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Abstract
We study the dynamics and interactions of elliptic active particles in a two dimensional
solvent. The particles are self-propelled through prescribing a fluid stress at one half of the
fluid-particle boundary. The fluid is treated explicitly solving the Stokes equation through a
discontinuous Galerkin scheme, which allows to simulate strictly incompressible fluids. We
present numerical results for a single particle and give an outlook on how to treat suspensions
of interacting active particles.
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1. Introduction

Motile organisms like bacteria and sperm cells have to generate
directed motion in an aqueous environment at low Reynolds
numbers [1, 2]. The time-reversibility of the governing Stokes
equation requires flagella beats or body deformation cycles
that break symmetry [3]. Synthetic microswimmers have been
designed that mimic this motion [4, 5]. However, even with-
out movable parts, ‘swimming’ at the microscale is possible
through phoretic mechanisms that maintain a stress in the
fluid boundary layer driving a large-scale flow that propels the
particle forward. Typically, these are colloidal Janus particles
with two chemically distinct hemispheres [6, 7], but also the
exchange of ions with different diffusion coefficients [8] or a
difference of surface tension can be exploited [9].
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of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Most numerical studies of active particles [10], how-
ever, neglect hydrodynamic interactions or employ simplified,
schematic models such as Lighthill’s squirmers [11]. These
models do not resolve fluid details between the moving par-
ticles but typically prescribe a solvent velocity at the particle
boundary, and the solvent is treated using mesoscopic methods
like the lattice-Boltzmann method [12] or multiparticle col-
lision dynamics [13, 14] (note the boundary integral method
[15] as an alternative). While these methods conserve momen-
tum and thus hydrodynamic far-field flow, they are limited in
their resolution of near-field interactions due to the finite grid
underlying the fluid-particle collision interactions. Moreover,
the simulated fluid is compressible and care has to be taken to
avoid artifacts due to density inhomogeneities [16]. Another
aspect is that the concept of a slip velocity is questionable from
a thermodynamic point of view [17, 18]. It is thus highly desir-
able to explore the collective behavior of active particles both
in a strictly incompressible fluid and employing different types
of boundary conditions.

The present work investigates active particle motion in
an Newtonian solvent on an essentially two-dimensional
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manifold. The reason is that the major bulk of experimental
(and also numerical) work on active matter has been performed
in (quasi) two-dimensional geometries. Due to low Reynolds
numbers, the Stokes equation governs the flow dynamics of the
soluble medium. It is well known that there exists no steady-
state solution for the Stokes equation describing a free flow
around a disk in two dimensions (or around an infinitely long
cylinder) if the no-slip condition on the cylinder surface and
the free flow condition at infinity have to be satisfied simul-
taneously. If at infinity only a relaxed asymptotic boundary
condition is required, the Stokes equation can yield a very rea-
sonable solution in the near field, while in the far field the
prerequisite of a Stokes flow will no longer be met. This phe-
nomenon is called Stokes’ paradox. However, the improve-
ment by the Oseen correction, obtained by the perturbation
method, is necessary only in the far field r/a > O(Re−1)
with the cylinder radius a, which in our case would result in
r > 100 × particle − length for Re = O(10−2). This exceeds
the size of the domain we consider. Furthermore, it will be
seen that the fluid velocity obtained in the present investigation
decays as 1/r2 with the distance r from the particle, hence the
fluid velocity in the far field would be 10−4 times smaller than
the particle velocity. In real systems such small velocity will be
overlaid by noise and are negligible. Therefore, in the present
investigation with a Reynolds number of Re = O(10−2), a
two-dimensional Stokes flow solution is reliable.

Here we present a detailed numerical study solving the
underlying Stokes equation using a high-order extended dis-
continuous Galerkin (DG) discretization scheme [19]. This
method provides a sharp interface representation between the
fluid and the particle phase [20]. Besides the ability to use
higher order, DG-methods have additional advantages, for
example a simple handling of hanging nodes and thus local
mesh refinements, due to the discontinuous approach at the
cell boundaries. The fluid-particle solver used in this work is
part of the bounded support spectral solver3 (BoSSS) frame-
work [21], which contains all underlying methods. In contrast
to mesoscopic fluid solvers, such a method allows to accurately
resolve boundary conditions. We exploit this advantage and
implement the stress boundary condition proposed by Shelley
and coworkers [22, 23], which is physically more reasonable
for the representation of the forcing of active particles, but has
received comparably little attention as an alternative to slip
boundary conditions. The particle shape is chosen to be elliptic
[16, 24].

