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Abstract— This paper describes an openly available data
set for rail vehicle positioning experiments. The data were
collected using the DLR research vehicle RailDriVE on a
segment of the harbor railway of Braunschweig, Germany, in
February 2019. Several sensors of the RailDriVE equipment
and an additional self-sufficient system provided by Technische
Universität Darmstadt were employed, including two GNSS
receivers, two inertial measurement units (IMU), and several
speed and distance sensors (radar, optical, odometer) from the
rail domain. Front-facing camera data has been included for
documentation purposes. In order to simplify its use, some
pre-processing steps were applied to the data, mainly to have
common time and coordinate frames. Furthermore, example
and reference positioning solutions have been included. The
data set is described in detail, with information about the
individual sensors and the data set structure (with parameters,
raw, pre-processed, and reference data). Our work should be
seen as a step towards more open and data-driven research in
the rail domain, where experiments are difficult and costly. It
is our hope to provide a solid basis for many different research
efforts that provide the required technological advances for the
rail sector.

I. INTRODUCTION

Accurate and reliable rail vehicle positioning is a crucial
requirement for future railway systems. Given the position of
all trains, their distances can be decreased in order to increase
the capacity of the railway network. Fully or partially auto-
mated trains require position and velocity information for
safety and control purposes. Position information of a fleet
of shunters can be used for optimized resource allocation
and simplified management. From an economic perspective,
a focus on on-board technology is important because of
the high costs of infrastructure-side positioning solutions.
Accordingly, the recent years have seen much research on
the topic [1].

In contrast to research on, e. g., pedestrian or road vehicle
positioning, experimental data from the rail domain is harder
to obtain for several reasons. The railway sector is less
agile than the automotive sector due to the high costs and
long lifetimes of the vehicles and the infrastructure. In-
service vehicles from the 1960s are a common sight in
many shunting yards. Strict safety regulations and concerns
about interference with existing systems further complicate
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the preparation and performance of experiments. Most re-
searchers do not have direct access to a rail vehicle and a
track network. The costs of performing experiments with a
rented vehicle, driver, and infrastructure are high. All of the
above points lead to the fact that little data is openly available
and that much of the research is performed on simulated
data only. This is in contrast to the automotive domain,
where data-driven research dominates the recent literature.
Many advances have been facilitated by openly available data
sources such as the KITTI data set [2].

This paper addresses this gap and provides an experi-
mental data set that can be openly accessed by researchers
and students [3]. The data were jointly collected by the
German Aerospace Center (DLR) and Technische Universität
Darmstadt (TU Darmstadt) using the DLR research vehi-
cle RailDriVE in February 2019. The employed sensors
include different GNSS (global navigation satellite systems)
receivers, inertial measurement units (IMU), an odometer,
as well as an optical and a radar speed sensor for rail
use. The data can be used as a starting point for research
work or student theses. Novel and established algorithms
for many different sub-problems can be tested on the data,
to facilitate their comparison and make results and insights
more accessible. Often overlooked practical aspects such as
sensor calibration and synchronization can be addressed. It is
our belief that a move towards more open research paradigms
will help advance new technologies faster and strengthen the
overall rail domain. In order to promote this idea the authors
participate in the LRT (localization reference train) initiative,
a group of universities and research institutes that jointly
work on advancing rail vehicle positioning research [4].

Our paper should be seen as a step towards open data in the
rail domain. Because the data were collected on a research
vehicle there are obvious limitations, e. g. in terms of speed
or driven distance. However, the data realistically represent,
e. g., shunting actions. The area in which the tests were
performed provides some of the typical challenges, e. g.,
parallel tracks in close proximity and GNSS obstructions.
The collected data can be adjusted to cater many different
research challenges (e. g., by removing or altering parts of the
GNSS data) while being accurate enough to serve as refer-
ence solution. Further experiments are being planned, again
with the intention of publishing the data. Interested readers
can follow the LRT activities for further information [4].

