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Abstract
A computational method for optimizing the shape of the centerline curve and the spatial variation of geometric and material 
sizing parameters of the cross-sections of elastic, 3-dimensional beams and beam structures subject to large deformations is 
presented in this work. The approach is based on the concept of isogeometric analysis, i.e., the representation of geometry 
and the discretization of the numerical solution using spline functions. Here, mixed isogeometric collocation methods are 
used to discretize the geometrically exact 3D beam model. These spline representations are extended to the parameteriza-
tion of the design variables, which are the initial centerline curves of the beams, as well as cross-sectional sizing properties, 
which may be varying along the beam axis and can be functionally graded through the cross-sections. To tailor the mechani-
cal deformation behavior of a beam or beam structure, a nonlinear optimization problem is formulated and solved using 
gradient-based methods. For this purpose, all required gradients and sensitivities are derived analytically. The potential of 
this holistic design optimization approach is demonstrated in application to tailoring of elastic metamaterials and beam lat-
tice structures, as well as 4D printing of multi-material laminate beams.

Keywords Isogeometric analysis · Geometrically exact beams · Nonlinear design optimization · Shape optimization · Beam 
lattice structures

1 Introduction

In recent years, the development of advanced and additive 
manufacturing (AM) technologies has substantially expe-
dited the development of computational design and opti-
mization methods. Besides the ability to realize structures 
with complex topologies and shapes, AM also provides 
unprecedented design freedom to integrate multiple mate-
rials and graded properties into monolithically fabricated 
parts (Gibson et al. 2015). So far, many AM technologies 
and applications, as well as the computational tools being 
developed therefore focus on stiff structures in the lin-
ear elastic regime, e.g., for load-carrying parts and light-
weighting. However, in recent years tremendous progress 

has been made in particular in the fabrication of soft, flex-
ible, and multi-functional structures, as well as architected 
metamaterials (Kadic et al. 2019; Surjadi et al. 2019). This 
includes, for instance, flexible and highly stretchable (Jiang 
and Wang 2016; Weeger et al. 2019), buckling-dominated 
(Liu et al. 2016; Janbaz et al. 2019; Jamshidian et al. 2020) 
or 4D printed, i.e., actively deforming, self-assembling, or 
reconfigurable (Ding et al. 2018; Boley et al. 2019) beam 
lattices and (micro-)structures. To exploit these capabilities 
and rationally design structures and architected metamate-
rials with, e.g., functionally graded material distributions 
(Kuang et al. 2019), shape-matching deformation behavior 
(Mirzaali et al. 2018), or anisotropic and curved lattice mem-
bers (Vangelatos et al. 2020), computational design optimi-
zation methods and tools are required that can efficiently 
model free-form beam structures fabricated from soft mate-
rials and subject to large (elastic) deformations.

Even though spline-based and computer-aided design 
(CAD)-integrated optimization methods were already pro-
posed much earlier  (Braibant and Fleury 1984; Olhoff et al. 
1991; Schramm and Pilkey 1993), many advancements in 
structural simulation and optimization have been made in 
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recent years through the adoption of the isogeometric analy-
sis (IGA) concept (Hughes et al. 2005). Meanwhile, this 
idea of a unified representation of geometry and numerical 
discretization using basis splines (B-splines), non-uniform 
rational basis splines (NURBS), or variants thereof have 
already been applied in virtually all areas of computational 
mechanics and engineering (Cottrell et al. 2006). Already 
soon after its inception, the advantages of IGA for shape 
optimization problems have been exploited (Wall et  al. 
2008; Cho and Ha 2009), since IGA allows to use the con-
trol points of the spline geometry directly as design variables 
for optimization. Subsequently, IGA methods have also been 
developed for shape optimization of linear (Nagy et al. 2010, 
2011; Hosseini et al. 2018) and nonlinear beams (Radaelli 
and Herder 2014; Weeger et al. 2019). In the context of 
shape optimization, the derivation of sensitivities and gra-
dients using analytical or semi-analytical approaches has 
received great attention (Cho and Ha 2009; Kiendl et al. 
2014; Qian 2010; Fußeder et al. 2015). Moreover, spline 
representations were also extended to material parameteri-
zations in the context of material distribution (Nagy et al. 
2013; Weeger et al. 2016; Izzi et al. 2021) and topology 
optimization formulations (Seo et al. 2010; Kang and Youn 
2016; Costa et al. 2019). In general, the advantage of the 
parameterization of the optimization variables using splines 
is that these parameterizations are smooth, have local sup-
port, and can be chosen independently from the resolution 
of the discretization.

