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Abstract
We compute the electric form factors of one-neutron halo nuclei with shallow
D-wave states up to next-to-leading order and the E2 transition from the S-
wave to the D-wave state up to leading order in Halo effective field theory
(Halo EFT). The relevant degrees of freedom are the core and the halo neu-
tron. The EFT expansion is carried out in powers of Rcore/Rhalo, where Rcore

and Rhalo denote the length scales of the core and the halo, respectively. We
propose a power counting scenario for weakly-bound states in one-neutron
Halo EFT and discuss its implications for higher partial waves in terms of
universality. The scenario is applied to the

+5

2
first excited state and the

+1

2
ground state of 15C. We obtain several universal correlations between electric
observables and use data for the E2 transition 

+ +5

2

1

2
together with ab initio

results from the No-Core Shell Model to predict the quadrupole moment.
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1. Introduction

The quantitative description of halo nuclei in Halo effective field theory (Halo EFT) provides
insights into their universal properties. Halo nuclei consist of a tightly bound core nucleus
surrounded by one or more weakly bound nucleons [1, 2]. This separation of scales can be
captured in terms of the core length scale, Rcore, and the halo scale, Rhalo, with Rhalo?Rcore.
Halo EFT exploits this separation of scales to describe halo nuclei [3, 4]. In this approach, the
relevant degrees of freedom are the core and the halo nucleons. Halo EFT is complementary
to ab initio methods that have difficulties describing weakly-bound states and provides a
useful tool to identify universal correlations between observables. For recent reviews of Halo
EFT see [5–7].

The Halo EFT formalism has been successfully used to study various reactions and
properties of halo-like systems. Some early examples in the strong sector include the nα
resonance in 5He [3, 4] the αα resonance in 8Be [8] and universal properties, matter form
factors and radii of two-neutron halo nuclei with predominantly S-wave [9, 10] and P-wave
interactions [11, 12]. Due to the importance of higher partial waves in halo nuclei, different
power counting schemes are conceivable that have a varying number of fine tuned parameters
[3, 4]. From naturalness assumptions, one expects a lower number of fine tunings to be more
likely to occur in nature. However, the level of fine tuning depends strongly on the details of
the considered system and has to be verified and adjusted to data.

In Halo EFT, electromagnetic interactions can be straightforwardly included via minimal
substitution in the Lagrangian, and relevant electromagnetic currents can be added. Some
applications to one-neutron halos, which we consider here, are the calculation of electric
properties of 11Be [13], 15C [14], radiative neutron capture on 7Li [15, 16] and 14C [17], the
ground state structure of 19C [18], and the electromagnetic properties of 17C [19]. The
parameters needed as input in Halo EFT can be either taken from experiment or from ab initio
calculations [16, 20, 21], which shows the versatility and complementary character of
Halo EFT.

Electric properties provide a unique window on the structure and dynamics of one-
neutron halo nuclei. In this work, we consider 15C as an example and follow the approach
presented in [13], where electric properties of 11Be are calculated using Halo EFT. 15C also
has two bound states. The

+1

2
ground state of 15C is predominantly an S-wave bound state,

and the
+5

2
first excited state predominantly a D-wave bound state. Therefore, we focus on the

extension to partial waves beyond the P-wave, in general, and especially on the extension to
D-wave states. We include the strong D-wave interaction by introducing a new dimer field
and compute the E2 transition strength and electric form factors. In the context of the strong

a+ « +d t n reaction, D-wave states were also investigated in [22]. We use a similar
approach for dressing the D-wave propagator, but a different regularization scheme. This
entails a different power counting scheme as will be discussed in more detail in the next
section.

The paper is organized as follows: after writing down the non-relativistic Lagrangian for
the S- and D-wave case in section 2, we dress the S- and D-wave propagators. As regular-
ization scheme, a momentum cutoff is employed to identify all divergences. For practical
calculations, the power divergence subtraction scheme [23, 24] is applied for convenience.
Based on our analysis of the divergence structure, we propose a power counting scenario and
discuss its implications for higher partial wave bound states in terms of universality. In [19],
the same power counting as in this paper is applied in order to describe shallow D-wave
bound states in 17C. After the inclusion of electric interactions in our theory, the B(E2)
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transition strength between the S- and D-wave state as well as electric form factors of the D-
wave state are calculated in section 3. First, we present general results and correlations for
such weakly-bound systems and then apply them to the case of 15C. Eventually, our Halo EFT
results for 15C are combined with data for the B(E2) transition strength [25] and ab initio
results from the Importance-Truncated No-Core Shell Model (IT-NCSM) [26]. In this way,
we are able to predict the quadrupole and hexadecapole moments and radii. Our findings are
then compared to correlations [27] which are motivated by the rotational model of Bohr and
Mottelson [28]. In section 4, we present our conclusions.

2. Halo EFT formalism

We apply the Halo EFT formalism for the electric properties of P-wave systems developed in
[13] to shallow D-wave systems. Since we use our theory to describe 15C which has a shallow
S-wave state =

+
JP 1

2( ) and a shallow D-wave state =
+

JP 5

2( ), we also include an S-wave
state in our theory.

2.1. Lagrangian

The relevant degrees of freedom are the core, a bosonic field c, and the halo neutron, a spinor
field n. The strong S- and D-wave interactions are included through auxiliary spinor fields σ
for the S-wave state and d for the D-wave states, respectively. Note that we include only one d
field in the Lagrangian below. In principle, there are two d fields for the

+5

2
and

+3

2
states,

respectively. Summing over repeated spin indices, the effective Lagrangian can be written as
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where 3/2�J�5/2 denotes the total spin of the D-wave state, mn is the neutron mass, M
the core mass and Mnc=mn+M is the total mass of the nc system. The repeated spin
indices s and m are summed over according to the Einstein convention. The power counting
for this Lagrangian depends on the underlying scales and will be discussed below. The S-
wave part of equation (1) contains three coupling constants g0, Δ0 and η0, while only two of
them are linearly independent. In principle, we are free to choose which constant is set to a
fixed value. Here, we choose η0=±1 to be a sign which will be fixed by the effective range.
(For an alternative choice, see [29].) This part is well known and has been discussed
extensively in the literature on Halo EFT [7, 13, 14]. To make the paper self-contained, the
key equations for the interacting propagator of the S-wave state are collected in the appendix.
In the following, we focus on the properties of the D-wave state. For the D-wave, we include
four constants in our Lagrangian, namely c2, η2, Δ2 and g2. However, in this case only three
of them are linearly independent. Again, we are free to choose which constant is set to a fixed
value. Here, we choose η2=±1 to be a sign, but other choices are possible. The additional
2nd-order kinetic term with constant c2 is needed to renormalize the interacting D-wave
propagator which contains up to quintic divergences. Since the core and neutron have
different masses, it is convenient to define the interaction terms with Galilei invariant
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where the arrows indicate the direction of their action. We project on the J=5/2 or 3/2
component of the interaction by defining
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where α and β are spherical indices and j m j m Jm1 1 2 2( ∣ ) are Clebsch–Gordan coefficients
[30] coupling j1 and j2 with projections m1 and m2, respectively, to J with projection m.