2. Model

For the moment we consider N active elliptic particles sus-
pended in a fluid. At each point x there is either a particle or
the fluid present. Hence, the two-dimensional domain Ω splits
into a sub-domain Ωf occupied by the fluid and Ωs =

⋃N
p=1Ωp

occupied by the particles. Both phases are separated by the
interface Γ =

⋃N
p=1Γp, which consists of the individual parti-

cle surfaces Γp. The coordinate system is defined by the two

3 Openly available at https://github.com/FDYdarmstadt/BoSSS

Figure 1. Each particle is defined by the two variables Rp, which is
the position of the centre of mass and the orientation angle ϕp. The
angle is defined between the horizontal axis with the unit vector e1
and the orientation vector ep. The normal vector n and the tangential
vector t form a right-handed system. The length of the particle is
denoted by a.

unit vectors e1 and e2. A third unit vector e3 is defined normal
to the e1–e2 plane.

The state of each particle is defined by the position of its
centre of mass Rp, the orientation angle ϕp and their time
derivatives. The orientation vector is ep ≡ (cosϕp, sinϕp) (cf
figure 1). The particles are considered to be rigid. Hence,
their translational and rotational motion is described by the
Newton–Euler equations

mpR̈p = Fp =

∫
Γp

τ · n dS (1)

and

Ipϕ̈p = Tp =

∫
Γp

(
x − Rp

)
× (τ · n) · e3 dS, (2)

where Fp is the hydrodynamic force vector and T p the hydro-
dynamic torque exerted on the particle p. The resulting linear
and angular accelerations of the particle are determined by its
mass mp and moment of inertia Ip (which is a scalar quantity
due to the restriction to two dimensions).

To calculate the hydrodynamic forces, we need to know the
fluid stress tensor

τ = −pI + μf
[
∇u + (∇u)T

]
, (3)

where I is the identity matrix, μf the solvent viscosity, and
u(x, t) the fluid velocity field in the vicinity of the particle. As
appropriate for motion at low Reynolds number, the evolution
of the fluid is governed by the unsteady Stokes equation

ρf
∂u
∂t

= ∇ · τ = −∇p+ μfΔu, (4)

where ρf is the fluid density and the pressure field p(x, t)
ensures incompressibility,

∇ · u = 0. (5)

To complete the model, we need to specify boundary con-
ditions between the particles and the fluid. The particles are
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Figure 2. Sketch of an elliptic Janus pusher particle. On the active
part of the particle’s surface, the fluid is accelerated by the
tangential stress ± fact. Due to momentum conservation, the particle
will move in the direction of ep. At the passive half of the particle
surface, a no-slip boundary condition is applied.

modelled as elliptic Janus particles with each hemiellipse
(denoted Γac for the active side and Γpa for the passive side,
see figure 2) described by a different boundary condition. By
prescribing a stress vector along the tangential direction on the
active surface, the fluid is accelerated and the particle moves
in the opposite direction. The dynamic stress vector on the unit
surface of an infinitesimal fluid element is

sd = μf
(
∇u + (∇u)T

)
· n, (6)

where n is the vector normal to the surface. On the active
surface, the tangential part of the dynamic stress vector is
prescribed to be

t · sd = ± f ac on Γac, (7)

where t is the tangential vector and fac is the specified mag-
nitude of the active stress. For symmetry reasons, the sign of
fac is different on the two halves of the active hemiellipse (see
figure 2). Furthermore, the sign determines whether the parti-
cle is a ‘pusher’ or a ‘puller’. In figure 2, a pusher particle is
shown. For a puller, the active stress would have the opposite
sign.

The local particle velocity consists of the translational
velocity Ṙp and the rotational velocity ϕ̇

up = Ṙp + ϕ̇pe3 ×
(
x − Rp

)
∀ x ∈ Ωp. (8)

The additional active stress admits a slip velocity at the surface(
u − up

)
· t �= 0 ∀ x ∈ Γac. (9)

Since the surface is considered to be impenetrable, along
the normal direction, the fluid and particle velocity at the
active boundary have to be equal. Hence, the normal boundary
condition on the active part of the particle surface is

u · n = up · n ∀ x ∈ Γac. (10)

Finally, on the passive part of the particle surface, a no-slip
boundary condition

u = up on ∀ x ∈ Γpa (11)

is used.