The outline of the paper is as follows. The test vehicle,
infrastructure, and the sensors are described in Sec. II. De-
tails about the data set are described in Sec. III. Prospective
research directions using the data are discussed in Sec. IV.
Finally, concluding remarks are provided in Sec. V.
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Fig. 1. Views of the test vehicle RailDriVE.

II. THE VEHICLE, SENSORS, AND TEST TRACK

The following paragraphs present information about the
experimental set-up for data collection.

A. The Test Vehicle RailDriVE

The RailDriVE (Rail Driving Validation Environment)
is a mobile research laboratory of the DLR Institute of
Transportation Systems. Based on a 2008 Mercedes Benz
Vario, the vehicle is equipped with an extra set of rail wheels
and hydraulics that facilitate its operation on both road and
rails1. Since 2008 the RailDriVE has been used for rail-
related research on topics such as positioning [5], condition
monitoring [6], communication, and mapping [7]. Fig. 1
provides views of the vehicle and the work station in its
trunk.

As mobile laboratory, the RailDriVE is equipped with
a rich sensor set-up including several high-performance
GNSS receivers, several speed sensors from the rail domain,
an inertial measurement unit, and two laser scanners. The
sensors are connected to a powerful Ubuntu computer that
runs Robot Operating System (ROS) [8] to time-stamp and
record all data. With individual sensor modules written in
C++ and Python, ROS provides a flexible and convenient
framework for data acquisition and online processing.

It is obvious that the RailDriVE cannot cater to all
relevant positioning scenarios, e. g., because of the small
wheel diameters and the limited maximum speed (50 km/h,
25 km/h on the test infrastructure). It is operated with the
permission of the railway infrastructure manager only where
it does not interfere with the regular traffic. In contrast to
in-service vehicles that underlie strict regulations, however,

1Modification by Zweiweg, https://www.zweiweg.de/en/.

it is a flexible carrier of technology. Extra sensors or other
equipment can be mounted and tested with shorter prepara-
tion times. Due to its road and rail use, fast transport at low
costs is possible also to remote rail infrastructures. These
points make the RailDriVE a very viable asset, e. g., for
experiments related to shunting on smaller infrastructures.

B. The RailDriVE Sensors

The following list contains information about the
RailDriVE sensors selected for the data set.

• The GNSS data are provided by a multi-constellation
dual frequency Javad Sigma receiver with a roof-
mounted antenna at a rate of 5 Hz.

• 3D accelerations and turn rates at 100 Hz are provided
by an XSens MTi-G-700 inertial measurement unit.

• A Doppler radar by Siemens mounted under the vehi-
cle provides measurements of the speed, distance, and
driving direction at a rate of 5 Hz.

• An optical speed sensor, Correvit Rail, provides mea-
surements of the speed, distance, and driving direction.
Information about the measurement principle can be
found in [9].

• The front wheels are equipped with a pulse generator
that provides measurements of the driven distance,
speed, and direction.

• A dash camera was used to record image data
(1024×768 pixels) with a sampling time of 0.6 seconds.

C. The TU Darmstadt Sensor System

The iNat-M200/STN is a MEMS-based inertial navigation
system (INS) with an integrated L1/L2 GNSS receiver and
tightly coupled INS/GNSS data fusion capabilities. The
sensor system is not part of the RailDriVE equipment. It
was provided by TU Darmstadt and installed completely self-
sufficient, with its own power supply, GNSS antenna, and
internal storage. Mounted on a steel plate together with a
battery pack it was placed on the floor in the vehicle trunk
on a thin rubber mat, as illustrated in Fig. 2. The GNSS
antenna was installed on the vehicle roof.

iNat-M200/STN
battery pack

Fig. 2. Additional self-sufficient installation of iNat-M200/STN in the
RailDriVE’s trunk.

The iNat-M200/STN provides the raw measurement data
of the IMU (3D accelerations and turn rates) together with
an internally calculated position velocity time (PVT) solution



of the GNSS receiver. Furthermore, it is possible to store
all GNSS observables in a Receiver Independent Exchange
Format (RINEX) file for post-processing purposes. Besides
these raw data, the sensor also provides an internally calcu-
lated positioning solution from a tightly coupled INS/GNSS
sensor fusion which may be used as a baseline for other
positioning solutions (c. f. Section III-D).