Focusing on the optimal design of beams and lattice 
structures, most previous works are restricted to stiff struc-
tures in the linear elastic, infinitesimal deformation regime, 
e.g., for load-carrying parts and light-weighting applications 
(Haftka and Grandhi 1986). For instance, sizing, shape, and 
topology optimization methods were developed for the 
cross-sectional design of thin-walled or reinforced beams 
(Schramm et al. 1995; Zhang et al. 2009; Amir and Sha-
kour 2018). For the topological design of truss structures, 
the ground structure method was introduced (Hagishita and 
Ohsaki 2009; Zegard and Paulino 2015) and also extended to 
nonlinear 2D beams (Changizi and Warn 2020). In (Mergel 
et al. 2014), nonlinear beam formulations were employed 
for the optimization of adhesive microstructures. A shear-
deformable beam model with linearized kinematics and an 
isogeometric finite element discretization was employed for 
the optimal design of band gaps of lattice structures in Choi 
et al. (2019). There, also the beam centerline shapes and 
cross-sectional sizing parameters were introduced as design 
variables.

In this work, we essentially combine the ideas of our 
previous works on isogeometric analysis for the discretiza-
tion of a geometrically exact and nonlinear 3D beam model 
(Weeger et al. 2017) with the spline parameterization of 
cross-sectional properties (Weeger et al. 2016, 2018) and 

of the centerline curve (Weeger et al. 2019) for a holistic 
approach to the computational design optimization of beams 
and beam structures. Thus, by shape we refer here to the 
initial centerline curve of a beam and by sizing we refer to 
the geometric and material parameters of the cross-section 
(radius, Young’s modulus, etc.), which can be varying along 
the centerline and also be functionally graded through the 
cross-section, i.e., be composed of different materials. To 
the best of our knowledge, so far no method has been pre-
sented yet that would facilitate such optimal design of beam 
structures or metamaterials with curved, free-form shapes, 
and varying graded cross-section properties at large defor-
mations. For the shape sensitivity analysis and optimiza-
tion of geometrically exact, nonlinear beams, only Choi and 
Cho (2019) introduced another approach. It is based on an 
isogeometric finite element discretization, a multiplicative 
update of rotations, and the smallest rotation method for 
determining the initial cross-sectional orientations.

The further outline of this manuscript is as follows: 
The 3D beam model with the general constitutive model 
for functionally graded cross-sections is introduced in Sec-
tion Geometrically exact 3D beam model with functionally 
graded cross-sections. Then, the isogeometric analysis con-
cept using B-splines or NURBS for the parameterization 
of the initial shape and cross-sectional sizing properties, as 
well as for the discretization of the beam model with mixed 
collocation methods is described in Section Isogeometric 
parameterization, discretization, and mixed collocation. In 
Section Isogeometric design and shape optimization, the 
combined design and shape optimization problem is formu-
lated and the required gradients and sensitivities are derived. 
In Section Numerical results, the numerical implementation 
of the method is verified and it is demonstrated in several 
applications. Finally, the paper concludes with a summary 
of methods and results presented in Section Summary and 
conclusions.