3. Results

The solution for a system of N particles and a fluid is obtained
with a separated solver. Due to the interdependence of the two
phases, an iterative procedure is necessary. First, the solution
for the fluid phase is obtained by solving the unsteady Stokes
equation (4) and the continuity equation (5) in the fluid domain
Ωf . At the particle’s surface Γ, the solution of the particles
from the previous iteration is used to define the boundary con-
ditions (7), (10) and (11). A high order extended discontinuous
Galerkin (XDG) method is employed, extending the work of
[19, 20]. The acceleration, and subsequently the new velocity,
position and orientation of the particles are obtained by solv-
ing the Newton–Euler equations (1) and (2) using the solution
of the fluid phase. The new state of the particle is then used in
the next iteration until a ‘steady’ result for the particle veloc-
ities is obtained. In appendix A, we provide further details on
the implementation of the numerics.

In every simulation presented in the following subsections,
the fluid properties density ρf and viscosity μf and the parti-
cle length a are set to unity thereby fixing the ratio between
the length and time scales. Hence, the Reynolds number Re =
ρfupa
μf

is solely governed by the aspect ratio ε and the active
stress fac, which in turn sets the velocity up of the particle.
To justify the usage of the unsteady Stokes equation over the
Navier–Stokes equation, the Reynolds number has to be kept
small, i.e. Re � 1.

3.1. Single particle characteristics

In this section, we will examine the behaviour of a single par-
ticle to outline certain characteristics. A single active particle
generates the flow field of a force dipole [25], which is visible
in the experiments of the aforementioned publication and in the
results of our numerical simulation (see figure 3). To reproduce
the results of the experiment, we use a 10 × 10 domain with an
active particle in the centre. The domain is moved alongside
the particle, hence it always stays in the centre. The particle
has an aspect ratio of ε = 0.1. The boundary condition at the
domain boundary is a pressure outflow. Hence, there are no
walls to disturb the motion of the particle.

Comparing our simulation results with the experimental
results of reference [25] demonstrates that our simulations cor-
rectly reproduce the qualitative behaviour. Both data sets show
the symmetric velocity field of a force dipole in the far field
(see figure 4(a)). In the region close to the particle’s surface,
the shape of the flow field deviates from a force dipole (see
figure 4(b)). At the posterior side of the particle, a minimum
exists at r ≈ 4 × 10−1, where r is the distance from the sur-
face. This minimum is caused by the opposing signs of the slip
velocity generated by the active stress on the upper and lower
sides of the active surface. Plotting the velocity perpendicu-
lar to the particle’s surface at the point where the active and
passive boundaries connect reveals further interesting effects.
Close to the boundary, the fluid speed has a minimum, i.e.,
a stagnation point is generated. At a slightly greater distance
from the surface, the speed increases to a maximum, which
is caused by the active boundary which pulls additional fluid.
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Figure 3. Qualitative comparison between three-dimensional
experimental results [25] of the (rotationally symmetric) flow field
of Escherichia coli (left, copyright 2011 National Academy of
Sciences) and our two-dimensional numerical results obtained with
BoSSS (right). The colour show the magnitude of the fluid velocity.
In the far field region, the flow field of a force dipole is retrieved. In
the region close to the particle’s surface, the flow field shows an
asymmetry caused by the different boundary conditions. This
asymmetry is also visible in the close-up picture of the experimental
results.

Figure 4. (a) Line-out plot of the fluid speed |u| at the anterior side
of the particle. In the far field region, the value decays as |u| ∼ 1

r2 ,
which is equivalent to a force dipole. (b) Line-out plots of the fluid
speed at the different sides of a pusher particle’s surface in the
near-field region. There is no minimum at the anterior side, whereas
on the posterior side a minimum occurs due to the different signs of
the slip velocity alongside the surface. On the left and right side of
the particle a minimum in the fluid speed occurs where the two
different boundary conditions coincide.

Increasing the distance even further will lead to the transition
layer between the near- and far-field.

