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Abstract. Buckling of slender bars subject to axial compressive loads represents a critical design
constraint for light-weight truss structures. Active buckling control by actuators provides a possibility
to increase themaximum bearable axial load of individual bars and, thus, to stabilize the truss structure.

For reasons of cost, it is in general not economically viable to use such actuators in each bar
of the truss structure. Hence, it is an important practical question where to place these active bars.
Optimized structures, especially when coupled with active elements to further decrease the number
of necessary bars, however, lead to designs, which, while cost-efficient, are especially prone to bar
damages, caused, e.g., by material failures. Therefore, this paper presents a mathematical optimization
approach to optimally place active bars for buckling control in a way that secures both buckling and
general stability constraints even after failure of any combination of a certain number of bars. This
allows us to increase the resilience of the system and guarantee stable behavior even in case of failures.

Introduction

An important task in mechanical engineering is the design of truss structures. The goal is to build
structures which are light-weight but at the same time stable when exposed to external loads. In most
of the previous works on optimal truss topology design, the stability is measured by the so-called
compliance, the potential energy stored in the deformed truss, see, e.g., Bendsøe and Sigmund [1],
whereas other stability qualities such as buckling are ignored. In practice, however, the avoidance of
buckling is actually an important requirement. This is rarely considered in optimization approaches,
and if so, only on a global level, as in Ben-Tal et al. [2].

Apart from increasing the diameter of bars which are particularly prone to buckling because of the
topology of the truss, another way to avoid buckling is active buckling control via piezoelectric stack
actuators. These active elements can increase the critical buckling load of a given bar and therefore
its maximum bearable axial load. Since these active bars may be significantly more expensive than
passive ones, however, it may not always be an option to integrate this technology into all bars of a
truss. Thus, it is necessary to determine the correct bars to optimally place the active elements within
the truss to increase the stability of the whole truss even with a small number of active bars.

Besides stability conditions that prevent the buckling of bars, also the control of uncertainty is
an important task in truss topology design. One particular problem of optimizing truss structures is
that the optimization will lead to designs which are only stable for the given loads, while even small
disturbances may lead to an arbitrarily large compliance or failure of the buckling constraints. For this
reason, truss topology design is naturally suited to the idea of robust optimization [3], optimizing the
worst-case of the compliance over all loads in a given uncertainty set. Even when designing for this
larger set of potential loads using robust optimization, however, not all uncertain effects can be ruled
out. For example wear or manufacturing errors could still reduce the stability of bars or even cause
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them to outright fail. Therefore, the truss should be designed in a way that it still maintains its stability
even after removal of a given number of arbitrary bars, thereby designing resilient trusses.

While robust optimization based approaches to truss topology design have been heavily pursued
over the last decades, complete bar failures have only been investigated very recently, apart from some
earlywork of Sun et al. [4], which only considers a small, predetermined set of failure scenarios. Jansen
et al. [5] and Zhou and Fleury [6] work on continuous topology optimization problems, distributing
material among a space of “pixels” under the constraint that even after erasing all material within a
ball or cube of given size, the structure should still be able to sustain its load. Mohr et al. [7] consider
a ground structure approach, but in their model not only single bars can fail, but instead n complete
trusses have to be built from a given ground structure such that either a single one of them or each
set of n − 1 trusses together can withstand the given load after complete failure of all the remaining
trusses. The work most similar to ours is that of Kanno [8], who also considers arbitrary failures of at
most k bars, but only considers displacement constraints.

In the following, we will introduce the technology for active buckling control, before extending a
basic mixed-integer semidefinite programming (MISDP) model for truss topology design by buckling
constraints, optimal placement of active bars for buckling control and to the case of potential bar
failures. Afterwards, we will show numerical results illustrating the potential of the method, before
discussing future research directions, in particular related to the scalability of the model to real-world
problem sizes.

Buckling Control

Truss structures that bear and withstand static or time-varying loads are widely used in modern light-
weight mechanical and civil structures. The trusses consist of individual bars that are mainly loaded
in tension or compression. In case of compressive axial loads, buckling of the individual bars has to
be considered as the critical failure mode as it may lead to the collapse of an entire truss structure.
Buckling occurs as a stability failure at the compressive critical buckling load Fcrit resulting in large
lateral deformations of the bar, [9, 10].