In practice, we calculate D-wave observables in Cartesian coordinates and then couple
the spin and relative momentum in the appropriate way. For better distinction, we use Greek
indices for the spherical representation and Latin indices for the Cartesian representation
throughout this paper. The Cartesian form of the strong D-wave interaction is taken from
[4, 22]

d +  -
-


« « « « «

d

1

2

1

1
, 4i j j i ij

2
( ) ( )

where d denotes the space-time dimension. This interaction yields 9 components, but a
straightforward check shows that only 5 of them are linearly independent. Thus, the D-wave
part of the Lagrangian(4) is Galilei invariant and contains the correct number of degrees of
freedom.

The relation between spherical and cartesian coordinates is given by

=  =r x x r xi 2 , , 51 1 2 0 3( ) ( )

and similar relations apply to other quantities. For convenience, we will always use the
Cartesian representation, but we will switch to a spherical basis if a coupling to definite
angular momentum is required.

2.2. D-wave propagator

The dressed d propagator and the D-wave scattering amplitude are computed from summing
the bubble diagrams in figure 1. This corresponds to the exact solution of the field theory
defined by the terms explicitly shown in equation (1) for the D-wave state. In the next
subsection, we will develop a power counting scheme that classifies the different contribu-
tions to the propagator according to their importance at low energies. After this scheme has
been established, only the terms contributing to the considered order will be included. To
make the divergence structure transparent, we will use a simple momentum cutoff to reg-
ularize the loop integrals. As before, we calculate the dressed D-wave propagator in the
Cartesian representation and couple the neutron spin and the relative momentum to project
out the appropriate angular momentum J in the end. The Dyson equation for the D-wave is
illustrated in the top panel of figure 1 and yields

d d d d d d
=

+ -
D p D p

2
, 6d ijop d

io jp ip jo ij op
2
3( )

( ) ( ) ( )
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where mR=(mnM)/(mn+M) denotes the reduced mass of the neutron-core system and Λ is
a momentum cutoff. In spherical coordinates the Cartesian tensor [22]
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and eventually, the full angular momentum coupling (3) applied in the incoming and outgoing
channel yields
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where ms ( ¢ms ) and ml ( ¢ml ) are the spin projections of the created (annihilated) neutron and the
projections of the D-wave interaction at both vertices of the bubble diagram in figure 1,

Figure 1. The dashed line denotes the core field c and the thin solid line the neutron.
The thin double line represents the bare dimer propagator and the thick double line with
the gray circle is the dressed dimer propagator. The top panel shows the diagrammatic
representation of the Dyson equation for the dressed dimer propagator and the bottom
panel the neutron-core scattering amplitude with the dressed dimer propagator.
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respectively. Moreover, J denotes the total spin with its incoming and outgoing projections m
and m′, respectively. The D-wave scattering amplitude in the two-body center-of-mass frame
with E=k2/(2mR) and = ¢ =k p p∣ ∣ ∣ ∣ for on-shell scattering

¢ = ¢ - ¢t E g D Ep p p p p p 0, ;
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which determine the running of the coupling constants g2, Δ2, and c2 with the cutoff Λ. Since
we get Λ dependencies with powers of 5, 3, and 1, the effective range parameters a2, r2, and
2 are required for renormalization at LO. This pattern motivates our power counting scheme
discussed below. In particular, we include the 2nd-order kinetic term proportional to c2 (see
[31]) in (1) in order to absorb the quintic divergence. If the values for these ERE parameters
are known, they can be used to fix the EFT couplings Δ2, c2 and g2 in our theory4. In the
vicinity of the bound state pole, the dressed d propagator can be written as

p
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where Zd denotes the wave-function renormalization, g=B m2 R2 2
2 ( ) denotes the binding

energy with the binding momentum γ2∼1/Rhalo, and Rd(p) is the remainder which is regular
at the pole. The pole condition gives the relation between the effective range parameters a2,
r2, 2 and the binding momentum γ2

g g+ + =
a

r
1 1

2

1

4
0. 17

2
2 2

2
2 2

4 ( )

2.3. Power counting

For the shallow S-wave state, we adopt the standard power counting from pionless EFT
[23, 24, 32, 33]. This implies the scaling 1/γ0∼a0∼Rhalo and ~r R0 core, where
g = - - r a r1 1 20 0 0 0( ) is the bound/virtual state pole position, a0 the scattering
length, and r0 the effective range. As a result, r0 contributes at next-to-leading order (NLO) in
the expansion in Rcore/Rhalo.

Because more effective range parameters are involved, the power counting for shallow
states in higher partial waves is not unique and different scenarios are conceivable [3, 4].
We apply the constraint that our scheme should exhibit the minimal number of fine tunings in
the coupling constants required to absorb all power law divergences. This is motivated by the

4 Note that we chose η2 to be a sign.
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expectation that every additional fine tuning makes a scenario less likely to be found in
nature, as discussed by Bedaque et al in [4]. They explicitly consider P-waves where both a1
and r1 enter at leading order (LO) and assume the scaling relations ~a R R1 halo

2
core and

~r R11 core, while higher effective range parameters scale with the appropriate power of
Rcore. This scenario requires only one fine-tuned combination of coupling constants in con-
trast to the alternative scenario proposed in [3] which requires two. In this work, we follow
the general arguments of [4] and apply them to the D-wave case.

To renormalize all divergences in the Dd(p) propagator, equation (6), the effective range
parameters a2, r2, and 2 are all required. In the minimal scenario thus two out of three
combinations of coupling constants need to be fine-tuned, i.e. ~a R R2 halo

4
core and

~r R R12 halo
2

core( ), while ~ R12 core. With this scaling, all three terms contribute at the
same order for typical momenta k∼1/Rhalo. Higher effective range parameters scale with
Rcore only and thus are suppressed by powers of Rcore/Rhalo.