In a first parameter study, a particle is set in a closed domain,
i.e., with solid wall boundary conditions. The domain has a
size of 5 × 5 with 60 cells in both spatial directions. A moving
domain ensures the particle is always positioned at the center
of the domain. The particle length is unity and the aspect ratio
ε = 0.5. Only the magnitude of the active stress is varied. The
resulting normalized speed of the particle

v =

∣∣Ṙ∣∣∣∣Ṙ∣∣
max

(12)

is plotted in figure 5 over the active stress, where
∣∣Ṙ∣∣

max
is the

terminal speed of the simulation with the largest magnitude
of the active stress. In alignment with the results of the theo-
retical examinations [26], the speed of the particle is propor-
tional to the magnitude of the active stress. This result is to be
expected. Since the Stokes equation, the Newton equation, and
all boundary conditions are linear in both the fluid velocity and

Figure 5. Particle speed v as function of the active stress fac, where
the results of eight simulations are marked with (×). The speed is
normalized with the maximum value, v = |Ṙ|/|Ṙ|max.

the particle fluid, and fac is the only forcing, the fluid velocity
and the particle speed are proportional to fac. Therefore, in the
present special case the forcing fac can be removed from the
problem statement by an appropriate non-dimensionalization.
Introducing the translational mobility σt as a proportionality
factor yields ∣∣Ṙ∣∣ = σt f ac, (13)

which is found to be σt � 5.952.
The setup of the second parameter study is similar to the

first one. However, the parameter in question is the aspect
ratio of the particle. While the length a of the particle in the
horizontal direction is kept at unity, the thickness b in the ver-
tical direction is varied. In figure 6, we plot the terminal speed
over the aspect ratio of the particle. For small aspect ratios
ε < 0.325 our numerical results approach a logarithmic behav-
ior, which is in line with the predictions of slender body theory
[27]. For values in between 0.325 < ε < 0.6 our results match
the theoretical prediction of Hohenegger and Shelley [26].
After the minimum of ε| ln

(
ε2
)
+ 1|, our values return to a

logarithmic behaviour. The theory of Hohenegger and cowork-
ers approximates the integrated value of the active stress, i.e.
the active force, by 2πb fac, which is a zeroth order approxi-
mation of the surface of an ellipse multiplied with the magni-
tude of the active stress. Hence, the theory predicts a shrinking
velocity for smaller aspect ratios ε. In contrast, BoSSS resolves
the shape in greater detail and calculates the active force by the
surface integral accurately over the entire surface of the active
hemiellipse, leading to a further increase of the velocity for
small ε.

3.2. Single particle in a channel

In this section, we present the fundamentally different
behaviour of a puller and a pusher particle. In both cases the
particle is initially set in the center of a 7.5 × 1.5 channel
domain with walls at the upper and lower side and a pressure
Dirichlet boundary condition at the left respective right side
of the domain. The aspect ratio of each particle is ε = 1

3 . For
the pusher particle the active stress is applied at the posterior
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Figure 6. The diagram shows the speed of the particle v over the
aspect ratio of the active particle ε < 1. The results of the
simulations are marked by (x). For smaller ε the results align
towards a logarithmic function of ε. For a medium range of ε, the
theoretical result of Hohenegger and Shelley [26] (dashed line) is in
good agreement with our numerical results.

Figure 7. A puller particle in a channel at t = 0 and t = 5 with
Δt = 10−2, where the colour scale indicates the magnitude of the
fluid velocity. The particle aligns itself parallel to the channel walls
in the middle of the channel.

Figure 8. A pusher particle in a channel at t = 0 and t = 10 with
Δt = 10−2, where the colour scale indicates the magnitude of the
fluid velocity. The particle continuously approaches the channel
wall.

side, whereas, for the puller particle the active stress is applied
on the anterior side. Both particles are tilted by an angle of
ϕp =

π
9 with respect to the horizontal axis. The puller particle

aligns itself parallel to the walls in the middle of the channel,
see figure 7. This behaviour is stable and the angle approaches

lim
t→∞

ϕpull = 0. (14)

The pusher particle, on the other hand, shows a different
behaviour, see figure 8. In the first section of the simulation,
the angle increases to ϕ = π

4 while the particle steadily moves
closer to the channel’s wall. Once the particle reaches the
wall region its speed decreases and it stays close to the wall.
Such alignment of pushers at walls of a confinement in two
dimensions has been observed, for e.g., in references [28, 29].