Fig. 1: Euler buckling cases I (fixed-free), II (pinned-pinned), III (fixed-pinned) and IV (fixed-fixed)
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The critical buckling load depends on the boundary conditions of the axially loaded bar. Figure 1
shows the four Euler buckling cases of which Case II with pinned-pinned supports with critical buck-
ling load

Fcrit,II =
πEa2

4ℓ2
(1)

is best known. Equation (1) is valid for a bar with circular solid cross-sectional area a, length ℓ and
Young’s modulus E. The other boundary conditions fixed-free in Case I, fixed-pinned in Case III and
fixed-fixed in Case IV lead to critical buckling loads of Fcrit,I = 0.25Fcrit,II, Fcrit,III = 2.046Fcrit,II and
Fcrit,IV = 4Fcrit,II. From (1), it can be seen that the critical buckling load of a bar may passively be
increased by changing its geometry, i.e. length and cross-sectional area, or the material, i.e. Young’s
modulus.

Alternative to passively increasing the maximum bearable compressive load of an individual bar,
active buckling control may be used. Active buckling control provides a possibility to increase the
maximum bearable load of slender bars by the integration of piezoelectric stack actuators in compact
piezo-elastic supports at the bar ends, Fig.2(a), [11, 12]. In this particular setup, the circular bar is made
of aluminum alloy EN AW-7075 with a length of 400mm, diameter of 8mm and Young’s modulus
71.0 kN/mm2. The boundary conditions are close to Euler Case IV with fixed-fixed supports, Fig. 1.
The piezo-elastic supports introduce active bending moments that act in arbitrary directions at the bar
ends so that buckling and large lateral bar deformations may be prevented.

Fig. 2: (a) active bar with piezo-elastic supports for buckling control (photo: Fraunhofer LBF, Darm-
stadt, Germany), (b) sectional view of the piezo-elastic support

A sectional view of the piezo-elastic support is shown in Fig.2(b). The central element of the sup-
port are two concave-shaped elastic membrane springs that bear the axial and lateral loads and allow
rotations in any plane perpendicular to the x-axis. Two piezoelectric stack actuators that are mechan-
ically prestressed by allocated preload springs are arranged orthogonal to each other and orthogonal
to the beam-column’s x-axis, acting in y- and z-direction. They exert lateral forces to the bar’s axial
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extension that works as a cantilever beam end beyond the elastic membrane springs for each support.
This way, the active lateral forces provided by the piezoelectric stack actuators act in arbitrary direc-
tions orthogonal to the beam-column’s longitudinal x-axis. A gain-scheduled H∞ buckling control is
used to stabilize an individual bar in arbitrary lateral direction, [12]. With the proposed control it is
possible to increase the maximum bearable load of the active bar in an experimental investigation by
19% or 625N for quasi-static axial loads compared to the passive bar.

The active bar from Fig.2(a) can be used to replace highly compressively loaded passive bars in
truss structures that would otherwise need to have a larger cross-sectional area. In order to determine
an optimal placement of the active bars in a truss structure, mathematical optimization is used, as
described in the following sections.

An MISDP Model for Optimal Actuator Placement under Bar Failures

In this section, we develop a mixed integer-semidefinite program to optimize the topology of truss
structures and to optimally place the active bars presented in the last section such that the truss is able to
withstand a given set of loads even in the presence of bar failures.We build upon the basic semidefinite
model for truss topology design of Ben-Tal and Nemirovski where a fixed ground structure is given
and the goal is to find optimal cross-sectional areas which minimize a given quality criterion [13].
The ground structure consists of a set of nodes V := {v1, . . . , vn} ⊆ Rd and a set of m potential bars
E ⊆ V × V . The set of nodes is further divided into nf free nodes in Vf ⊆ V , which are movable,
and the remaining fixed nodes. Given an external load f ∈ Rdf with df = d · nf or set of loads
S := {f1 . . . , fs}, the goal is to find optimal cross-sectional areas ae for all bars e ∈ E such that
the compliance f⊤u/2 of the resulting truss is less than a given upper bound Cmax ∈ R+ for all
loads in the scenario-set S. The node displacements u can be determined through the equilibrium
conditionA(a)u = f with stiffness matrixA(a) =

