by parts and incompress-
ibility. As a consequence, we have∫

d3rφDtφ =

∫
d3rφ∂tφ. (166)

From equation (159) we conclude

∂α

(
δH
δρ(d)

)
= ∂α

∂ f
∂ρ(d)

− κ∂α∇2ρ(d) +
Γ

ττq
qβ∂αqβ ,

(167)

ρ(d)∂α

(
δH
δρ(d)

)
= ∂αp(d) − κρ(d)∂α∇2ρ(d) +

δH
δqβ

∂αqβ.

(168)

We may use this to eliminate the interface term in the momen-
tum equation:

ρDtVα = −∂αp+ ∂αp(d)

− ρ(d)∂α

(
δH
δρ(d)

)
+

δH
δqβ

∂αqβ + ∂β

(
δH
δqβ

qα

)
.

(169)
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We now multiply this equation with Vα and integrate over
space. On the left-hand side, this yields, making use of
equation (166),∫

d3rVαρDtVα =

∫
d3rρVα∂tVα

=

∫
d3r

δH
δV

· ∂tV. (170)

On the right-hand side, we employ a few integrations by parts
and incompressibility, and also insert the other equations of
motion. In particular, we obtain the term

−
∫

d3rVαρ
(d)∂α

(
δH
δρ(d)

)
=

∫
d3r

δH
δρ(d)

Vα∂αρ
(d) =

∫
d3r

δH
δρ(d)

(Dt − ∂t) ρ
(d)

= −
∫

d3r
δH
δρ(d)

∂tρ
(d) (171)

as well as∫
d3rVα

δH
δqβ

∂αqβ =

∫
d3r

δH
δqβ

(Dt − ∂t) qβ

= −
∫

d3r
δH
δq

· ∂tq +

∫
d3r

δH
δqβ

qα∂αVβ

= −
∫

d3r
δH
δq

· ∂tq −
∫

d3rVβ∂α

(
δH
δqβ

qα

)
(172)

and∫
d3rVα∂β

(
δH
δqβ

qα

)
=

∫
d3rVα∂β

(
δH
δqα

qβ

)
=

∫
d3rVβ∂α

(
δH
δqβ

qα

)
.

(173)

This yields∫
d3r

[
δH
δV

· ∂tV +
δH
δρ(d)

∂tρ
(d) +

δH
δq

· ∂tq
]
= 0.

(174)

The left-hand side of this equation amounts to dH/dt.
It is therefore clear that the additional terms j(int), σ, and Q,

should be of dissipative nature. For the dissipative part of the
dynamics we thus have

∇ · V = 0, (175)

∂tρ
(d) = −∇ · j(int), (176)

ρ∂tV = ηs∇2V +∇ · σ, (177)

∂tq = − 1
τq

q + Q. (178)

For the various contributions to the dissipation rate we obtain∫
d3r

δH
δVα

∂tVα =

∫
d3rVαρ∂tVα

= ηs

∫
d3rVα∂β∂βVα +

∫
d3rVα∂βσαβ

= −ηs

∫
d3r(∂βVα)2 −

∫
d3rσαβ∂βVα, (179)∫

d3r
δH
δq

· ∂tq

=
Γ

ττq

∫
d3rρ(d)q ·

[
− 1
τq

q + Q
]

= − Γ

ττ 2
q

∫
d3rρ(d)q2 +

Γ

ττq

∫
d3rρ(d)q · Q,

(180)∫
d3r

δH
δρ(d)

∂tρ
(d) = −

∫
d3r

δH
δρ(d)

∇ · j(int)

=

∫
d3r j(int) · ∇

(
δH
δρ(d)

)
. (181)

In what follows, we will assume a simple model for the dis-
sipative terms. We will assume that σ and Q vanish (or that
their effect can be absorbed in a re-definition of ηs and τ q),
and that

j(int) = −M
(
ρ(d)

)
∇
(

δH
δρ(d)

)
, (182)

where the function M
(
ρ(d)