This means that the dominant contribution to the D-wave bound state, after resumming all
bubble diagrams and appropriate renormalization, comes from the bare propagator. In part-
icular, the general structure of the propagator near the bound state pole at E=−Bd

=
+

+D E
Z

E B
Eregular terms in , 18d

d

d
( ) ( )

with Zd the wave function renormalization constant, is fully reproduced by the bare D-wave
propagator. Furthermore, all imaginary parts, if present, appear in the regular part of the
amplitude. With our assumptions about the scaling of a2, r2, and 2, the loop contributions
are suppressed by Rcore/Rhalo. They can be treated in perturbation theory and contribute at
NLO in the power counting. Thus, the low-energy D-wave scattering amplitude will satisfy
unitarity perturbatively in the expansion in Rcore/Rhalo. This is similar to the treatment of the
excited P-wave bound state in [13].

We note that the power counting depends sensitively on the details of the considered
system and thus has to be verified a posteriori by comparison to experimental information.
Including S-waves and switching to the pole momentum γ0 instead of the scattering length a0,
the relevant parameters in our EFT are γ0, γ2, r2, and 2 at LO, and the following wave
function renormalization constants for the D-wave state are obtained:
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The corresponding constants for the S-wave state are given in the appendix.
After we have identified the proper power counting, we switch to dimensional regular-

ization with power divergence subtraction (PDS) with renormalization scale μ as our reg-
ularization scheme [23, 24]. This simplifies the calculations but still keeps the linear
divergence associated with 2. In PDS, the one-loop self-energy for the D-wave state is
given by

p
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After matching to the effective range expansion, we find

p p
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1 15
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However, we note that the μ dependence in the matching condition for ~ R12 core is
subleading for μ∼1/Rhalo. It appears only at NLO where it is required to absorb the
divergence at this order. Our findings in the form factor calculation confirm this observation.

As pointed out in the introduction, an EFT for D-wave states was previously considered
in the context of the reaction a+ « +d t n in [22], where the coupling of the auxiliary field
for the 5He resonance to the αn pair with spin 3/2 involves a D-wave. We note that in [22]
the minimal subtraction (MS) scheme was used, in which all power law divergences are
automatically set to zero and no explicit renormalization is required for the D-wave propa-
gator. As argued in [23, 24, 32, 33], the MS scheme is not well suited for systems with
shallow bound states since the tracking of power law divergences is important. If MS is used
in the D-wave case, the contributions of r2 and 2 appear shifted to higher orders. Using a
momentum cutoff scheme for the D-wave propagator, it becomes clear that contact interac-
tions corresponding to r2 and 2 are also required to absorb all divergences at leading order.
As a consequence, these parameters have to be enhanced by the halo scale Rhalo.

2.4. Higher partial waves

It is straightforward to extend our power counting arguments to partial waves beyond the D-
wave. The higher-l interaction terms can be derived from the Cartesian (Buckingham) tensors
[34, 35], which are symmetric and traceless in every pair of indices and are given by
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- ¶
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with = + +r x x x1
2

2
2

3
2 . To obtain the specific interaction in momentum space for a given

angular momentum l, rj is simply replaced by i∇j. In general, this leads to a tensor of rank l
with 3l components. However, because the tensors are symmetric and traceless in every pair
of indices, only + + - - = +l l l l l l2 1 .. 3 1 2 2 1[( )( ) ] ! ( ) components are linearly
independent. Thus, we obtain the correct number of linearly independent components for a
given partial wave. However, beyond P-waves it becomes beneficial to use spherical
representation for calculations depending on the considered observable.

In order to be able to absorb all power law divergences, the first (l+1) effective range
parameters are needed at LO for the lth partial wave [3]. As discussed in the previous
subsection, one of these parameters can be assumed to scale only with Rcore if l�1. Thus, we
need l fine-tuned parameters for the lth partial wave if we want to renormalize all power law
divergences assuming the minimal fine tuning scenario. For arbitrary l, this leads to the
following power counting scheme
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where the lth and higher effective range parameters in each partial wave scale with
appropriate powers of Rcore. Accordingly, our power counting scenario agrees with [4] up to
P-waves but differs beyond that because the higher effective range parameters are counted
differently. The condition that all power law divergences in the bubble diagram can be
absorbed is relaxed and only al and rl contribute at LO for arbitrary l>0. As a consequence,
only one fine tuning is required. If this counting is universally realized in nature, one would
expect an approximately equal number of shallow states in low and high l-waves. Since
experimental observation of shallow states in light nuclei is predominated by lower l-waves,
we expect our counting to be more realistic. Later in our calculations for 15C we compare both
power countings and reveal that our scenario is more compatible with data in this case.

3. Electric observables

In this section, we use the Lagrangian (1) with minimal substitution plus the local, gauge
invariant operators to compute the D-wave form factors and the E2 transition from the S- to
the D-wave states. Eventually, we apply our results to 15C to predict several electric
observables.

3.1. Electric interactions

Electric interactions are included via minimal substitution in the Lagrangian

¶  = ¶ +m m m mD eQAi , 26ˆ ( )

where the charge operator Q̂ acting on the 14C core yields =Qc c6ˆ . Additionally to the
electric interactions resulting from the application of the minimal substitution in the
Lagrangian, we have to consider further local gauge invariant operators involving the electric
field E and the fields c, n, σ and d. Depending on the observable and respective partial wave,
they contribute at different orders of our EFT. The local operators with one power of the
photon field, relevant in our calculation of electric form factors and the B(E2) transition
strength, are

a b g d

d d

s a b

=-  - ¶

- ¢

´   - ¶
 + 

- ¢   - ¶
 + 

a g bd
a g g a

bd

a b
a b b a

¢ ¢ ¢

¢

 L d A d

L d m m Jm m m Jm m m

A
A A

d

L d m Jm m m A
A A

A

1

2
2

1

2
2 1 1 2 1 1 2

2

1

2
2 1 1 2

2
, 27

E C
d

m m

C
d

m s l s l l l

m

E
sd

m m l l

01
2

0 0

02

0 0

2 0 0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( ( · ))

( ∣ )( ∣ )

( )
( )

( ∣ )
( )

( )

( ) †

( ) †

( ) †

where repeated spin indices are summed over.
These additional operators are necessary in order to renormalize our results in the electric

sector. This means that up to a certain order within our power counting, ultraviolet diver-
gences can only be removed through interactions as in equation (27). In particular, the
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interaction terms proportional to LC
d
01

( ) and LC
d
02

( ) are required in order to remove the diver-
gences occurring in the loop diagram in figure 3. Since this loop diagram is a NLO
contribution, the corresponding interaction terms are entering first at NLO. This procedure
allows us to determine the highest possible order within our power counting scheme that the
interactions in equation (27) have to enter in order to eliminate divergences.