D. The Test Track

The experiments were performed in the harbor railway of
Braunschweig, Germany, which comprises about 15 km of
tracks with a connection to the national railway network.
A maximum speed of 25 km/h is permitted on the tracks.

A segment of 1200 m was repeatedly driven back and
forth. The test segment includes parallel tracks in close
proximity, several switches, and a bridge above the rails.

III. THE DATA SET

The data set was recorded on February 22, 2019, and is
openly available at [3]. Relevant information about the data
is summarized in Fig. 3.

General: • Duration: 26:46 min
• Weather: ≈ 5 ◦C (dry, cloudy)

Track: • Length: 1.2 km
• Turnouts (driving forwards):

– trailing (6x)
– facing (3x)

• GNSS obstacles:
– bridge (1x)
– freight trains (1x)

Movement: • Speed: ≈ 0 . . . 18 km/h
• Repetitions:

– forwards (3x)
– backwards (2x)

Sensors: • GNSS (2x)
• IMU (2x)
• Speed and distance sensors

(3x; odometer, radar, optical)
• Camera (2x)

References: • loosely coupled GNSS/IMU fusion
solution (implementation included in
the data set)

• tightly coupled GNSS/IMU fusion
solution (proprietary)

• a map data segment

Fig. 3. Overview of the specifications of the presented data set.

Fig. 4 shows a view from the RailDriVE cockpit to
illustrate the weather conditions and gives an impression of
railway infrastructure.

The data set follows the data sharing guidelines of the
LRT initiative [10], which are being developed with the
authors’ participation. The guidelines intend to unify the
sharing of measurement and reference data in the context of

Fig. 4. An image by one of the cameras shows the front view from the
vehicle cockpit.

rail vehicle positioning, so as to simplify experiments with
data of different sources and to facilitate the comparison of
algorithms.

This is the first data set following the LRT guidelines.
Hence, its structure and the motivation behind it are briefly
introduced next. After that, the sensor and reference data
contained in the data set are described, including some hints
about its usage.

A. Structure

As suggested in [10] the data set is structured like depicted
in Fig. 5. It is stored in a zip file and the contained data

[date] [name].zip

description

documentation files

scripts

scripts and programs

parameters

parameter files

maps

maps

[date] [session##]

01 raw

[sensorClassIdentifier] [SensorName]

data files...

02 processed

data files

03 reference

data files[date] [session##]

...

Fig. 5. Structure of the data set (like suggested in [10]). The expressions
in square brackets represent placeholders.



are arranged by sessions. A session is characterized by a
continuous stream of recordings. For each session the data
is stored in three sub-folders 01 raw, 02 processed and
03 reference.
The raw data folder 01 raw contains all the recorded sensor
raw-data without any changes. They are provided mainly
for documentation reasons, to make it comprehensible how
the processed data in the folder 02 processed have been
generated. However, there might be applications where data
processing is not applicable and where direct access to the
raw data is required.
The data in 02 processed are pre-processed in a unified
way. For user convenience, time synchronization, transfor-
mation into common reference frames, and the assignment
of unified data labels are performed. Especially the latter
two processing steps ensure that it becomes possible to easily
interchange this data with other data also conforming to [10]
without having to change the actual calculations on the data.
The reference data folder 03 reference contains data
which may be used to evaluate calculation results. Reference
data can be, e. g., high precision positioning solutions, sensor
fusion results, etc. Possibly available map data are stored in
a separate maps folder on the top-level of the data set.
As long as it is applicable, the reference data also comply
to the reference frames and data labels already used for the
processed data. Furthermore, [10] defines common rules for
specifying positioning results, to make them better compa-
rable to the results of others, either on the same data or on
any other data according to [10].

Further documentation, Matlab scripts for pre-processing
and generating the reference data, as well as relevant sensor
parameters are provided in respective folders.

B. Raw Data

This folder contains the raw data of the sensors listed in
Section II-B and Section II-C. Additional information about
the sensors and their positions on the vehicle can be found
directly in the data set [3].