)
� 0 is essentially the Onsager

coefficient for interdiffusion. It is then obvious that the rela-
tion dH/dt � 0 strictly holds. It should also be noted that, in
terms of the general formalism of section 3, we have a matrix
of dissipative terms that is diagonal and therefore obviously
symmetric. In other words, the model assumes the absence of
dissipative cross-couplings. Whether such cross-terms are per-
mitted at all by symmetry, and, if yes, what form they may
have, is an open question that we do not wish to investigate
here. In any case, when introducing such terms one needs to
take care that the symmetry and the positive-definiteness of the
matrix is strictly maintained. An important observation is that
the interdiffusion current is driven by a bulk term, an inter-
face term, and an elastic term. This last driving force, which
has apparently first been noted by Doi and Onuki [19], appears
here as a straightforward consequence of the second law.

In summary, we have obtained the set of equations of
motion

∇ · V = 0, (183)

Dtρ
(d) = ∇ ·

[
M
(
ρ(d)

)
∇
(

δH
δρ(d)

)]
, (184)

ρDtV = −∇p+ ηs∇2V + κρ(d)∇∇2ρ(d)

+
Γ

ττq
∇ ·

(
ρ(d)qq

)
, (185)

15



J. Phys.: Condens. Matter 33 (2021) 364001 D Spiller et al

Dtq = q · ∇V − 1
τq

q. (186)

In principle, this concludes our derivation. To make con-
tact with the standard rheological literature, we transform the
equations from the vector field q to the conformation tensor
field C = qq, which is strictly invariant under flip q →−q.
In the momentum equation and in the convection–diffusion
equation for ρ(d), this is a simple insertion (note q2 = tr C).
The equation of motion for q is easily transformed to

DtCαβ − Cαγ∂γVβ − Cβγ∂γVα = − 2
τq

Cαβ. (187)

It should be noted that the left-hand side is nothing but the
so-called ‘upper convected derivative’ known in the rheo-
logical literature. Furthermore, it should be noted that the
equation of motion of the standard Oldroyd-B model differs
from equation (187); it rather reads

DtCαβ − Cαγ∂γVβ − Cβγ∂γVα

= − 2
τq

[
Cαβ −

kBT
k

δαβ

]
, (188)

where kBT denotes the thermal energy. The difference can
be traced back to the ensemble problems already mentioned
in the Introduction; in explicit terms this is worked out in
appendix C.

10. Van der Waals model

We have so far not yet specified what free energy we use for
f (d)(ρ(d)). Since the solvent in our model is just a structure-
less ideal gas whose main purpose is to transport momentum,
we may view the phase separation, from the point of view of
thermodynamics, as just a gas–liquid transition of the polymer
component. The standard mean field model for the gas–liquid
transition is however the Van der Waals model. The purpose
of the present section is therefore to briefly elucidate how the
model should be modified in order to take into account the loss
of translational entropy due to chain connectivity.

10.1. Monatomic ideal gas

Let us first start with the well-known case of a monatomic
fluid. For a single point particle in a volume V , the canonical
partition function at temperature T is

zid(V , T) =
V

Λ3 , (189)

where Λ is the thermal de Brogie wavelength, which just acts
as a normalization factor to make sure zid is dimensionless.
For N indistinguishable non-interacting particles the partition
function then is

Zc(N, V , T) =
zN

id

N!
. (190)

With Stirling’s approximation, the corresponding Helmholtz
free energy of the ideal gas is

βFid(N, V , T) = − ln Zc = −N ln

(
V

Λ3

)
+ N ln N − N.