2  Geometrically exact 3D beam model 
with functionally graded cross‑sections

The mechanical modeling of the elastic deformation of 
3-dimensional beams and beam structures in this work is 
based on the shear-deformable, geometrically exact beam 
model, which is usually referred to as the Cosserat rod, 
Timoshenko, or Simo–Reissner beam theory (Antman 2005; 
Simo 1985). It accounts for large deformations and rota-
tional changes of moderately thick beams. However, due 
to the use of the linear elastic constitutive model and rigid 
cross-sections, it is only valid for small strains and stresses.
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2.1  Kinematics

Kinematically, 3-dimensional beams are described as framed 
curves. The initial, undeformed configuration of a beam is 
given by a 3D curve r̊ ∶ [0, L] → ℝ

3 , which describes its 
centerline, and an orthonormal field of rotation matrices 
R̊ ∶ [0, L] → SO(3) , which describes the spatial orientation 
of the cross-section at each point along the centerline. L is 
the length of the initial centerline curve r̊ , which must be arc-
length parameterized, i.e., ‖r̊�(s)‖ = ‖ dr̊

ds
‖ = 1 ∀s ∈ [0, L].

Although the initial orientation of the cross-section can 
be defined arbitrarily, it is usually chosen such that the 
cross-section is orthogonal to the curve, which here defines 
g̊3(s) = r̊�(s) ∀s ∈ [0, L] , where R̊ = (g̊1, g̊2, g̊3) . This con-
vention still yields g̊1, g̊2 as arbitrary up to a rotation around 
g̊3 . Here, we always use the so-called Bishop frame for 
initially curved beams, which minimizes the torsion in the 
initial configuration, see (Weeger et al. 2019) for further 
details.

The current deformed configuration of a beam is 
described by the centerline curve r ∶ [0, L] → ℝ

3 and the 
orthonormal field R ∶ [0, L] → SO(3) , see Fig. 1 for illustra-
tion. The kinematic model then includes two types of strain 
vectors, the normal and shear strains � ∈ ℝ

3 , as well as the 
bending and torsion strains � ∈ ℝ

3:

Here k is the curvature vector:

where axl refers to the axial or cross-product vector of a 
skew-symmetric matrix.

(1)�(s) = R⊤r� − R̊
⊤
r̊�, �(s) = k − k̊.

(2)k(s) =

⎛⎜⎜⎝

g�
2
⊤g3

g�
3
⊤g1

g�
1
⊤g2

⎞⎟⎟⎠
=∶ axl

�
R�⊤R

�
,

2.2  Constitutive model for functionally graded 
beams

Assuming that strains and stresses are small and that the 
Bernoulli hypothesis holds, i.e., cross-sections remain plain 
and undeformed, a linear elastic constitutive model is used 
to relate the strain measures to stress resultants, which reads 
in its most general form as:

where � ∈ ℝ
3 is the vector of the normal and shear stresses 

and � ∈ ℝ
3 is the vector of bending and torsion stresses. 

The constitutive matrices A, B, C ∈ ℝ
3×3 take the follow-

ing forms:

The topology and material constitution of the beam cross-
section, which may be functionally graded or layered, define 
the coefficients of these matrices, see (Bîrsan et al. 2012) 
for a derivation. Without loss of generality, here we only 
consider circular cross-sections with either homogeneous or 
bilayer laminate material distributions, see Fig. 2.

For homogeneous, isotropic cross-sections the coeffi-
cients are as follows:

(3)�(s) = A � + B�, �(s) = B⊤� + C �,

(4)

A =

⎛
⎜⎜⎝

A11 A12 0

A12 A22 0

0 0 A33

⎞
⎟⎟⎠
, B =

⎛
⎜⎜⎝

0 0 B13

0 0 B23

B31 B32 0

⎞
⎟⎟⎠
,

C =

⎛⎜⎜⎝

C11 C12 0

C12 C22 0

0 0 C33

⎞
⎟⎟⎠
.