3.2. E2 transition

The diagrams contributing to the irreducible vertex for the E2 transition from the S- to the D-
wave state at LO are shown in figure 2. At higher order, the next contribution would be the
counterterm L sd

E2
( ) from equation (27) which has to be fixed by experimental input. The

interaction term proportional to L sd
E2
( ) is not required to cancel any divergence because the LO

contributions to the B(E2) transition depicted in figure 2 are finite. Therefore, our minimal
principle of including the counterterms when they are needed for renormalization cannot be
used to determine its exact order beyond LO. Thus, we restrict ourselves to LO for the
reduced E2 transition strength. This allows us to make predictions for other electric obser-
vables as discussed below.

The photon in figure 2 has a four momentum of k=(ω, k) and its polarization index is
denoted by ν. The computation of the relevant diagrams yields a vertex function G n¢m ms

, where
m′ is the total angular momentum projection of the D-wave state and ms denotes the spin
projection of the S-wave state. Since the neutron spin is unaffected by this transition, we
calculate the vertex function with respect to the specific components of the D-wave inter-
action

å å a bG = ¢ Gn
ab

abn¢ m m Jm m
1

2
2 1 1 2 , 28m m

m
s l ls

l

⎛
⎝⎜

⎞
⎠⎟ ( ∣ ) ˜ ( )

where J denotes the total spin of the D-wave state. In the case of ms=m′=±1/2, only
ml=0 contributes to the sum in equation (28) and we get for J=5/2

G = G = G + G + Gn n n n n+ + - - - -
2

5

1

10

1

10
. 2900 1 1 111

2
1
2

1
2

1
2

˜ ˜ ˜ ( )

We calculate the irreducible vertex in Coulomb gauge so that we have =k 0· for real
photons. In order to isolate the electric contribution to the irreducible vertex in a simple way,
we choose k·p=0, where p denotes the incoming momentum of the S-wave state. Taking
gauge invariance and symmetry properties into account, the space–space components of the
vertex function in Cartesian coordinates can be written as

Figure 2. The diagrams contributing to the irreducible vertex that determines the S-to-D
state transition in Halo EFT. The thick double line denotes the dressed D-wave
propagator and the thick single line the dressed S-wave propagator.
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d d dG = G + + G -k k p k k k
1

2

1

3
. 30ijk E j ik i jk M k i j ij

2⎜ ⎟⎛
⎝

⎞
⎠˜ ( ) ( )

Choosing the photon to be traveling in the x3 direction only ΓE contributes to G333
˜ , and we

obtain

wG = G , 31E333˜ ( )
with w= =kk 3∣ ∣ . By comparing the definitions for the transition rate depending on B(E2)
and the transition rate as a function of the irreducible vertex ΓE [36], we get the following
relation

p w
 =

G
+ + + +

B E2: 1 2 5 2
15

.
0

2

2
1
2

1
2

⎛
⎝⎜

⎞
⎠⎟( )

Evaluating this using equations (29), (31), it follows that G = G+ + 2 50 3331
2

1
2

˜ and we obtain

p w
 =

G+ +B E2: 1 2 5 2
6

,E
2⎛

⎝⎜
⎞
⎠⎟( )

¯

with the renormalized, irreducible vertex G = GsZ ZE d E¯ . At LO, Zσ and Zd are given in
equations (A3) and (19), respectively. Using the result of our calculation of ΓE for diagrams
(a), we find at LO

p
g
g

g g g g

g g
 =

- -

+ +

+
+ +


B

Z e

r
E2: 1 2 5 2

4

5

3 9 8
, 32eff

2 2
0

2 2 2
2

0
2

0 2 2
2

0 2
3

2⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( )
( )

where γ2, r2, and 2 are the parameters of the 5/2+ state and the effective charge is
Zeff=(mn/Mnc)

2Qc. In general, the effective charge for arbitrary multipolarity λ is given by

= + -l l l
Z Z Zn

M

M c
m

Meff
nc

n

nc
( ) ( )( ) [37]. In Halo EFT it comes automatically out of the

calculation.
The same result for GE¯ can be obtained using current conservation

wG = Gk , 33ij k ijk0˜ ˜ ( )

if we calculate the space-time components of the vertex function G̃. In contrast to Gijk
˜ , we have

to consider only the left diagram in figure 2 for Gij0
˜ at LO.

The calculation of the transition to the 3/2+ state can be carried out in the same way. The
only difference is a relative factor of 2/3 for B(E2) because of the different Clebsch–Gordan
coefficient in equation (29)

p
g
g

g g g g

g g
 =

- -

+ +

+
+ +


B

Z e

r
E2: 1 2 3 2

8

15

3 9 8
, 34eff

2 2
0

2 2 2
2

0
2

0 2 2
2

0 2
3

2⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( )
( )

where γ2, r2, and 2 are now the parameters of the 3/2+ state.

3.3. Form factors

The result for the electric form factor of an S-wave halo state is discussed in [13] for 11Be and in
[14] for 15C. The experimental result for the rms charge radius of 14C is =r 2.5025 87E