(191)

Here β = 1/(kBT), where kB is Boltzmann’s constant. The
resulting pressure is the well-known expression

βpid = −β
∂Fid

∂V
=

N
V
. (192)

10.2. Monatomic Van der Waals fluid

The Van der Waals mean field approximation assumes that
the multi-particle partition function may be factorized into the
product of effective single-particle partition functions,

Zc(N, V , T) =
zN

eff

N!
, (193)

where the model assumes that the effects of short-range molec-
ular repulsion and medium-range attraction may be taken into
account by (i) an effective atomic volume b, such that only the
volume V − Nb is available for each particle, and (ii) an effec-
tive attraction energy per atom U (U > 0). Therefore we get

zeff =
1

Λ3 (V − Nb) exp (βU) . (194)

Within the mean field picture, U should be proportional to the
probability to find another particle in the vicinity of a test par-
ticle, or, in other words, proportional to the density N/V. We
therefore write

U = a
N
V

(195)

with a parameter a > 0, such that

zeff = zid

(
1 − Nb

V

)
exp

(
βa

N
V

)
. (196)

This results in the Helmholtz free energy

βF = −N ln zeff + N ln N − N

= βFid − N ln

(
1 − Nb

V

)
− βa

N2

V
, (197)

and in turn in the pressure

βp = −β
∂F
∂V

=
N

V − Nb
− βa

(
N
V

)2

. (198)

10.3. Polymeric Van der Waals fluid

We now assume that the system comprises N polymer chains,
each of which is in turn composed of M monomers. We there-
fore have to deal with two densities, (i) the number of chains
per unit volume, N/V, and (ii) the number of monomers per
unit volume, MN/V .
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The polymer analog of the single free particle is the single
free random walk, where all interactions are turned off, except
the bonded interactions that keep the monomers together. The
partition function of that walk is therefore

zid(V , T) =
V

Λ3 zconf, (199)

where the factor zconf takes into account the entropy that is
associated with the different conformations of the walk. We
do not attempt to write down an explicit expression for zconf

but only note that (i) it depends exponentially on M, and (ii)
it is independent of both N and V . This latter independence
means that the precise form does not matter for the further
development.

In analogy to the previous subsection, we may then write
down the single-walk effective partition function for a poly-
meric Van der Waals system:

zeff = zid

(
1 − NMb

V

)
exp

(
βa

NM
V

M

)
; (200)

here we have replaced the density N/V by the monomer den-
sity NM/V, which is logical when taking into account the
physical origin of the corresponding terms. The last factor of
M in the Boltzmann factor takes into account that for the sta-
tistical weight of the whole walk we have to add up all the
attractions which the monomers of the walk experience.

Therefore we obtain for the Helmholtz free energy

βF = −N ln zeff + N ln N − N

= βFid − N ln

(
1 − NMb

V

)
− βa

N2M2

V
. (201)

For calculating the equation of state, we only need to take into
account that the ideal-gas pressure of the system of walks is
given by

βpid =
N
V

, (202)

and hence the pressure is given by

βp = −β
∂F
∂V

=
N

V − NMb
− βa

(
NM
V

)2

. (203)

11. Conclusions

This paper has presented a somewhat unconventionalapproach
to the derivation of rheological equations for polymer solu-
tions, which we nevertheless consider as quite useful. Instead
of the usual two-scale description, i.e. hydrodynamics on the
macroscopic scale coupled to a FPE with unconstrained aver-
aging on the macromolecular scale, we here treat the hydro-
dynamic degrees of freedom and the macromolecular ones on
the same basis. The procedure consists of (i) the definition of
a sufficiently simple molecular system, (ii) the definition of a
set of fields which can be expressed in terms of the molecu-
lar quantities, and which is chosen sufficiently large to facili-
tate a consistent description of the conservative dynamics by a

Hamiltonian (Poisson bracket) formalism, (iii) the direct con-
struction of the corresponding dynamic equations within the
framework of a dissipative Hamiltonian system, (iv) simpli-
fication via adiabatic elimination of fast variables, and (v)
postulating phenomenological expressions for the unknown
terms, such that the second law is automatically built into the
description. This approach is in spirit somewhat similar to
analogous developments in the theory of liquid crystals [23].
As discussed in section 2.4, we believe that it is physically
justified to describe the polymer conformations in terms of
a vector field of end-to-end vectors. Compared to the rheol-
ogy, the ‘model H’ aspects are fairly straightforward to take
into account.