∑
e∈E Ae ℓeae combining the bar stiffness matrices

Ae = E/ℓ2e · beb⊤e , where

be = (b(vi,vj)(k)){k≤nf} =


vi−vj

∥vj−vi∥2
, k = i,

vj−vi
∥vj−vi∥2

, k = j,

0, otherwise,
(2)

with E the Young’s modulus of the used material and ℓe the length of bar e.
Since in practice it is not always possible to buy or even produce bars of arbitrary thickness,

we will follow the approach of Kočvara [14] and Mars [15] and only allow cross-sectional areas in
some predetermined set A := {a1, . . . , ak}. Therefore, define binary variables xa

e such that the cross-
sectional area of bar e is a if and only if xa

e = 1. Then the stiffness matrix can be rewritten as

A(x) =
∑
e∈E

∑
a∈A

Ae ℓeax
a
e , (3)

which leads to the mixed-integer semidefinite program

min
∑
e∈E

ℓe
∑
a∈A

axa
e (4a)

s.t.
(
2Cmax f⊤

s

fs A(x)

)
≽ 0, ∀ fs ∈ S, (4b)∑

a∈A

xa
e ≤ 1, ∀ e ∈ E , (4c)

xa
e ∈ {0, 1}, ∀ e ∈ E , a ∈ A. (4d)
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The presented optimization model for truss topology design is a simple model which does not take
into account further stability qualities such as buckling. To cover such stability conditions, we extend
the model by buckling constraints in the next section.

Buckling Constraints. To prevent a bar e from buckling or to check whether bar e buckles at
all, we must first determine the bar force (qs)e for each scenario fs ∈ S and each bar e ∈ E . This
can be done by using the so-called geometry matrix B = (b1, . . . , bm) ∈ Rdf×m and the equilibrium
conditions Bqs = fs for each load scenario fs ∈ S . These uniquely determine the bar forces, as long
as B is invertible. This assumption, usually referred to as a statically determined truss, is satisfied if
the number of bars is equal to the degrees of freedom of the system, som = df , and additionally the
set of vectors (be)e∈E ⊆ Rdf is linearly independent.

As presented in the previous section, to prevent bars under compression from buckling, we have to
guarantee that the bar force (qs)e of bar e is bounded by the critical buckling force, i.e.,−Fcrit,e ≤ (qs)e
for all load scenarios fs ∈ S . The critical buckling force based on Euler Case II, Fig. 2, is given by
the linear term

Fcrit,e(x) =
∑
a∈A

πEa2

4ℓ2e
xa
e , (5)

compare Equation (1). For bars under tension we get an upper bound of Rp;0,2 · a with proportional
limit Rp;0,2. Together this gives us the constraint

− Fcrit,e(x) ≤ (qs)e ≤ Rp;0,2

∑
a∈A

axa
e ∀ fs ∈ S, e ∈ E . (6)

Note that the bar forces appearing in (6) are not part of the semidefinite model, so we need to introduce
them into (4). As long as the geometry matrix B is invertible, this can be done by adding variables
qs ∈ Rm and the equilibrium constraint Bqs = fs for each force scenario fs ∈ S .

To optimally place the active bars described in the last section, we introduce additional binary
variables ye with value one if an actuator for buckling control should be placed into bar e. Since we
only have data for a single diameter, we assume that the increase in the critical buckling force is
additive, meaning it is independent of the cross-sectional area. Then we can replace Fcrit,e(x) in (6) by

Fcrit,e(x, y) =
∑
a∈A

πEa2

4ℓ2e
xa
e + ρye, (7)

with ρ being the absolute additive increase in the critical buckling load through the active bars. Of
course, it would also be possible to use a multiplicative termFcrit,e(x, y) = Fcrit,e(x)·(1+ρy) instead of
the additive term in (7). Note that themultiplicative termwould lead to a nonlinear buckling constraint,
although it could be linearized (at the cost of an increased size) by introducing variables ze = xe ye,
which would still keep the model exact in all integral points. However, since we will later only use
bars which are at least as thick as the ones used in the experiments, choosing an additive term based on
the experiments is a conservative assumption, which should give a lower bound on the actual increase
of the critical buckling force.