Figure 9. The three snapshots show the progress of a simulation
with 49 active particles at t = 0, t = 7.5 and t = 15. The time step
Δt = 10−1 and the Reynolds number is in the order of
O (Re) = 10−2. The colour field is the fluid speed and the arrows
represent the fluid velocity field.

Figure 10. (a) Wall-time in seconds to compute a single time-step
on a single core of a system with a constant volume fraction of the
particles of 39.42%. There is one particle for each 540 DoF in the
fluid phase and the polynomial degree is k = 2. (b) Speed-up for the
largest system in (a) with 49 particles.

3.3. Active suspension

Finally, we give a brief glimpse of suspensions on active par-
ticles. Figure 9 shows snapshots of N = 49 particles with an
aspect ratio ε = 0.5 in a 7 × 7 domain with periodic bound-
aries. This results in an area fraction occupied by the particles
of 39.42%. The boundary conditions on the particles induce
a highly non-trivial fluid velocity. These simulations will be
analyzed in detail in forthcoming publications.

Results of wall-time measurements are displayed in
figure 10. We use a direct sparse solver PARDISO [30] for
the fluid domain, which is expected to out-perform iterative
solvers for small systems with less than 105 degrees of free-
dom (DoF) in the fluid phase [21]. All calculations for this
performance test are carried out on a desktop machine with
an Intel(R) Core(TM) i7-9700K. Tests on a single core with
an increasing number of particles and fluid-DoFs deliver the
behaviour shown in diagram (a) in figure 10. The main contrib-
utor to the run-time is the fluid solver, including the assembly
of the matrix, the handling of cut-cells, quadrature rules and
the calls to PARDISO. The particle solver contributes with
about 10% to the overall run-time. The main source from the
particle solver is the integration of the fluid stress tensor at the
surface to obtain hydrodynamic forces and torque. Tests for a
system on multiple cores with 49 particles and 26 460 DoFs
in the fluid deliver the speed-up visualized in diagram (b) in
figure 10.
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4. Conclusions

We have demonstrated for the first time that DG methods are
a viable alternative to study the dynamics of self-propelled
active particles in an explicit, strictly incompressible solvent.
Going beyond existing studies, instead of prescribing a sol-
vent speed at the particles’ boundary we have used a stress
boundary condition. We have discussed the technical details of
the implementation and studied numerically the dynamics of a
single active particles in two geometries, a free particle and a
particle moving in a channel. We find good agreement with
experiments [25] and previous theoretical calculations [26].
Our approach can be extended to suspensions of interacting
particles, which will be studied in more detail elsewhere.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)—Project number
233630050—TRR 146. Authors would like to thank the
staff of the Lichtenberg high performance computer of the
Technical University of Darmstadt for the computing time
provided.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Appendix A. Implementation details

For completeness, here we describe in some detail the imple-
mentation within BoSSS. The system of the fluid and N par-
ticles is coupled at the particle surface due to the boundary
conditions (7), (10), (11) and the Newton–Euler equations (1)
and (2). To represent the particle surface a level-set function φ
is used. This level-set is solely a function of the position of the
centre of mass and the orientation angle

φ = φ (χ,ϕ) , (A.1)

thus, no additional level-set equation is necessary. Further-
more, to reduce the number of independent level-set function
a complete level-set function φ is introduced

φ (x, t) = inf(Φ (x, t)), (A.2)

where

Φ (x, t) = {φ1 (x, t) ,φ2 (x, t) , . . . ,φN (x, t)} . (A.3)

The total time T is divided into separate time steps Δt. The
state of the fluid at each time step is represented by

Un(x) =

[
un(x)

pn(x)

]
(A.4)

and the state of each particle is

Vn =

⎡
⎢⎢⎢⎢⎢⎣

Rn
p

Ṙn
p

ϕn
p

ϕ̇n
p

⎤
⎥⎥⎥⎥⎥⎦ . (A.5)

Note that the particle state does not depend on the position x.
Due to the coupling between fluid and particle phase the fluid
state at a new time step tn+1 is calculated with

Un+1 = F
(
Un, Un−1, . . .Un−a; Vn+1

1 , ...