C. Processed Data

The processed data provide a convenient starting point
for experiments with the data. Before going into the pre-
processing details, some data examples are presented. Fig. 6
illustrates the driven path in the network via the Javad GNSS
speed and position data for a single journey from start to
stop. Hidden by the scatter plots are the tree parallel tracks in
the south-east of the infrastructure. A bridge above the rails
obstructs the GNSS reception. A closer view including the
GNSS data of the entire session is illustrated in Fig. 7. The
circles indicate the uncertainty as provided by the receiver.
Under the bridge are GNSS outages. In the vicinity of the
bridge the measurements are corrupted. Such intermediate
GNSS errors can be accounted for in positioning algorithms
by conditional selection of GNSS data, gating, or robust
estimation schemes.

Example plots of distance and speed measurements are
provided in Fig. 8 and Fig. 9, respectively. Fig. 8 contains the
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Fig. 6. The Javad GNSS data of a single journey as a scatter plot. Aerial
photograph: Stadt Braunschweig, Abteilung Geoinformation.
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Fig. 7. The Javad GNSS data of an entire session in the vicinity of a
bridge above the rails. The circles illustrate the uncertainty as provided by
the receiver. Aerial photograph: Stadt Braunschweig, Abteilung Geoinfor-
mation.

distances as measured by the radar and odometer, which are
consistent with one another. The integrated IMU acceleration
deviates only mildly, which shows the bias stability of the
Xsens device. The deviation of the optical sensor is due to a
calibration error, which has been purposely left uncorrected
and can be addressed by the reader in various ways. A
similar mis-calibration of the optical sensor can be seen in
the speed measurements in Fig. 9. These errors are examples
of the practically relevant sensor characteristics that can be
explored using the data set.

The basic processing steps which have to be applied to
the raw data so that they conform to [10] are time synchro-
nization, transformation into common reference frames, and
the assignment of unified data labels. Details of these steps
are described below.
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Fig. 8. Distance measurements by several sensors. Included are the
distances obtained by integrating the longitudinal acceleration of the Xsens
IMU, and measurements of the radar, optical sensor, and odometer. The
radar and odometer can be seen as references here. The optical sensor
deviates due to an intentionally uncorrected scale error.
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Fig. 9. Speed measurements by several sensors. Included are the Javad
GNSS, radar, optical sensor, and odometer. The GNSS, radar, and odometer
provide similar impressions. However, the GNSS is subject to outages under
the bridge and the odometer can be affected by wheel slip.

1) Time Synchronization: Time synchronization incorpo-
rates the transformation of all sensor time stamps to Unix
time, the synchronization of the RailDriVE data with the
iNat-M200/STN data, and the limitation of all data to a
common time window. A small remaining deviation between
the RailDriVE and iNat-M200/STN time stamps (after con-
version to Unix time) appeared because the RailDriVE was
not synchronized perfectly with a global time reference.
The offset was computed by cross-correlating IMU data and
subsequently used for correction.

2) Transformation to Common Reference Frames: This
processing step involves the transformation of the raw data
from its sensor specific frames to a common vehicle, track or

navigation frame respectively, according to [10]. The vehicle
frame is chosen to be a right-handed Cartesian coordinate
system located at the center of the front axle, with zero
height at the level of the railheads, and the x-axis pointing
to the front of the vehicle. Furthermore, the origin of the
track frame is defined to be at the initial position of the
vehicle, with positive counting into the direction of the
vehicle’s initial forwards alignment. The global position of
the vehicle is specified in the navigation frame which is
defined by geographic coordinates according to the World
Geodetic System 1984 (WGS84).

As the GNSS receivers already provide their PVT output
with reference to WGS84 no further transformations have
to be applied to their data. The distance outputs of the
odometer and the two speed sensors are transformed to the
track frame by subtracting the initial offset. Last, the IMU
data is aligned to the vehicle frame by applying appropriate
rotation matrices. Lever-arm effects are not addressed in the
preparation of the processed data. All required information
to perform the above steps, e. g., the mounting positions of
the sensors, are provided within the data set.