Additionally, to enforce that actuators may only be placed in bars which are actually used, we add
constraints

ye ≤
∑
a∈A

xa
e (8)

for all bars e. Finally, we may bound the total number of active bars through a constraint∑
e∈E

ye ≤ r. (9)

To sum up, for statically determined trusses, adding the equilibrium condition, the buckling condi-
tion (7) as well as (8) and (9) yields a mixed-integer semidefinite problem to optimize the topology of
truss structures under buckling constraints and to optimally place active bars within the structure.
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Bar Failures.The goal of this section is to extend themodel in such a way that both the compliance
bound as well as the buckling constraints are not only guaranteed for the original truss, but also after
the failure of prespecified sets of bars. For this purpose, let us introduce the set Z ⊆ {0, 1}E of all the
possible bar failures which the truss should be able to sustain. Each distinct scenario is then given by a
vector z ∈ Z ⊆ {0, 1}E with ze = 1 indicating that bar e no longer exists in this scenario. One possible
choice forZ , which we will also use for our numerical experiments, is to allow arbitrary failures of up
to k bars, so Zk := {z ∈ {0, 1}E : ∥z∥0 ≤ k}. To consider bar failures, we have to adjust the model
presented in the previous subsection in the following way: To correctly bound the compliance of the
damaged truss in failure scenario zj , we need to adjust the stiffness matrix and replace A(x) by

A(x, zj) =
∑
e∈E

∑
a∈A

Ae ℓeax
a
e (1− zje) (10)

to remove the contribution of all failed bars. For bounding the compliance for all failure scenarios in
Z , we then need to replace the single SDP-constraint (4b) by |Z| SDP-constraints, each replacing the
stiffness matrix by the one corresponding to the specific failure scenario. Note that these are still linear
in x, since the z variables encoding the failure scenario are fixed for each constraint. For the specific
choice of Zk, it is in this case also sufficient to only add those constraints corresponding to exactly
k failures, since feasibility of the SDP-constraint for z̄ implies feasibility for all z ≤ z̄ by positive
semidefiniteness of the Ae.

With regards to buckling constraints, the geometry matrix B = B(zj) also needs to be adjusted
by removing all columns corresponding to bars failing in scenario zj . Therefore, we need to introduce
new variables qjs ∈ REj for the bar forces in scenario zj , where E j = {e ∈ E : zje = 0} is the set
of intact bars for scenario zj . These bar forces can then again be bounded by ranged rows as in (6).
Furthermore, it is obvious that the bar forces should still satisfy the constraints

B(zj)qjs = fs. (11)

However, as already indicated, the equilibrium constraint (11) only uniquely determines qjs ifB(zj) is
invertible. Depending on the ground structure, this was a valid assumption before, but in the presence
of bar failures, not all B(zj) can be invertible at the same time, since they do not even have the same
number of columns unless in all scenarios the exact same number of failures happen (but note that
the validity no longer follows automatically for all z ≤ z̄). Therefore, we will additionally need to
include the node displacements uj

s, which are already unique if A(x, zj) is invertible (which is, e.g.,
already implied by feasibility of the SDP-constraint and full dimensionality of the set S). The node
displacements can then be characterized through the equilibrium constraint A(x, zj) uj

s = fs. This,
however, would make the relaxations non-convex. Therefore, we will instead use the identity

A(x, zj) = EB(zj)Diag((ae/ℓe)e∈Ej)B(zj)⊤, (12)

with ae :=
∑

a∈A axa
e , which results simply from a comparison of the structure of the stiffness and the

geometry matrix. This leads to indicator constraints

xa
e = 1 ⇒ (qjs)e =

Ea

ℓe
b⊤e u

j
s, (13)

which we will later prove to be sufficient for ensuring that uj
s is a solution of A(x, zj)uj

s = fs and qjs
are the correct bar forces for force fs and failure scenario zj .
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Altogether, this gives us the MISDP model

min
∑
e∈E

ℓe
∑
a∈A

axa
e (14a)

s.t.
(
2Cmax fT

s

fs A(x, zj)

)
≽ 0 ∀ zj ∈ Z, fs ∈ S (14b)∑

a∈A

xa
e ≤ 1, ∀ e ∈ E , (14c)

B(zj)qjs = fs, ∀ zj ∈ Z, fs ∈ S, (14d)

−Fcrit,e(x, y) ≤ (qjs)e ≤ Rp;0,2

∑
a∈A

axa
e , ∀ zj ∈ Z, fs ∈ S, e ∈ E j, (14e)

ye ≤
∑
a∈A

xa
e , ∀ e ∈ E , (14f)∑

e∈E

ye ≤ r, (14g)

xa
e = 1 ⇒ (qjs)e =

Ea

ℓe
b⊤e u

j
s, ∀ zj ∈ Z, fs ∈ S, e ∈ E j, a ∈ A, (14h)

xa
e ∈ {0, 1}, ∀ e ∈ E , a ∈ A, (14i)
ye ∈ {0, 1}, ∀ e ∈ E , (14j)
qjs ∈ REj

, ∀ zj ∈ Z, fs ∈ S, (14k)
uj
s ∈ Rdf , ∀ zj ∈ Z, fs ∈ S. (14l)

What remains to be shown for the correctness of the model is that (14h) together with the rest of the
constraints actually implies that qjs are the correct bar forces for force fs and failure scenario zj .