Vn+1
N , Vn

1, . . .Vn
N , ...Vn−a

1 , . . .Vn−a
N

)
, (A.6)

whereF is the fluid solver scheme, to be defined in the follow-
ing sections. As shown in (A.6), the new state depends not only
on the previous states of the fluid but also on the current and
previous states of the particles. The number of previous states
a necessary depends on the temporal discretization scheme,
introduced in section appendix A.1.

To obtain the new state of the particle phase it is necessary
to consider the history of the respective particle and the current
state of the fluid. Hence, one obtains

Vn+1 = P
(
Un+1; Vn, . . .Vn−a

)
, (A.7)

where P is the particle solver scheme.
Due to the dependency of both phases on the current state

of the respective other phase it is necessary to employ either
a combined solver or an iterative, separated solver. The itera-
tion scheme is shown in figure A1. In each iteration marked
with the preceding index k the fluid and the particle solver are
employed separately. Starting with the fluid solver the veloc-
ity and pressure fields are calculated. The results are then used
to calculate the hydrodynamic forces and torque in the New-
ton–Euler equations (1) and (2) and subsequently the trans-
lational and rotational velocity of each particle. The newly
obtain particle velocities are then used to update the bound-
ary conditions at the particle surface (7), (10) and (11) and
to obtain a new solution for the fluid velocity and pressure.
This procedure is repeated until the residual R has fallen
below a critical value Rcrit. The residual is calculated with the
hydrodynamic forces and torque acting on all particles

R =

√√√√√√
∑N

p=1

(
k + 1|F|n+1 − k|F|n+1

)2

∑N
p=1

(
k + 1|F|n+1

)2 , (A.8)

where the vector F contains both the vector of the hydrody-
namic forces and torque

F =
[
Fp, Tp

]
. (A.9)

After the velocities of both phases and the pressure has been
determined it is checked whether the particles would collide
or even overlap with the new velocities within the current time
step. In this case a collision procedure, based on the momen-
tum and energy conservation principle, is applied. With the
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Figure A1. Schematic representation of the coupled two-phase solver. The residual R is calculated using (A.8). The criterion Rcrit � 1 is set
at a reasonable value at the beginning of the simulation.

new velocities and pressure and the determination of even-
tual collisions the position χ and angle ϕ of all particles are
updated. The level-set φ used to describe the particle surface
is then updated for the next time step.

A.1. Temporal discretization

To discretize the fluid in time a backward differencing formula
of second order (BDF2) is used [20], whereas for the particle
phase Kepler’s rule is used. Note, that the time steps Δt do
not necessarily be uniform. After the extrapolation in time (4)
becomes

ρf

(
3un+1

2Δt
− 2un∗

Δt
+

un−1∗

Δt

)

+∇pn+1 − μfΔun+1 = 0 in Ωf

(
tn+1

)
.

(A.10)

The continuity equation (5) becomes

∇ · un+1 = 0 in Ωf
(
tn+1

)
. (A.11)

The fluid domain Ωf depends on the time step, hence, the
velocity fields un∗ and un−1∗ occurring in (A.10) are unknown.
However, it is assumed that the change from Ωf (tn) to
Ωf

(
tn+1

)
is small and thus, it is possible to use

un∗ = un in Ωf
(
tn+1

)
∩ Ωf (tn) (A.12)

and

un−1∗ = un−1 in Ωf
(
tn+1

)
∩Ωf

(
tn−1

)
. (A.13)

The values of the fields un∗ and un−1∗ in Ωf
(
tn+1

)
\Ωf (tn) are

approximated with a polynomial extrapolation.
With the velocity and pressure field of the fluid the hydro-

dynamic forces and torque and subsequently the acceleration
of the particles is calculated. Especially for low Reynolds-
numbers the effects of added damping due to the viscous shear
stress at the particle surface become significant. To prevent
instabilities and a diverging iteration process a method intro-
duced by [31] is employed. The core idea is to make the depen-
dency of the new particle state on the particle translational
and rotational velocity in (A.7) visible. An expansion of the
hydrodynamic forces and torque delivers [31]

k+1Fp

(
k+1U , k+1Ṙp, k+1ϕ̇p

)
≈ k+1Fp

(
k+1U , , kṘp, kϕ̇p

)
− Dvv

(
k+1Ṙp − kFp

)
− Dvw

(
k+1ϕ̇p − kϕ̇p

)
(A.14)

k+1Fp

(
k+1U , k+1Ṙp, k+1ϕ̇p

)
≈ k+1Tp

(
k+1U , kṘp, kṘp

)
− Dwv

(
k+1Ṙp − kṘp

)
− Dww

(
k+1ϕ̇p − kϕ̇p

)
, (A.15)
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where in two dimensions Dvv is a second order tensor, Dvw and
Dwv are vectors and Dww is a scalar. All four variables form a
3 × 3-matrix