From our model (phantom Hookean dumbbells which inter-
act with the solvent via Stokes friction, and with each other
via a Van der Waals background) we find a set of relatively
simple equations with a straightforward coupling of the con-
formation tensor to both the momentum conservation equation
and to the interdiffusion, while the dynamics of the confor-
mation tensor itself is, except for convection described by the
upper convected derivative, just a simple relaxation towards
zero. We believe that a nonzero average conformation tensor
should be described by coupling the whole system consistently
to Langevin noise. This extension of the model is however left
for future work.

Furthermore, it is far from clear if the model has suf-
ficient physical content to reproduce the rich phenomenol-
ogy that is observed experimentally for viscoelastic phase
separation. This question can only be answered by detailed
simulations, and the scan of wide ranges of parameters,
which is also deferred to future work. In this context, we
would like to emphasize that the parameter Γ/(ττ q) may
be viewed as a parameter which controls the strength of
the viscoelastic coupling: if we set that parameter to zero,
we recover the standard model H. Conversely, for large val-
ues of the parameter one should expect a strong coupling to
the macromolecular internal degree of freedom, and there-
fore at least some viscoelastic effects on the phase separation
dynamics.

Additional directions for future research are: (i) rigorous
mathematical analysis of the derived model with respect to
existence, weak–strong uniqueness and stability; (ii) numer-
ical approximation and extensive benchmarking; (iii) gener-
alization to non-Hookean force laws such as, e.g. the FENE
potential [43]; and (iv) a more detailed description of poly-
mer conformations by higher-order Rouse modes [42]. It is
our strong belief that our new approach may have an impor-
tant impact to new developments of consistent and physically
well-founded rheological models.
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Appendix A. Poisson brackets I: general formalism

For the convenience of the reader, we quickly review here
the Poisson bracket formalism of Hamiltonian dynamics. We
start with a set of generalized coordinates {qi} and the corre-
sponding canonically conjugate momenta{pi}, which together
form the phase space. The Hamiltonian H = H

(
{qi}, {pi}

)
is assumed to not explicitly depend on time, and the basic
Hamiltonian equations of motion are given by

q̇i =
∂H
∂pi

, (A.1)

ṗi = −∂H
∂qi

. (A.2)

We now consider observables f , g, h, . . . , i.e. functions on the
phase space, where again we assume the absence of explicit
time dependence. The Poisson bracket between f and g is then
defined via

{ f , g} =
∑

i

(
∂ f
∂qi

∂g
∂pi

− ∂ f
∂pi

∂g
∂qi

)
. (A.3)

We note that { f , g} is bilinear and antisymmetric. Further-
more, we note the elementary brackets

{qi, pj} = δi j (A.4)

and the product rule

{ f , gh} = { f , g} h + g { f , h} . (A.5)

The equation of motion of f then reads, as a direct conse-
quence of the basic Hamiltonian equations of motion,

ḟ = { f , H} . (A.6)

We now assume that there is some new set of variables {xi}, in
terms of which the Hamiltonian H can be conveniently writ-
ten, H = H

(
{xi}

)
. Importantly, we do not assume that these

variables form pairs of canonically conjugate variables. The
equation of motion for f then reads

ḟ =
∑

j

{ f , x j}
∂H
∂x j

. (A.7)

In particular,

ẋi =
∑

j

{xi, x j}
∂H
∂x j

. (A.8)

If we now assume that, in terms of Poisson brackets, the new
variables form a closed set, i.e. that {xi, x j} may be expressed
again in terms of the xi, then we get a closed system of
equations where no reference to the original canonical vari-
ables needs to be made. This is particularly useful if the xi

form a small set of collective variables.

The generalization to field theory is obvious. We assume
that the Hamiltonian H is a functional of a set of fields Φi(r),
H = H

(
{Φi}

)
, and we again assume that the fields form a

closed set in terms of Poisson brackets. Then the field-theoretic
equations of motion are written as

Φ̇i(r) =
∑

j

∫
d3r′ {Φi(r),Φ j(r′)}

δH
δΦ j(r′)

, (A.9)

where δH/δΦ denotes the functional derivative. For hydrody-
namic theories, where the continuum formulation is intended
to be a simplified and coarse-grained description of an under-
lying particle system, it is useful to write the fields in terms
of the microscopic coordinates and momenta, and use these
representations to evaluate the Poisson brackets.