2
C

1 2
14⟨ ⟩ ( )

fm [38] and the Halo EFT result for the
+1

2
S-wave ground state is »sr 0.11 fmE

2
C

2
15⟨ ⟩( ) [14], but

the authors do not quote an error for this number. In principle, both values can be combined to
obtain a prediction for the full charge radius of the 15C ground state.
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Here, we focus on the form factors of the D-wave state in 15C. The D-wave form factors
can be extracted from the irreducible vertex for A dd0 interactions. The corresponding con-
tributions are shown in figure 3 up to NLO. The first diagram represents three different direct
couplings of the photon to the D-wave propagator. Two couplings emerge from the minimal
substitution in the bare propagator proportional to r2, 2 and contribute at LO. The last one is
a term ~LC

d
01 2

( ) which comes out of equation (27) and is required for the renormalization of
the loop divergences of diagram(b) and therefore contributes at NLO. The second diagram
arises from minimal substitution in the core propagator and contributes at NLO. The com-
putation is carried out in the Breit frame, q=(0, q), and the irreducible vertex for the A0

photon coupling to the D-wave state in Cartesian coordinates yields

= - + +ij J op eQ G E
M

G Q
M

G Hq q qi
1

2

1

4
, 35c E ij op

nc
Q ij op

nc
H ij op

0
, 2 , 4 ,

⎡
⎣⎢

⎤
⎦⎥⟨ ∣ ∣ ⟩ (∣ ∣) (∣ ∣) (∣ ∣) ( )

with the three-momentum of the virtual photon = ¢ -q p p and three different D-wave
tensors for each form factor Eij,op∼q0, Qij,op∼q2 and ~H qij op,

4. Note that we take out an
overall factor of the elementary charge e from all form factors. As a consequence our
definition of the quadrupole and hexadecapole moments does not contain a factor e.
Evidently, the hexadecapole form factor is only observable for the 5/2+ D-wave state and
unobservable for the 3/2+ state. This can be straightforwardly proven by considering the
respective Clebsch–Gordan coefficients to couple the spin and angular momentum to total J
for the two D-wave states in combination with Hij,op in spherical coordinates. For reasons of
simplicity, the calculation is carried out in Cartesian coordinates and the resulting Cartesian
tensors are given below

d d d d d d d d= + + + - - +Q q q q q q q q q q q q q q
1

4

4

3

4

3

4

9
,

36

ij op j p io j o ip i p jo i o jp i j op o p ij ij op,
2⎜ ⎟⎛

⎝
⎞
⎠˜

( )

Figure 3. The topologies contributing to the irreducible vertex for an A0 photon
coupling to the 14C-neutron D-wave bound state up to NLO. Diagram (a) contains three
different direct couplings. Two arise from minimal substitution in the bare propagator
proportional to r2, 2 and contribute at LO, while diagram (b) emerges from minimal
substitution in the core propagator and contributes at NLO. The local gauge invariant
operator ~LC

d
01 2

( ) , required for the renormalization of diagram (b), is also represented

by diagram (a) and contributes at NLO. The thick double line denotes the dressed D-
wave propagator.
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d d d d= - - +H q q q q q q q q q q q
1

3

1

3

1

9
, 37ij op i j o p i j op o p ij ij op,

2 2 4⎜ ⎟⎛
⎝

⎞
⎠˜ ( )

d d d d d d
=

+ -
E

2
, 38ij op

io jp ip jo ij op

,

2
3( )

( )

= -Q Q q E
3

5

1

5
, 39ij op ij op ij op, ,

2
,˜ ( )

= - +H H q Q q E
3

2

30

35

3

35
. 40ij op ij op ij op ij op, ,

2
,

4
,˜ ˜ ( )

The Cartesian tensors Eij,op, Qij,op and Hij,op fulfill the following constraints

d d= = =E E E E5, 0, 41ij op ij op ij ij op op ij op, , , , ( )

d d= = =E Q Q Q0, 0, 42ij op ij op ij ij op op ij op, , , , ( )

d d= = = =E H Q H H H0, 0, 0. 43ij op ij op ij op ij op ij ij op op ij op, , , , , , ( )

The neutron spin is unaffected by the charge operator up to the order considered here.
At LO, only the direct coupling from the minimal substitution in the bare D-wave

propagator proportional to r2 and 2, depicted in figure 3(a), contribute. This reproduces the
correct normalization condition of the electric form factor of GE(0)=1, but the form factor is
just a constant. Therefore, there is no real prediction beyond charge conservation at LO.

At NLO, diagram (b) in figure 3 also contributes, and the counterterm is required for the
renormalization of the loop divergences stemming from diagram (b). We then obtain for the
electric G qE (∣ ∣), quadrupole G qQ (∣ ∣) and hexadecapole G qH (∣ ∣) form factors

g
g g
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g

g g
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+ - + + +

- + +
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with f=mR/M while LC
d
01 2

˜ ( )
represents the local gauge invariant operators from

equation (27). These operators have a finite piece LC
d
01 2

fin( ) as well as a μ-dependent part that
cancels the renormalization scale dependence from the loop contribution. For a better
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readability, we have absorbed some prefactors in the definition of the counterterms and
defined the low-energy constants

p
=L

eQ g m
L

15
, 47C

d

c R
C

d
01

2
2 2 01

fin˜ ( )( ) ( )

p
=L

eQ g m
L

15
, 48C

d

c R
C

d
02

2
2 2 02

fin˜ ( )( ) ( )

which are used in equations (44), (45), (46). The remaining divergence emerging from the
loop diagram in figure 3 is absorbed by 2 from the direct photon coupling in diagram (a).
After the expansion of equation (44)

» - +¼G rq q1
1

6
, 49E E

2 2(∣ ∣) ⟨ ⟩∣ ∣ ( )

we obtain GE(0)=1 and an electric radius

g
g

= -
+ -

+ 
r

L L f

r

12 16 35

2
, 50E

d C
d

C
d

2 01 02 2
2

2 2 2
2

⟨ ⟩
˜ ˜

( )
( )( )

( ) ( )

such that the electric radius is not a prediction.
We expand equations (45) and (46)

m» - + ¼
M

G rq q
1

1
1

6
, 51

nc
Q Q Q2

2 2⎜ ⎟⎛
⎝

⎞
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1

6
, 52
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H H H4
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and find the respective multipole moments

m
g
g

=
-

+ 
L f

r

10 4 5

3
, 53Q

d C
d
02 2

2

2 2 2
2

( ˜ )
( )

( )( )
( )

m
g g

= -
+ 
f

r

2

3
, 54H

d
4

2 2 2 2
2( )

( )( )

where we find the hexadecapole moment mH
d( ) as a prediction. The electric radius rE

d2⟨ ⟩( ) and
the quadrupole moment mQ

d( ) are not predicted. They are used to fix the counterterms LC
d
02

( ) and

LC
d
01

( ) . The quadrupole and hexadecapole radii yield

g g
=

-
r

f

L f

27

7 4 5
, 55Q

d

C
d

2
4

2 02 2
2

⟨ ⟩
( ˜ )

( )( )
( )

g
=r

f9

14
, 56H

d2
2

2
2

⟨ ⟩ ( )( )

where the hexadecupole radius is predicted by Halo EFT and the quadrupole radius depends
on the counterterm LC

d
02

( ) , fixed by the quadrupole moment. Thus, we can predict the
quadrupole radius if the quadrupole moment is known.