D =

[
Dvv Dvw

Dwv Dww

]
. (A.16)

An approximation for the added damping tensor D is given
in the aforementioned publication [31]. The tensor is calcu-
lated only one time in the begin of a simulation. In each time
step after the update of the orientation angle the tensor is
transformed with a rotation matrix

R = AAT, (A.17)

where A is a matrix containing the principle axis of inertia as
column vectors. In each time step the added damping tensor is
updated with

Dn+1
αϕ = Rn+1D0

αϕ

(
Rn+1

)T
. (A.18)

With the added damping tensors one obtains the following
solver scheme for the particles. In a first step the hydro-
dynamic forces k + 1F (k + 1U, kχ̇, kϕ̇) and torque k + 1T
(k + 1U, kχ̇, kϕ̇) are calculated with an integration over the
level-set as given in (1) and (2). Added damping effects are
then introduced by solving{[

mpE 0

0 Ip

]
+ΔtζdD

}[
k+1R̈p

k+1ϕ̇p

]
=

[
k+1Fp

(
k+1U , kṘp, kϕ̇p

)
k+1Fp

(
k+1U , kṘp, kϕ̇p

)
]
+ΔtζdD

[
kṘp

kϕ̇p

]

(A.19)

for the accelerations in the iteration k + 1. To obtain the trans-
lational and rotational velocity of the particles the results have
to be integrated in time. Following from equations (1) and (2)
another temporal integration is necessary to obtain the position
of the centre of mass and the orientation angle of each parti-
cle. Each of the four integration procedures is carried out using
Keplers’s rule

ψn+1 = ψn +
Δt
6

(
ψ̇n+1 + 4ψ̇n + ψ̇n−1

)
, (A.20)

where ψ is the physical quantity in question.

A.2. Spatial discretization

The spatial discretization is based on the XDG method pro-
posed by [19]. To simplify the notation in this chapter each
quantity is part of the time step tn+1 and iteration-step k + 1,
hence, the reference to the time step and iteration can be
omitted, i.e. u = k + 1un+1. Only the fluid has to be dis-
cretized in space, whereas the particle solver has no spatial
component. The fluid velocity field is approximated using
polynomial functions of the order k. To satisfy the Ladyzn-
skaja–Babusk̆a–Brezzi condition ([32, 33]) the polynomial
order of the pressure field is reduced by one k′ = k − 1

(u, p) ∈ Pk (φ,Ωh) × Pk′ (φ,Ωh) =: Vk, (A.21)

where Ωh is the domain of a single cell. The numerical
grid consisting of H cells covers the complete domain Ω =⋃H

h=1Ωh and the cells do not overlap. The polynomial space Pk

with the order k is defined for each cells separately, i.e. there
might be jumps at the cell boundaries. Jumps are represented
by the jump operator [[·]], which is defined as

[[u]] (x) = lim
ε↘0

[u (x + εnΓ) − u (x − εnΓ)] . (A.22)

Furthermore, we define the average volume operator {·}

{u} (x) =
1
2

lim
ε↘0

[u (x + εnΓ) + u (x − εnΓ)] . (A.23)

Hence, one has to solve

∀ (v, τ ) ∈ Vk (A.24)

(
3u

2Δt
, v
)

Ωf

+b (p, v) − a (u, v) − b (u, τ )

= s (v) + r (v)+ p (v) .
(A.25)