Appendix B. Poisson brackets II: Euler equations

Let us try to elucidate that strategy via the simple example of
the Euler equations of hydrodynamics. Starting point are the
fields mass density

ρ(r) = m
∑

i

δ(r − ri) (B.1)

(we assume we have a system of particles with mass m located
at positions ri), and momentum density

j(r) =
∑

i

piδ(r − ri) (B.2)

with particle momenta pi. We do not consider an energy or
entropy field since we are interested in isothermal hydro-
dynamics, such that the conserved Hamiltonian should be
interpreted as the Helmholtz free energy of the system. One
immediately finds, for any observable ϕ,

{δ(r − ri),ϕ} = − ∂ϕ

∂pi
· ∇δ(r − ri) (B.3)

and thus
{ρ(r), ρ(r′)} = 0, (B.4)

{ρ(r), j(r′)} = −ρ(r′)∇δ(r − r′), (B.5)

{ jα(r), jβ(r′)} = jβ(r)∂ ′
αδ(r′ − r)

− jα(r′)∂βδ(r − r′), (B.6)

where Greek letters denote Cartesian indexes (with Einstein
summation convention implied), and ∂α ≡ ∂/∂rα.

The transition from the particle picture to field theory is
done by replacing ρ and j by ‘smeared’ continuous fields. Here
it is useful to define

v(r) =
j(r)
ρ(r)

. (B.7)

We then postulate a field-theoretic Hamiltonian via

H [ρ, j] =
∫

d3r
[

j2

2ρ
+ f (ρ)

]
, (B.8)
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where f is the free energy density. The derivatives are given
by

δH
δρ

= −1
2
v2 +

∂ f
∂ρ

, (B.9)

δH
δj

= v. (B.10)

Inserting these results into the field-theoretic Hamiltonian
equations of motion, we find, after a few lines of straightfor-
ward algebra

∂tρ+∇ · j = 0, (B.11)

∂t jα + ∂β(ρvαvβ) = −ρ∂α

(
∂ f
∂ρ

)
; (B.12)

the first equation obviously is the mass conservation equation.
According to the first law, we have for the free energy per

mass

d

(
f
ρ

)
= −s dT − p d

(
1
ρ

)
, (B.13)

where s is the entropy per mass, T the temperature, and p the
pressure. In an isothermal situation, dT = 0, and

∂

∂ρ

(
f
ρ

)
=

p
ρ2

(B.14)

or

p = ρ2 ∂

∂ρ

(
f
ρ

)
= ρ

∂ f
∂ρ

− f , (B.15)

which implies

∂αp = ρ∂α

(
∂ f
∂ρ

)
. (B.16)

The momentum equation therefore reads

∂t jα + ∂β(ρvαvβ) = −∂αp, (B.17)

which is the well-known Euler equation.

Appendix C. Ensemble problems in meso–macro
coupling

The present appendix attempts to elucidate in some more detail
what we mean with our remarks about ‘ensemble problems’
in the main text. We hope that formulating these consider-
ations in a general and abstract language helps to clarify
our point.

We assume that the macroscopic domain can be divided into
small cells, such that the mesoscale description for a particu-
lar cell comprises a set of dynamic variables ξi, i = 1, . . . , n.
We may e.g. assume that the ξi describe the conformational
degrees of freedom of a polymer chain, or similar. Impor-
tantly, we assume that the ξi only describe internal degrees
of freedom of the macromolecules (such as first or higher-
order Rouse modes), while the center-of-mass coordinates of
the molecules are not included in the set.