Lemma1. If (x, y, q, u) is feasible for (14), then

qjs = E Diag((ae/ℓe)e∈Ej)B(zj)⊤uj
s, (15)

and uj
s is a solution ofA(x, zj)uj

s = fs, where ae :=
∑

a∈A axa
e . Furthermore, ifA(x, zj) is invertible,

then the vector qjs consists of the bar forces for load fs and failure scenario zj .

Proof. Let e ∈ E j . To show that (15) holds, first assume that
∑

a∈A xa
e = 1. Since x is binary, there

exists a ∈ A such that xa
e = 1. Therefore (qjs)e = Eae

ℓe
b⊤e u

j
s for all zj ∈ Z , fs ∈ S by (14h). On the

other hand, if
∑

a∈A xa
e = 0, then (14e) and (14f) imply (qjs)e = 0 = Eae

ℓe
b⊤e u

j
s, since ae = 0. Therefore,

(qjs)e =
Eae
ℓe

b⊤e u
j
s holds for all e ∈ E j . Combining these rows into a single system of linear equations,

we obtain (15). Now from (14d), (15) and since A(x, zj) = EB(zj)Diag((ae/ℓe)e∈Ej)B(zj)⊤, we
obtain

A(x, zj)uj
s = EB(zj)Diag((ae/ℓe)e∈Ej)B(zj)⊤uj

s = B(zj)qjs = fs.

If A(x, zj) is invertible, the solution of A(x, zj)uj
s = f is unique and characterizes the node displace-

ments for force fs and failure scenario zj , which implies that qjs are the bar forces.

Numerical Results

In this section, we want to present results for Model (14), with the resulting mixed-integer SDPs being
solved by modified developer versions of SCIP-SDP 3.1.0 [16] and SCIP 5.0.1 [17] using MOSEK
8.1.0.25 [18] as the SDP-solver on an 8-core Intel i7-4770. Inside SCIP, indicator constraints like (14h)
are handled by introducing continuous slack variables, which are fixed to zero once xa

e = 1.
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For comparing the influence of active bars for buckling control and of bar failures, the truss given
by the ground structure in Fig. 3 is optimized for the set of failure scenarios Zk with k ∈ {0, 1, 2}
and with maximum number of active bars r ∈ {0, 2}. The truss consists of six nodes (of which two
are fixed) and twelve potential bars of length between 400mm and 895mmwith cross-sectional areas
corresponding to diameters of 8mm, 11mm, 14mm and 17mm. The used material is aluminum with
a Young’s modulus of 71 kN/mm2 and we enforced two load scenarios with a main force of 0.5 kN
in vertical direction in node F with an orthogonal force of 0.1 kN to either the left or the right and
additional disturbing forces of 0.05 kN in vertical and 0.01 kN in horizontal direction in all other free
nodes. These forces are not enough to guarantee the sufficient condition for invertibility of A given
in the last section, nevertheless, we verified that all occurring stiffness matrices are indeed invertible.
The compliance was bounded by 10 kNmm, and we used a proportional limit of 0.325 kN/mm2 and
set the absolute increase of the critical buckling force of an active bar to 0.625 kN, the result of the
experiments described in the first section. Note that this leads to a higher relative increase, since the
buckling force of pinned-pinned bars is smaller by a factor of four compared to that of fixed-fixed
bars, which are closer to the ones used in the experiments and simulations.
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2
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1212
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Fig. 3: Groundstructure of truss (drawn not to scale)

The optimal trusses without bar failures and without as well as with a maximum of two active
bars are given in Fig. 4. Already in the case without active bars, all but one of the used bars are of the
smallest possible size. With active buckling control, this bar can also be reduced to the smallest size,
since the actuator can ensure the buckling constraints even with the smaller cross-sectional area, while
a second active bar does not help to reduce the total number or volume of bars to further improve the
objective value.