Finally, we can reinsert the matching conditions, equations (50), (53), into the results for
the electric and quadrupole form factors, equations (44), (45), in order to get expressions in
terms of observables only.
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3.4. Correlations between electric observables

Up to this point, all results are universal and not specific for 15C. In this section, we explore
universal relations between different observables for shallow D-wave bound states predicted
by Halo EFT. Moreover, we combine our Halo EFT results with data and ab initio results
from the IT-NCSM [26] to predict electric properties of 15C. In a second step, the correlations
obtained in Halo EFT are compared to the E2 correlation based on the rotational model by
Bohr and Mottelson [28].

We note that the quantification of theory uncertainties is important in any application of
EFT to actual systems. In our discussion below, we will estimate the theory uncertainties from
the size of the expansion parameter Rcore/Rhalo. More sophisticated estimates can be obtained
from Bayesian statistics [39–41], but such an analysis is beyond the scope of this manuscript.

To make predictions, we use the experimental transition strength B(E2)=0.44 (1) W.u.
[25] from the + +5 2 1 2 transition in 15C to determine the denominator of the D-wave
renormalization constant at LO, i.e. the combination g+ r2 2 2

2. Converting to physical units,
we obtain the strength B(E2)=2.90 (7) e2fm4 for the transition + +1 2 5 2 . The exper-
imental values of the binding momenta are γ0=0.235 fm−1 and γ2=0.147 fm−1 [25].
Moreover, Fernando et al [14] argued that it is more appropriate to count r0∼Rhalo for the
specific case of 15C and thus we keep this contribution at LO in our application to 15C.
The extracted value for r0=2.67 fm [14] results from a fit to one-neutron capture data
14C(n, γ)15C [42]. With these data, we are able to determine the numerical value for

~Z m gd R
2

2
2 g+ = -r1 181 4 fm2 2 2

2 3( ) ( ) .

Using our results from the previous sections, we obtain + =L L rC
d

C
d

E
d

01
4

3 02
2˜ ˜ ⟨ ⟩( ) ( ) ( )

-1088 25 fm 1( ) , m= -L 2418 55C
d

Q
d

02
˜ ( )( ) ( ) fm−1 for the finite piece of the counterterms For the

hexadecapole moment and radius, we obtain the following predictions

m = ´ =- r1.68 4 50 10 fm , and 0.135 3 40 fm , 57H
d

H
d2 4 2 2( )( ) ⟨ ⟩ ( )( ) ( )( ) ( )

where the first uncertainty is due to the experimental input and the second one is a theory
uncertainty from higher order corrections of order »R R 0.3core halo (see below).

Comparing our findings with [13] we find, as a general rule, that the highest multipole
form factor is always independent of additional parameters from short-range counterterms
Moreover, we can always find a smooth correlation between the highest radius and the
neutron separation energy Sn

=r
f

m S

9

28
. 58H

d

R n
d

2
2

⟨ ⟩ ( )( )
( )

In the S- and P-wave case, we obtain

=r
f

m S

3

10
, 59Q

p

R n
p

2
2

⟨ ⟩ ( )( )
( )

=r
f

m S

1

4
. 60E

s

R n
s

2
2

⟨ ⟩ ( )( )
( )

For the D-wave, we can derive several linear correlations between different combinations of
multipole moments and radii. This is illustrated in figure 4, where the red cross denotes the
numerical prediction of the corresponding quantity for 15C. Therefore, by measuring one of
these observables, we can immediately predict the correlated quantity. These correlations are
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universal and can be found in arbitrary one-neutron D-wave halo nuclei or similar weakly-
bound systems.

With the numerical result for Z m gd R
2

2
2, we can check if our power counting scenario,

leading to the scaling ~Z m g R Rd R
2

2
2

halo
2

core, can be confirmed or if the scenario of [4] yields
better agreement. An approximation for the halo scale can be extracted from the neutron
separation energy Sn, g» = =R S m1 1 2 6.81fmn Rhalo 2 . We can approximate the core
scale by looking at the energy of the first excitation of the 14C nucleus Eex=6.1MeV.
Converting this energy into a length scale, we obtain Rcore≈1.91 fm. By employing the
experimental values for Rhalo and Rcore, we predict ~ »Z m g R R 90 fmd R

2
2
2

halo
2

core
3. This

value is only by a factor of 2 smaller than the one extracted from B(E2) and considering that
this is an estimation grounded solely on the scaling within our power counting, our result is in
reasonable agreement. The power counting of [4] does lead to the scaling =Z m gd R

2
2
2

~ »r R1 7 fm2 core
3 3 which is around 26 times smaller than the extracted result. These

numbers indicate that our power counting scenario is better suited for 15C.

Figure 4. Linear correlations between the hexadecapole moment and the quadrupole
moment times quadrupole radius (top left), the hexadecapole moment and the
hexadecapole moment times hexadecapole radius (top right) and between the
quadrupole moment times quadrupole radius and hexadecapole moment times
hexadecapole radius (bottom left). Bottom right: correlation between the neutron
separation energy and the hexadecapole radius. The red cross denotes the numerical
prediction for 15C. The EFT uncertainties are given by the shaded bands.
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To obtain the correlation between the quadrupole transition from the
+5

2
to the

+1

2
state

and the quadrupole moment of the
+5

2
state, we combine equations (53) and (32) and apply a

factor 2/6 to account for the different multiplicity of initial and final states. We obtain a linear
dependence between B(E2) for the transition 

+ +5

2

1

2
and the quadrupole moment

p
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where LC
d
02

˜ ( ) is treated as fit parameter and γ0 and γ2 are taken from experiment [25].
A similar correlation between the quadrupole transition and the quadrupole moment can

be obtained from the rotational model by Bohr and Mottelson [28]
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where K=1/2 denotes the projection of the total angular momentum on the symmetry axis
of the intrinsically deformed nucleus and Q0, t/Q0, s is the ratio between intrinsic static (s) and
transition (t) quadrupole moment in the rigid rotor model. The idea to employ this simple
model is motivated by observations of Calci and Roth [27], who found a robust correlation
between this pair of quadrupole observables in ab initio calculations for light nuclei. In the
simple rigid rotor model the ratio Q0, t/Q0, s is expected to be one. The results of [27] indicate
that the correlation is robust as long as the ratio Q0, t/Q0, s is treated as a fit parameter.