(5)

A =

⎛
⎜⎜⎝

k1GA 0 0

0 k2GA 0

0 0 EA

⎞
⎟⎟⎠
, B = 0 ,

C =

⎛⎜⎜⎝

EI1 0 0

0 EI2 0

0 0 GJ

⎞
⎟⎟⎠
,

g2(s)

r(s) g1 s)

g3(s)

x3

s
x1

x2

Fig. 1  Illustration of beam model with curved centerline r(s) and 
cross-section frame R(s) = (g1, g2, g3)
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Fig. 2  Circular cross-sections with homogeneous (left) and bilayer 
laminate (right) material distributions
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where E > 0 is the Young’s modulus of the material, 
G =

E

2(1+�)
 its shear modulus, and � ∈ [0, 0.5] its Poisson’s 

ratio. For circular cross-section, the geometric properties 
depend only on the radius r > 0 . Then, A = �r2 is the cross-
section area, I1 = I2 =

�r4

12
 the second moment of area, 

J = I1 + I2 the polar moment of area, and k1 = k2 =
5

6
 are the 

shear correction factors.
Circular bilayer cross-sections can be formulated in 

terms of two material moduli E0,E1 > 0 (and corresponding 
Poisson’s ratios �0 = �1 = � ∈ [0, 0.5] , which are assumed 
equal here), as well as the radius r > 0 , the layer height 
hL ∈ (−r, r) or the layer ratio hR = (hL + r)∕2r ∈ (0, 1) , and 
the layer orientation angle � ∈ [0, 2�) . For bilayer cross-
sections, it holds that A12 = B13 = B23 = 0 and the respec-
tive nonzero coefficients are detailed in Appendix A.1, see 
also (Weeger et al. 2018).

2.3  Equilibrium equations

The vectors of stress resultants, which are defined in the 
material configuration of the beam through the constitutive 
model (3), are then transformed to the spatial configura-
tion, which yields the vectors of internal forces n ∈ ℝ

3 and 
moments m ∈ ℝ

3:

The balance equations of linear and angular momentum are 
then formulated in the current spatial configuration:

Here, n̄ ∶ [0, L] → ℝ
3 and m̄ ∶ [0, L] → ℝ

3 denote exter-
nally applied distributed forces and moments, respectively. 
To formulate a boundary value problem with a uniquely 
defined solution in terms of r and R , this coupled system of 
nonlinear ordinary differential equations must be completed 
with boundary conditions for s = 0 and s = L . Essential or 
Dirichlet boundary conditions are formulated in terms of 
prescribed positions or rotations as r(s) = r̂s, R(s) = R̂s at 
s = 0, L and natural or Neumann boundary conditions in 
terms of prescribed forces or moments n(s) = n̂s, m(s) = m̂s 
at s = 0, L , where the quantities ⋅̂ denote the prescribed given 
values.

(6)n(s) = R�, m(s) = R� .

(7)n� + n̄ = 0

m� + r� × n + m̄ = 0
∀s ∈ (0, L).

3  Isogeometric parameterization, 
discretization, and mixed collocation

To approximate the solution of the boundary value problem 
of the beam, we employ the concept of isogeometric analy-
sis (Hughes et al. 2005), i.e., the kinematic unknowns are 
discretized using spline shape functions, such as B-splines 
and NURBS. In the same way, the geometry, here the ini-
tial configuration of the beam, is represented using spline 
curves, which provide a direct link to CAD and also serves 
as a parameterization for shape optimization, see (Weeger 
et al. 2019). Furthermore, the parameters that define the 
cross-sections are also parameterized as spline curves, 
which enable the design of tapered beams with axially vary-
ing cross-sections, see (Weeger et al. 2018), and thus also 
design optimization.

3.1  Spline basics

B-splines and NURBS are commonly used in CAD to 
mathematically represent curves and surfaces. Here, we 
briefly review the most relevant definitions, terminology 
and properties of B-splines and NURBS, which will be 
used in the following sections. A detailed introduction into 
NURBS, including algorithms for their numerical imple-
mentation, can be found in (Piegl and Tiller 1997).