The results for k = 1 worst-case failure are given in Fig. 5. In this case, two bars can be decreased
in size through the placement of active bars. An interesting observation is that one of the active bars
replaces Bar 3, which originally is under tension for both load scenarios. Therefore, this active bar
will not have any influence in the original constraints without failures, since it only influences the
(negative) lower bound of a positive variable. After failure of Bar 6, however, Bar 3 is severely under
compression in both load scenarios and the buckling control is necessary to satisfy the lower bound
of the buckling constraint for this bar. Therefore, this example shows that it is actually necessary to
specifically investigate buckling constraints for the different failure scenarios, and it is not sufficient
to only consider bars under compression before failures and replace those with bar forces closest to
the critical buckling force by active bars.

For k = 2 worst-case failures, the results are given in Fig. 6. Here both active bars again replace
bars originally under compression to be able to reduce their sizes to smaller cross-sectional areas. Like
in the previous cases, the general structure of the truss stays the same and just single bars are replaced
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by smaller active bars, but this, of course, does not have to be the case for all examples, and it can
also happen that completely different structures are possible, which would not satisfy the buckling
constraints before.

(a) (b)

Fig. 4: Optimized truss for k = 0 bar failures and (a) r = 0 or (b) r = 2 active bars

(a) (b)

Fig. 5: Optimized truss for k = 1 bar failures and (a) r = 0 or (b) r = 2 active bars

A comparison of the objective values for the different combinations of failure scenarios and num-
ber of active bars is given in Table 1(a). The first thing to be observed is that the volume increases
significantly when including bar failures. Increases by more than a factor of two can also happen,
since it may be necessary to have multiple thicker bars at different positions to compensate for the
loss of one bar. With active bars, we always get an improvement in the objective value, but the exact
factor may depend on the specific choice of possible cross-sectional areas, since we were usually able
to downsize by one type when replacing a bar by an active one.

Looking at the solving times in Table 1(b), we also see a significant increase when enlarging the
set of failure scenarios. For k = 2, even for this small example, we already get a solving time of almost
900 seconds, which is 100 times more than without bar failures. But in this case we have an MISDP
with almost 16000 variables, 60 of which are binary, with 132 SDP-constraints of size 9, and 19000
linear and 13000 indicator constraints. For the active bars, the influence on the solving time is much
smaller, with onlym additional binary variables, one per bar, andm+ 1 additional linear constraints.
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In our experiments we even got a slight decrease in solving time in two of the three cases, although this
should be attributed to performance variability and one should still expect a slight increase in solving
times, but on a much smaller scale than for the inclusion of failure scenarios into the model.

(a) (b)

Fig. 6: Optimized truss for k = 2 bar failures and (a) r = 0 or (b) r = 2 active bars

Conclusion & Outlook

Preventing the buckling of bars is an important task in engineering applications. Instead of oversizing
each bar in a truss structure, it seems more promising to use active buckling control. We have seen
that bars with actuators for buckling control can increase the maximum bearable load of a single bar
by up to 20%. In order to use these active bars as purposefully as possible, we developed a mixed-
integer semidefinite model to optimally place these active elements within truss structures even in
the presence of uncertain loads and bar failures. Based on a simple truss structure with six nodes, we
demonstrated how much influence the optimal placement of active bars can have.

One challenge, which could be observed in our numerical results, however, is that theMISDPs tend
to get quite large even for relatively small trusses. For a problem with only six nodes, twelve bars and
a maximum of two bar failures, problems with up to 16000 variables and over 30000 constraints arise,
which already take quite long to solve. For being able to solve problems of more practically relevant
size, these numbers would have to be decreased to find optimal solutions in acceptable times. One
possibility to reduce the solving times would be to dynamically generate the additional constraints
and variables necessary for the different failure scenarios. In this case, one would solve generation
problems to find critical failure scenarios to add to the set of constraints (and bar forces) of the MISDP
until nomore critical failure scenarios can be generated. Since the resulting generation problemswould
be non-convex mixed-integer quadratically-constrained quadratic problems, however, one would still
need to find efficient ways to solve these auxiliary problems.

Table 1: (a) Objective values for the volume [105mm3] and (b) solving times [s] for the different
combinations of failure scenarios and maximal number of active bars
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