We use IT-NCSM data of 15C, generated by different chiral EFT interactions and dif-
ferent model spaces, to check the quadratic and linear correlations and predict numerically the
quadrupole moment of 15C. This is demonstrated in figure 5. The varying symbols denote
different NN+3N chiral EFT interactions which are similar to the ones used in [27]. We use
the NN interaction developed by Entem and Machleidt (EM) [43] at N3LO with a cutoff of
500MeV/c for the nonlocal regulator function. This NN force is combined with the local 3N
force at N2LO using a cutoff of 400 or 500MeV/c [44]. The second NN interaction by
Epelbaum, Glöckle, Meißner (EGM) [45] at N2LO uses a nonlocal regularization with a
cutoff Λχ and an additional spectral function regularization with cutoff Lc˜ . The EGM NN
forces are combined with a consistent nonlocal 3N force at N2LO used in several applications
to neutron matter [46–48]. For reasons of convergence, the NN+3N potentials are softened by
a similarity renormalization group evolution where all contributions up to the three-body level
are included.

We note that these interactions are based on Weinberg’s power counting [49] and their
cutoff cannot be varied over a large range. However, chiral potentials based on Weinberg’s
power counting have been very successful phenomenologically in nuclear structure and are
currently the only potentials available that are well tested for p-shell nuclei. In particular,
N2LO EGM interactions are still the only fully consistent set of two- and three-body inter-
actions for which significant experience with structure calculations in the p-shell exists.
Similarly, there is much experience with the EM interactions supplemented with (incon-
sistent) 3N forces. For this reason, we use these older interactions in our analysis. We believe
that this is not a limiting factor of our analysis. After all, we are interested in universal
properties which must emerge from any interaction that has the correct low-energy physics.
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The different colors in figure 5 denote different Nmax values. The EFT uncertainties for
the linear correlation are given by the blue shaded bands. Since the IT-NCSM results are not
fully converged and the results differ for different Nmax values, the ordering of the ground and
first excited state is exchanged for some data points. Leaving out the data sets with exchanged
ordering does not significantly improve the fit. The plot on the left side employs the
experimental values for the neutron separation energy as input for γ0 and γ2. For the plot on
the right side, we use the excitation energy of the first excited state from the IT-NCSM to
determine g g-0

2
2
2 and for γ0 we use the experimental value.

We emphasize that in the ab initio calculations, both, the interactions (including short
distance physics) and the model spaces are varied. If the ab initio calculations were (i) fully
converged and (ii) all interactions and electric operators were unitarily equivalent at the A-
body level, they would fall on a single point. However, neither (i) nor (ii) is the case here. So,
naively, one would expect the calculations for B(E2) and μQ to fill the whole plane. Halo EFT
and the rotational model, however, predict a one parameter correlation between B(E2) and μQ
based on certain assumptions. If these assumptions, such as shallow binding and a corresp-
onding separation of scales in the case of Halo EFT, are satisfied in the ab initio calculations,
they should also show the correlation even if they are not converged and/or have different

Figure 5. Correlation between B(E2) and the quadrupole moment μQ. The IT-NCSM
data is obtained with different NN+3N chiral EFT interactions: EM with cutoffs {400,
400, 500}MeV/c (square, diamond, triangle down), and EGM with cutoffs L L =c c( ˜ )

450 500 , 600 500 , 550 600 , 450 700 , 600 700{( ) ( ) ( ) ( ) ( )} MeV/c (triangle left,
pentagon, circle, triangle right, and triangle up) with oscillator frequency
ÿΩ=16 MeV for all IT-NCSM calculations except for the diamond and triangle
down data where ÿΩ=20 MeV. Different colors denote different Nmax=2 (blue), 4
(red), 6 (green), 8 (violet), and 10 (yellow) values. Left panel: rigid rotor model with
quadratic fit of Q0, t/Q0, s ratio (dashed line, c = 110red

2 ) and linear Halo EFT fit of

LC
d
02

˜ ( ) with fixed g2 from experiment (dotted line, c = 123red
2 ). Right panel: linear Halo

EFT fit with g g-0
2

2
2 from IT-NCSM calculation and rescaled μQ/Γ (dotted line,

c = 80red
2 ), where g g g g g g g gG = + + - +r3 9 8 10 0

2
0 2 2

2 2
0 0 0 2

6( ) ( ) ( ) divides out

dependence on γ0 and γ2. The gray shaded area indicates the uncertainty band of the
experimental B(E2) [25]. The blue box within the gray shaded area corresponds to the
prediction for μQ. The EFT uncertainties are given by the blue shaded bands.
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short distance physics. A similar behavior is observed in the case of the Phillips and Tjon line
correlations in light nuclei which are also satisfied by ‘unphysical’ calculations (see, e.g. [50]
for an explicit example).

An additional complication here is the appearance of the two-body coupling LC
d
02

( ) in
equation (27) which could vary for the different ab initio data sets. In our analysis of the
ab initio data, we explicitly assume that LC

d
02

( ) varies only slowly and can be approximated by
a constant for the ab initio data considered5. Under this assumption, it becomes possible to
decide between the type of correlation using the ab initio data for 15C.

From the left plot, we obtain m » -3.98 5Q
d ( )( ) fm2 for the quadratic fit and

m » -5.46 12 1.64Q
d ( )( )( ) fm2 for the linear fit, where the uncertainties from B(E2) are given in

parenthesis. The second uncertainty for the linear fit is from higher orders in the EFT. From
the fits, we cannot decide which scenario describes the IT-NCSM data more appropriately
since both lead to similar reduced χ2 values of c = 110red

2 for the quadratic fit and

c = 123red
2 for the linear fit6. The ratio Q0, t/Q0, s should be equal to 1 for an ideal rigid rotor.

Since the quadratic fit yields a ratio of Q0, t/Q0, s≈0.5, we assume that 15C is not a good
example of a rigid rotor. Perhaps for larger Nmax values, and thus better converged results, the
matching between fit curves and data points would improve.