3) Data Formatting and Storage: The last processing
steps applied to the raw data are preparations for them to be
as easily usable as possible and for being stored in a comma-
separated values (CSV) file. This includes the handling of
sensor outages, the standardization of the units being used,
the assignment of standardized data labels, and the storage
of the data in CSV files.

Some of the raw data contain invalid data being already
marked as invalid by the data collecting sensor, e. g. during
GNSS outages or very slow driving. All data already being
marked as invalid are replaced with NaNs. Furthermore,
all measured quantities are converted to a standardized set
of data labels and units as defined in [10]. An excerpt of
exemplary definitions for IMU data is shown in Tab. I. This

TABLE I
EXCERPT OF FORMAT DEFINITIONS FOR IMU DATA ACCORDING TO [10]

Data Label Unit Frame

Time stamp (Unix) TimeUnix s s Unix Time
Acceleration (x-axis) AccX mss m/s2 vehicle

. . .
Turn rate (x-axis) TurnRateX degs ◦/s vehicle

. . .

conversion is a very important step in the processing of the
raw data because this standardization allows the processed
data for being easily interchangeable in the user’s application
with other processed data conforming to [10]. Finally, the
processed data is stored in separate CSV files. To save
storage space, NaNs are saved as empty fields.

D. Reference Data

Besides the raw and processed data, also reference data
are provided conforming to the guidelines of [10]. This gives
users the opportunity to evaluate and compare their results.



In general it is difficult to provide an absolute positioning
reference for railway positioning data. This is because it
requires additional equipment, e. g., a total station or a ref-
erence GNSS receiver, along the track to gather an absolute
positioning reference with the needed accuracy in the range
of a few centimeters. In many cases it is not feasible to
cover the entire test area with such additional equipment.
Therefore, instead of an absolute reference, two different
positioning solutions are provided here. These can be used
as a relative reference for other positioning solutions. Fur-
thermore, a precise track-map of the driven path is provided.
The various reference data are explained below.

1) Loosely Coupled GNSS/IMU Positioning Solution:
There are two positioning solutions available, which have
been calculated by loosely coupling the GNSS/IMU data
of the RailDriVE or the iNat-M200/STN, respectively. The
Matlab implementation of the used extended Kalman filter
(EKF) is fully included in the scripts-folder in the data
set. The EKF estimates the two dimensional position (latitude
and longitude) of the vehicle in the navigation frame, its
driven distance since the starting point, its velocity over
ground, and its heading. The longitudinal vehicle acceler-
ation and the yaw rate serve as input variables, whereas the
latitude, longitude and velocity data from the GNSS receiver
are incorporated via measurement updates. Thus, the EKF
provides estimates of the horizontal position (latitude and
longitude) and a velocity vector of the vehicle.

This simple EKF sensor fusion is provided as a fully
open and comprehensible example that reflects a common
sensor fusion strategy in positioning applications. Although
this solution is not fully exploiting the potential of the fusion
of GNSS/IMU data, it can be a good starting point for com-
parison with more sophisticated sensor fusion approaches.

2) Tightly Coupled GNSS/IMU Positioning Solution of
iNat-M200/STN: The iNat-M200/STN provides a tightly
coupled GNSS/IMU data fusion solution. It calculates the
three-dimensional position, velocity and attitude of the vehi-
cle. This solution can be considered more accurate than the
one of the EKF above. The datasheet specifies a circular error
probable (CEP) of ±2 m for normal INS/GNSS operation and
±0.4 m for INS/DGNSS operation. During the test drive the
iNat-M200/STN’s GNSS was available 97.8 % of the time
in which 97.7 % of all GNSS solutions could be enhanced
with a satellite based augmentation system (SBAS).

A disadvantage of the iNat-M200/STN reference is that
the implementation and the underlying assumptions of the
used filter are unknown.

3) Precise Track-map: In order to facilitate map-
supported positioning, a segment of the railway network data
is included. The map data contains separate two-dimensional
polylines for each track. Connections between tracks can be
found from shared starting or end points.