The first term is the temporal derivative, evaluated in the
fluid domain Ωf . The pressure gradient term is represented by
b (p, v). The third term a (u, v) is the viscous term and b (u, τ )
the continuity term. A detailed discussion of these terms can be
found in [20]. In this paper we take a closer look to the viscous
term a (u, v), because the active boundary condition is intro-
duced via this term. The active stress in tangential direction on
the active surface is implemented as a source term on the right-
hand side of (A.25). Nevertheless, to ensure a slip-velocity at
the surface the jump operators of the velocity [[u]]|Γac

needs to
vanish

[[u]]|Γac
= lim

ε↘0

[
ut (x + εnΓ) − ut|Γac

]
= 0, (A.26)

where ut = u · tΓac is the fluid velocity in the direction of the
tangential vector. Hence, one obtains for the viscosity term

a (u, v) =−
∫
Ωf

μf
(
∇hu : ∇hv +∇huT : ∇hv

)
dV

+

∫
∂Ωf\Γac

μf
{
∇hu +∇huT

}
n∂Ωf\Γac · [[v]] dS

+

∫
∂Ωf\Γac

μf

{
∇hv +∇hvT

}
n∂Ωf\Γac · [[u]] dS

−
∫
∂Ωf\Γac

η [[u]] · [[v]] dS

+

∫
Γac

μf
(
nΓac ·

{
∇hu +∇huT

}
· nΓac

)
× nΓac · [[v]] dS

+

∫
Γac

μf

(
nΓac ·

{
∇hv +∇hvT

}
· nΓac

)
nΓac · [[u]] dS

−
∫
Γac

η
(
nΓac · [[u]]

) (
nΓac · [[v]]

)
dS. (A.27)
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The parameter η is the penalty parameter, which is defined as
[19]

η :=

{
μf max {η̃inn, η̃out} on Γint

μfη̃inn on ∂Ωf

, (A.28)

where Γint is an internal edge between two cells and η̃inn and
η̃out are the local penalty parameters

η̃ = η0k2Gh (A.29)

of the inner and outer cell at the internal edge. The factor
η0 = 4 in (A.29) is the local penalty factor, k is the polynomial
degree and Gh a geometrical function arising from the shape
of the cut cells [19].

On the right-hand side of (A.25) three different terms can
be found. The first term s (v) contains terms arising from the
Dirichlet boundary conditions of the Stokes equation and the
source term of the active boundary condition

s (v) =−
∫
ΓD

uD ·
(
∇hvnΓD − ηv

)
dS

−
∫
Γpa

u ·
((
∇hv +∇hvT

)
nΓpa − ηv

)
dS

−
∫
Γac

μf
(
nΓac ·

{
∇hv +∇hvT

}
· nΓac

)
× nΓac · u − η

(
nΓac · u

) (
nΓac · v

)
dS

−
∫
Γac

(
TΓac · fac

)
·
(
TΓac · [[v]]

)
. (A.30)

The second term r (v) contains the Dirichlet terms of the
continuity equation

r (v) =
∫
ΓD

τuΓD · nΓD +

∫
Γp

τuΓpa · nΓpa , (A.31)

which remained unchanged compared to passive particles.
The third term contains the additional terms of the temporal

discretization (A.10)

p (v) = −
∫
Ωf

(
2un∗

Δt
− un−1∗

Δt

)
· v dV. (A.32)

A.3. Solver stability

To improve convergence we introduced Aitken-relaxation for
the calculation of the forces. The principal idea of a relaxation
method is the combination of the newly calculated solution
with the solution of a previous iteration step

k+1Fn+1 = k+1ωk+1F∗ +
(
1 − k+1ω

)
kFn+1, (A.33)

where k+1F∗ is the unmodified solution of the current iter-
ation. Instead of using a constant factor ω the Aitken-
procedure calculates an optimal factor in each iteration step. A
comparison between different relaxation-procedures and an
outline of the principle idea of the Aitken-relaxation can be

found for example in [34]. For the purpose of calculating k+1ω
we write the particle force vectors into a single vector

F = [F1, . . . , FN] . (A.34)

Furthermore, the residual vectors

k+1R = k + 1F∗ − kFn+1 (A.35)

and
kr = kF∗ − k − 1Fn+1 (A.36)

are introduced. The new relaxation coefficient is then calcu-
lated with [34]

k + 1ω = −kω
kr · (k + 1r − kr)

‖k + 1r − kr‖2 . (A.37)

To initialize the Aitken-relaxation it is necessary to calculate
two iteration-steps with a static ωc. The value can be chosen
freely depending on the problem, however, it has been proven
useful to use ωc < 0.5 for problems with multiple particles.
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