In the linear case, the slope of the fit depends also on the neutron separation energies
of both states, which differ for each data point from the IT-NCSM. From the excitation
energy obtained in the IT-NCSM calculation, we only know the difference between the
neutron separation energies of the ground and excited state. Thus, one experimental input
is still required to fix γ0 and γ2 from the IT-NCSM data, since we did not perform
explicit calculations for 14C. In the right plot of figure 5, we determine g g-0

2
2
2 from

IT-NCSM data and take γ0 from experiment. We deem this analysis to be more consistent
than the previous one. The reduced χ2 value for the linear fit then slightly improves
to c = 80red

2 compared to the fit using experimental values only. This leads to m »Q
d( )

-4.21 10 1.26 fm2( )( ) , which is closer to the value from the quadratic fit. The deviations of
the data points from the linear fit might decrease further if consistent values for both neutron
separation energies were extracted from the IT-NCSM. This NLO correlation is expected to
hold up to corrections of order Rcore/Rhalo≈0.3 given by the blue shaded band. Taking this
EFT uncertainty into account, the ab initio data satisfy the correlation very well.

With the extracted results of mQ
d( ), we can predict the quadrupole radius, =rQ

d2⟨ ⟩( )

5.93 13 1.78( )( )×10−2 fm2 from the left linear fit and = ´ -r 7.70 17 2.31 10Q
d2 2⟨ ⟩ ( )( )( ) fm2

from the right linear fit in figure 5, by Halo EFT.
Finally, we note that the NCSM calculations for small Nmax are not converged in the IR.

However, it can be clearly seen in figure 5 that our conclusions are unchanged if the smallest
Nmax=2, 4, 6 are omitted. In fact, Calci et al [27] showed explicitly that the universal
correlation between the B(E2: 0+→2+) and the quadrupole moment of the 2+ state in 12C is
extremely well satisfied even for the smallest Nmax.

5 A similar assumption is made in the analysis of three-body recombination rates for ultracold atoms near a Feshbach
resonance to observe the Efimov effect. There the scattering length varies strongly with the magnetic field B while the
three-body parameter is assumed to stay approximately constant [51]. Since the two parameters are independent it
would be very unnatural if both had a resonance at the same value of B.
6 Note that the absolute cred

2 values have no significance since the theoretical errors of the ab initio results were not
included in the fit, and only a relative comparison makes sense.
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4. Conclusion

We have extended the Halo EFT approach for electric observables to shallow D-wave bound
states. Additionally, a basic framework for the extension of our Halo EFT to higher partial
waves has been outlined. We have developed a power counting scheme for arbitrary lth
partial wave shallow bound states that differs from the scenario of [4] for l>1. This power
counting was applied to 17C in [19] where also some magnetic observables were considered.
For higher partial waves the number of fine-tuned parameters increases. Based on the
assumption that a larger number of fine tunings is less natural, this suggests that shallow
bound states in higher partial waves are less likely than in lower ones, which is also observed
experimentally.

Using this scheme, we have computed the B(E2) strength at LO and found that no
additional counterterm is required at this order. We have also calculated the electric quad-
rupole as well as hexadecapole form factors at NLO and found a smooth, universal correlation
between the quadrupole radius and the hexadecapole moment. We find that for the D-wave,
the local gauge invariant operators become more important than in lower partial waves and
counterterms are required for the form factors already at NLO. This continues the trend,
observed in [13], that the counterterms enter in lower orders at larger l. The emergence of
counterterms in low orders limits the predictive power of Halo EFT for D-waves. However,
this limitation can be overcome by considering universal correlations between observables as
discussed below.

We emphasize that, up to this point, all our results are universal and not specific for 15C.
Considering now 15C as an example, the lack of data for the first excited

+5

2
state makes

numerical predictions difficult. Using our result for the B(E2) and by comparing it to the
measured B(E2) data, we have been able to make predictions for the hexadecapole moment
m = ´ -1.68 4 50 10 fmH

d 2 4( )( )( ) and radius =r 0.135 3 40 fmH
d2 2⟨ ⟩ ( )( )( ) . We cannot directly

predict values for the charge radius and quadrupole moment and radius at NLO since the
expressions (50), (53) and (55) contain unknown counterterms. Nevertheless, we have
determined a value for the quadrupole moment, m » -4.21 10 1.26 fmQ

d 2( )( )( ) , by exploiting
the linear correlation between the reduced E2 transition strength B(E2) and the quadrupole
moment in our Halo EFT and fitting the unknown counterterm to ab initio results from the IT-
NCSM. For consistency reasons, we prefer the result from the right plot of figure 5 using the
excitation energy from IT-NCSM calculation. With this result for the quadrupole moment, we
have also predicted the quadrupole radius for 15C, » ´ -r 7.70 17 2.31 10 fmQ

d2 2 2⟨ ⟩ ( )( )( ) ,
using universal correlations from Halo EFT. These correlations are not obvious in ab initio
approaches, since the separation of scales is not explicit in the parameters of the theory. This
demonstrates the complementary character of Halo EFT towards ab initio methods. In
principle, the universal correlations allow to extract information even from unconverged
ab initio calculations since the correlations are universal. We have compared the linear Halo
EFT correlation to the quadratic correlation based on the simple rotational model by Bohr and
Mottelson. The value for the quadrupole moment, m » -3.98 5 fmQ

d 2( )( ) , obtained from the
quadratic correlation deviates from the linear result by 5%—30% depending on the input used
for g g-0

2
2
2.

While there is a clear correlation in the ab initio data, there are also some outliers. In the
case of the linear Halo EFT correlation, this could be due to the use of the experimental value
of the ground state neutron separation energy γ0, which is presumably inconsistent with some
of the ab initio data sets. Since the Halo EFT correlation depends on the exact neutron
separation energy of the two states, consistent values should be used. However, within the
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EFT uncertainty the predicted correlation is well satisfied. Better converged data sets and the
future determination of the neutron separation energy directly from the IT-NCSM would help
to clarify the situation. This proves the usefulness of our Halo EFT approach even for D-wave
bound states, but also demonstrates the limiting factors for the extension to higher partial
waves.
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Appendix:S-wave propagator

The dressed σ propagator and the S-wave scattering amplitude are computed by summing the
bubble diagrams analog to the D-wave case shown in figure 1. The result for the dressed σ

propagator is

h
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D + - + - S
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p M pp
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2 i
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where PDS is employed as regularization scheme with scale μ [23, 24]. After matching to the
effective range expansion, we obtain for the σ propagator

=
- +
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Here, Zσ denotes the wave-function renormalization, g=B m2 R0 0
2 ( ) denotes the binding

energy and the remainder Rσ(p) is regular at the pole.
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