B-splines are piece-wise polynomial functions of 
degree p ∈ ℕ and order p + 1 . n ∈ ℕ B-spline basis 
functions Bi ∶ Ω̂ → [0, 1] are defined on a knot vec-
tor Ξ =

{
�1,… , �m

}
 with m = n + p + 1 , e.g., using the 

Cox–De Boor recursion formula, see (Piegl and Tiller 
1997). The knot vector is a non-decreasing sequence of 
knots �i ∈ ℝ (i = 1,… ,m), �i ≤ �i+1 (i = 1,… ,m − 1) and 
the parameter domain Ω̂ = [𝜉1, 𝜉m] ⊂ ℝ is, without loss of 
generality, often chosen as Ω̂ = [0, 1] . For two distinct 
knots �i ≠ �i+1 the half-open interval [�i, �i+1) is denoted as 
the i-th knot span, which may also be called an element. 
The total number of nonzero knot spans or elements in 
Ξ is denoted by � ∈ ℕ . Here, we employ only open knot 
vectors that are interpolatory at �1 and �m . This means that 
the first and last knot have multiplicity p + 1 , while inner 
knots have multiplicity k with 1 ≤ k < p.

Important properties of B-splines, especially in the 
context of numerical methods, are that they are non-nega-
tive, i.e., Bi(𝜉) ≥ 0 ∀𝜉 ∈ Ω̂ , form a partition of unity, i.e., ∑n

i=1
Bi(𝜉) = 1 ∀𝜉 ∈ Ω̂ , and that they are linearly independ-

ent, i.e., 
∑n

i=1
Bi(𝜉) ui = 0 ∀𝜉 ∈ Ω̂ ⇔ ui = 0 ∀i = 1,… , n . 

Furthermore, B-splines are p-times continuously differ-
entiable within the elements and (p − k)-times at knots of 
multiplicity k, i.e., Bi ∈ Cp−k(Ω̂) . Moreover, the basis func-
tions have compact support, meaning that Bi is nonzero 
only in [�i, �i+p+1] , i.e., on a maximum of p + 1 elements.
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NURBS are piece-wise rational functions, which can 
be built from n B-spline basis functions Bi and associated 
weights wi > 0:

Since the NURBS basis functions Ni inherit the above-men-
tioned properties of B-splines and B-splines can be consid-
ered as NURBS with all weights being equal to 1, we use the 
symbols Ni for both B-spline and NURBS basis functions 
interchangeably.

A spline curve c ∶ Ω̂ → ℝ
d can then be defined as a lin-

ear combination of n spline basis functions Ni with control 
points ci ∈ ℝ

d:

where d ≥ 1 is the dimension of the curve. The differentiabil-
ity properties of the spline basis functions then also apply 
to spline curves.

B-splines and NURBS offer the concepts of h-, p-, and 
k-refinement in order to adjust the resolution of a spline space 
and associated geometries, such as curves without changing 
their shape, see (Hughes et al. 2005; Piegl and Tiller 1997) 
for details.

3.2  Spline parameterization of the initial 
configuration

Now the reference configuration of a 3D beam is parameter-
ized using spline curves. As in (Weeger et al. 2017), we use 
unit quaternions q = (q1, q2, q3, q4)

⊤ ∈ ℝ
4, ‖q‖ = 1 for the 

parameterization of the frame:

Thus, the spline parameterizations of the initial configura-
tion are as follows:

with n0 spline basis functions N0

i
∶ Ω̂ → ℝ , which are 

defined on a knot vector Ξ0 with degree p0 and �0 ele-
ments, as well as n0 control points r̊i ∈ ℝ

3, q̊i ∈ ℝ
4 and, for 

NURBS, weights ẘi > 0.
For the initial strains and curvatures in (1) to be well-

defined, the initial centerline curve r̊ and quaternion field q̊ 
must be continuously differentiable w.r.t. the arc-length vari-
able, i.e., r̊, q̊ ∈ C1[0, L] . However, both spline curves are 

(8)Ni(�) =
wi Bi(�)∑n

j=1
wj Bj(�)

.