Furthermore, we assume, in accord with the development
outlined in the monograph by Bird et al [16], that the ξi are sub-
ject to a (known) Fokker–Planck dynamics, which describes

the time evolution of the probability density P({ξi}, t). The
ingredients of this description are the (symmetric and positive-
semidefinite) diffusion tensor Di j = Di j({ξk}), the mesoscopic
free energy Hmeso({ξi}), the thermal energy kBT (or β =
1/(kBT)), and an additional non-equilibrium driving force F j

that is inferred from the macroscale—for example, we may
think of the effects of a local shear flow. The Fokker–Planck
equation (FPE) is then written as

∂tP =
∑

i j

∂

∂ξi
Di j

(
∂

∂ξ j
+ β

∂Hmeso

∂ξ j
− βF j

)
P

= :LFPP, (C.1)

which defines the Fokker–Planck operatorLFP. In the absence
of external driving (F j = 0), the Boltzmann distribution P ∝
exp(−βHmeso) is an obvious stationary solution.

The meso–macro coupling is then facilitated by a set of
observables Ai({ξ j}), i = 1, . . . , m, which are taken as addi-
tional dynamic variables in the macroscopic equations of
motion. ‘Additional’ here means ‘in addition to the standard
hydrodynamic variables’ like mass and momentum. As the Ai

appear at the macro-level, they should be considered as slow
variables, i.e. ideally have a significantly slower dynamics than
the remaining mesoscopic degrees of freedom.

For each of the Ai, an additional equation of motion on the
macro-level is needed. The most reasonable dynamics that we
may assume for the Ai on the macroscale is the time evolution
of the thermal averages

A(mac)
i := 〈Ai〉 =

∫
dnξ Ai P, (C.2)

which can be evaluated either by analytical solution of the FPE
(if feasible) or by numerical simulation. Introducing L†

FP, the
adjoint Fokker–Planck operator, we may write

∂t 〈Ai〉 =
∫

dnξ Ai LFPP =

∫
dnξ

[
L†

FPAi

]
P

=
〈
L†

FPAi

〉
, (C.3)

which provides an analytical form for the equation of motion
if the solution of the FPE, plus the subsequent averaging, may
be calculated analytically. However, the conceptual framework
does not depend on the analytical solvability at all, since the
averages may always be sampled by numerical simulation.

The thus-derived equations of motion for the 〈Ai〉 may then
be used as additional equations on the macroscale, however
with the following ‘recipe’, which takes into account that the
center-of-mass coordinates have been omitted, such that con-
vection effects have to be put in ‘by hand’: (i) the expression
∂t 〈Ai〉 must be replaced by DtA

(mac)
i , where Dt = ∂t + V · ∇

is the convective derivative and V denotes the macroscopic
flow field. (ii) If the mesoscale description implies the eval-
uation of some property of the flow field (e.g. its value, or its
derivatives) at a molecular center-of-mass coordinate, the cor-
responding evaluation on the macroscale must be done at the
position r, which denotes the position of the meso-cell in the
macro-domain.
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As a second step, we need to consider the important back-
coupling of the mesoscale degrees of freedom to the macro-
scopic hydrodynamics. This means that an additional vis-
coelastic stress needs to appear in the momentum conservation
equation.

The key element is here the Kramers (or virial) expres-
sion for the stress tensor components Παβ , which allows us
to evaluate a momentary (and local) stress from a given meso-
scopic configuration. For the time being, we do not give the
explicit formula here but just write this as a function Π̃αβ({ξi}).
The ξi, however, do not appear in the macroscopic descrip-
tion—here we rather consider the dynamics of A(mac)

i . There-
fore another function Π̄αβ({A(mac)

i }) is needed. The important
question is hence: how should Π̄αβ({A(mac)

i }) be constructed
from Π̃αβ({ξi})?

To tackle this question, the approach put forward in the
textbook by Bird et al [16] starts from a straightforward obser-
vation: just as the time-dependent averages 〈Ai〉, we may also
evaluate 〈

Π̃αβ

〉
=

∫
dnξ Π̃αβ P, (C.4)

again, either by analytic solution of the FPE, or by numerical
simulation.