E. Usage

In the scripts-folder (c. f. Fig. 5) various Matlab
scripts are included. They serve on the one hand documen-
tation purposes and on the other hand they can be used as a

starting point for working with the provided data.
From the script processRawData.m, which has been

used to process the raw data, it becomes comprehensible
how exactly the raw data have been modified to yield the
processed data (c. f. Section III-C). If the provided processed
data are not suitable for the application intended by a user,
the script can also be used as a starting point for own modifi-
cations. Additionally, the script plotProcessedData.m
allows to plot some of the processed data to quickly get an
impression of the data at hand.

Also contained is the implementation of the EKF
used to calculate the reference positioning solution pre-
sented in Section III-D.1. It can be started with the script
calcEkfFusionData.m. It demonstrates how the pro-
cessed data may be used and how the resulting positioning
solution may be stored in accordance to [10]. Besides that,
it can also be seen how the unified structure of the data
set helps to easily change the input data of an algorithm
without having to adapt the algorithm. The original input data
can be easily overloaded. Hence, it is possible to calculate
a new positioning solution from the combination of the
RailDriVE’s GNSS and the iNat-M200/STN’s IMU or vice
versa. Additionally, the script plotEkfFusionData.m
allows to plot some of the positioning results.

IV. RESEARCH DIRECTIONS

As a starting point for researchers, a number of position-
ing references are listed. Good references for information
on GNSS and IMU, the core of most recent positioning
approaches, are [11], [12]. The most relevant tools for
combining the heterogeneous data with information about
the vehicle motion are from the field of statistical sensor
fusion and described in [13], [14]. Recent approaches for
GNSS-based rail vehicle positioning are surveyed in [1],
[15]. An early patent for GPS-supported positioning in the
rail domain is [16]. Different map-supported approaches
for positioning include [17]–[21]. Approaches without map-
support include [7], [22], [23]. Approaches with sensors
beyond this data set include [24]–[26].

The data set reflects some of the real world imperfections
that are often encountered, also beyond positioning. It can be
used to investigate aspects of synchronization, with related
sensor information recorded at various rates by two com-
pletely separate systems. Furthermore, the individual error
characteristics of the sensors can be explored and quantified
in order to devise more realistic sensor models. Intelligent
averaging or decimation schemes can be investigated, e. g.,
to improve the IMU data for use at lower rates. Bias,
scale and other calibration errors can be explored, e. g. with
the mis-calibrated Correvit speed data. The raw IMU data
can be used to investigate automated alignment with the
vehicle coordinate frame, an important aspect for the use of
portable sensor systems. Further areas of interest include the
systematic comparison of positioning (reference) data, which
can be present at different rates and can be computed from
different GNSS receivers with unknown antenna placement.



Finally, mapping approaches [7], [23] can be investigated
using the data.

The data set has been recorded using mostly high-
performance or specialized hardware. It is planned to also
include low-cost sensors with sub-optimal antenna placement
in future measurement campaigns, e. g., to address aspects
of portable sensor systems. Future experiments with novel
sensor concepts, further cameras, and lidar are conceivable.
The latter two can be used to bridge a technological gap
between the rail and automotive domain and facilitate re-
search on environment perception, an important topic beyond
positioning.

V. CONCLUDING REMARKS

A rich and openly available data set for rail positioning
experiments, including raw and pre-processed data as well as
reference and example solutions, has been presented in this
article. The measurement set-up and structure of the data
set have been presented in detail, so as to facilitate its use
with limited efforts. It has not been our intention to provide
an entirely polished data set but a solid basis for further
discussions, research work, and student theses. Therefore,
prospective research directions have been discussed. We hope
that further ideas emerge from the use of the data.

The paper and data set are results of the authors’ col-
laboration within the LRT initiative, a group of universities
and research institutes that work on unifying and sharing
data for the advance of rail vehicle positioning research and
technology. This is the first data set published within the
LRT initiative. Further measurement campaigns and open
data sets are planned. We hope that this step towards more
open research paradigms can inspire others and help advance
the overall rail research.
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