From there, the textbook proceeds as follows: first,
it is observed that, for suitably chosen observables Ai,
equations (C.2) and (C.4) happen to result in a relation that

expresses
〈
Π̃αβ

〉
as a function of the 〈Ai〉:〈

Π̃αβ

〉
= Σαβ({〈Ai〉}). (C.5)

As a matter of fact, the approach chooses the variables Ai

in such a way such that the construction of such a relation
becomes possible—or, more precisely, essentially trivial, as
the Ai are (except for trivial transformations) just chosen as
the components Π̃αβ({ξi}). If one then assumes that this rela-
tion can be directly transferred to the macroscale, i.e. that
one should use Π̄αβ({A(mac)

i }) = Σαβ({A(mac)
i }), the coupling

is established and the problem ‘solved’.
However, there are two aspects of the procedure which are,

in our opinion, somewhat unsatisfactory: firstly, the choice
of the Ai is not primarily driven by the notion of ‘slowness’,
but rather by the technical need to obtain a stress. Fortu-
nately, however, for polymeric fluids the stresses are slow
variables, such that this argument does not count very much.
The second argument, though, is much more severe: the aver-
aging procedure of equation (C.4) completely disregards the
ensemble-defining property of the Ai. As the Ai are assumed
to be ‘slow’, the averaging should only be done by integrat-
ing out the remaining ‘fast’ (or ‘non-A’) degrees of free-
dom. Formally this means that, after having established the
macroscopic dynamics of the Ai (the functions A(mac)

i (t)),
one should evaluate the average of any observable X via
the prescription

[X] (t)

=

∫
dnξ P

[
Πm

j=1δ(A j({ξi}) − A(mac)
j (t))

]
X({ξi})∫

dnξ P
[
Πm

j=1δ(A j({ξi}) − A(mac)
j (t))

] ,

(C.6)

in analogy to the microcanonical ensemble. We have delib-
erately introduced a new notation for this average, to distin-
guish it from 〈. . .〉, which does not have any constraining delta
functions. Obviously,

[Ai] (t) = A(mac)
i (t) = 〈Ai〉 (t), (C.7)

while such an identity of averages does in general not hold for
other observables. In particular, this must typically be expected
for X = Π̃αβ .

This, in turn, means that the averaging procedure accord-
ing to equation (C.6) will produce a stress that differs from
the stress that results from the simple average according to
equation (C.4). It is clear that equation (C.6) results in a
prescription for the macroscopic stress that reads

Π̄αβ({A(mac)
i }) =

[
Π̃αβ

]
, (C.8)

which differs from the prescription of reference [16],

Π̄αβ({A(mac)
i }) =

〈
Π̃αβ

〉
. (C.9)

We strongly believe that the constrained average [. . .] is more
consistent with the general principles of statistical physics
than the simple average 〈. . .〉. One obvious advantage is that
the thus-constructed stress depends on the set of macroscopic
observables A(mac)

i by construction, regardless of how these
variables are chosen.

Now, equation (C.7) tells us that the problem would not
occur if the Ai were permitted to be chosen to be simply
the components of the stress tensor (or the conformation ten-
sor, which is essentially the same object). This is however
not the case. The components are not independent from each
other, and therefore treating each component as an indepen-
dent constraint would result in an overconstrained system.
In general, we need m � n to avoid such an overconstrained
situation.

This is seen particularly easily for a simple dumbbell, which
has, beyond the (disregarded) center-of-mass coordinates, just
three degrees of freedom (n = 3), which we can parameterize
in terms of the connector vector q. The Kramers expression for
the stress tensor is therefore

Π̃αβ(q) = −k
ρ(d)

m(d)
qαqβ = −k

ρ(d)

m(d)
Cαβ ; (C.10)

here k, ρ(d), m(d), and Cαβ have the same meaning as in the main
text. The kinetic part ∝ δαβ has been ignored, since it can, for
an incompressible system, be absorbed in a re-definition of the
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overall pressure. In terms of the parameterization introduced in
the main text, we may also write this as

Π̃αβ(q) = − Γ

ττq
ρ(d)qαqβ = − Γ

ττq
ρ(d)Cαβ. (C.11)

Obviously, there are only three independent components of
the stress tensor (or the conformation tensor). Therefore, we
should pick {Ai} = {qα} and not {Ai} = {Cαβ}. As a result
of this choice (m = n), equation (C.6) reduces, in this special
case, to a fairly trivial result:

[X] (t) =

∫
d3q P(q) δ(q − q(mac)) X(q)∫

d3q P(q) δ(q − q(mac))

=
P(q(mac)) X(q(mac))

P(q(mac))
= X(q(mac)). (C.12)

Therefore, we propose in the present work to use

Π̄αβ = − Γ

ττq
ρ(d)q(mac)

α q(mac)
β

= − Γ

ττq
ρ(d) 〈qα〉 〈qβ〉 (C.13)

instead of

Π̄αβ = − Γ

ττq
ρ(d)C(mac)

αβ = − Γ

ττq
ρ(d) 〈qαqβ〉 , (C.14)

which would be the prescription of reference [16]. The fact
that these expressions differ significantly is a hallmark of the
strong thermal fluctuations in polymer systems.

This does not imply that we propose to simply disregard
thermal fluctuations. We rather believe that they should be
taken into account not by a thermal average along the lines
of equation (C.14), but rather by explicit Langevin noise on
the macroscopic level.

Let us work out what these considerations imply for the
simple case of a Hookean dumbbell in a flow field. Again we
assume a frictional coupling of the beads to the flow field, with
a friction constant ζ, and assume that second and higher-order
derivatives of the flow field may be neglected, just as in the
main text. The Fokker–Planck operator for the overdamped
Brownian motion of the dumbbell can then be constructed
easily:

LFP = − ∂

∂q
·
(
−2k

ζ
q + q · ∇V

)
+

2kBT
ζ

∂2

∂q2
; (C.15)

here ∇V is the gradient of the velocity field at the position of
the dumbbell’s center of mass. In terms of the parameterization
of the main text we may write this as

LFP = − ∂

∂q
·
(
− 1
τq

q + q · ∇V
)

+
kBT
kτq

∂2

∂q2
. (C.16)

The adjoint operator is then found as

L†
FP =

(
− 1
τq

q + q · ∇V
)
· ∂

∂q
+

kBT
kτq

∂2

∂q2
, (C.17)

from which we evaluate

L†
FPq = − 1

τq
q + q · ∇V (C.18)

and

L†
FPqαqβ

= qαqγ∂γVβ + qβqγ∂γVα −
2
τq

qαqβ +
2kBT
kτq

δαβ ,

(C.19)

which in turn implies

∂t 〈q〉 =
〈
L†

FPq
〉
= − 1

τq
〈q〉+ 〈q〉 · ∇V (C.20)

and

∂t 〈qαqβ〉 =
〈
L†

FPqαqβ

〉
= 〈qαqγ〉 ∂γVβ + 〈qβqγ〉 ∂γVα −

2
τq

〈qαqβ〉

+
2kBT
kτq

δαβ. (C.21)

From equation (C.20) we find

∂t

(
〈qα〉 〈qβ〉

)
= 〈qα〉 〈qγ〉 ∂γVβ + 〈qβ〉 〈qγ〉 ∂γVα −

2
τq

〈qα〉 〈qβ〉 .

(C.22)

After replacing the partial time derivative with the convec-
tive derivative, we see that this is precisely the equation of
motion for the conformation tensor that has been derived in
the main text. In other words, the present paper proposes
to define the macroscopic conformation tensor as 〈qα〉 〈qβ〉.
Conversely, reference [16] (or, in other words, the standard
Oldroyd-B model) proposes to use 〈qαqβ〉, whose equation
of motion differs from the one proposed here by the term
[(2kBT)/(kτq)]δαβ . The fact that the difference is proportional
to the thermal energy kBT makes it obvious that the difference
lies in the different treatment of thermal fluctuations.

In equilibrium, where ∂t(. . .) = 0, V = 0, we have
〈qα〉 〈qβ〉 = 0, while 〈qαqβ〉 = [(kBT)/k]δαβ in accord with
the equipartition theorem. We may therefore say that the pre-
scription of the present paper implies a relaxation towards
mechanical equilibrium, while the prescription of reference
[16] implies relaxation towards thermal equilibrium.
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