(9)c(�) =

n∑
i=1

Ni(�) ci,

(10)q ∶ [0, L] → SO(3), R(s) ≡ R(q(s)).

(11)

r̊ ∶ Ω̂ → ℝ
3, r̊(𝜉) =

n0�
i=1

N0

i
(𝜉) r̊i,

q̊ ∶ Ω̂ → ℝ
4, q̊(𝜉) =

n0�
i=1

N0

i
(𝜉) q̊i, ‖q̊(𝜉)‖ = 1,

defined on an arbitrary parameter domain Ω̂ and thus they are 
in general not arc-length parameterized. The arc-length deriva-
tives of any vector field 𝜉 → y(𝜉) ∶ Ω̂ → ℝ

d depending on the 
spline parameterization, such as r̊, q̊ , but also strains �,� , can 
be computed as:

where J is the Jacobian of the parameterization:

and ẏ = dy

d𝜉
 denote the parametric derivative w.r.t. the spline 

parameter � . Evaluating the strong form of the balance equa-
tions (7) would even require second-order arc-length deriva-
tives; however, this is avoided in the mixed methods pre-
sented below in Section  Mixed discretizations and 
collocation methods.

3.3  Parameterization of cross‑section properties

The concept of isogeometric parameterization is now 
also extended to the geometric and material parameters 
that define the cross-sections, which allows to introduce 
functional grading and variation along the beam axis, see 
(Weeger et al. 2018).

By u ∈ ℝ
du we denote the vector of parameters of the 

cross-section, which can be both material or geometric spec-
ifications. For instance, for a homogeneous circular cross-
section, we consider the radius r and the Young’s modulus 
E, i.e., u = (E, r) , and for a circular bilayer cross-section 
we could consider u = (E0,E1, r, hR, �) . To introduce axial 
variation, this parameter vector is now also expressed as a 
function of the arc-length parameter s of the beam – or rather 
the spline parameter � – in terms of a spline curve:

Here, nu spline basis functions Nu
i
∶ Ω̂ → ℝ are used, which 

are defined using a knot vector Ξu with degree pu and �u 
elements. nu control points of this curve are ui ∈ ℝ

du , where 
du is the dimension of the parameter vector. Additionally, 
for NURBS nu weights wu

i
> 0 are required. Depending on 

the desired axially varying design of the beam or the design 
freedom wanted for optimization, this spline basis can be 
chosen arbitrarily. Thus, it does not necessarily have to be 
the same or a refined version of the one used to parameterize 
the initial configuration of the beam in (11).

This axial parameterization of the cross-section proper-
ties implies that the matrices in the linear elastic constitutive 

(12)y� =
1

J
ẏ,

(13)J(𝜉) =
ds

d𝜉
=

d

d𝜉

�
∫

𝜉

0

‖ ̇̊r(𝜁)‖d𝜁
�
= ‖ ̇̊r(𝜉)‖,

(14)u(�) =

nu∑
i=1

Nu
i
(�)ui.
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model (3) also become dependent on the position along the 
beam centerline:

As detailed in (Weeger et al. 2018), this additional depend-
ency on the arc-length parameter also has to be considered 
when derivatives in the strong form of the balance equations 
(7) are evaluated. For the transformation from parametric to 
arc-length derivatives, (12) applies.

3.4  Mixed discretizations and collocation methods

To determine the deformed configuration, i.e., the solution of 
the boundary value problem of the balance equations of lin-
ear and angular momentum (7), the current centerline curve 
r and quaternions q are also discretized and approximated as 
spline curves r ≈ rh ∶ Ω̂ → ℝ

3 and q ≈ qh ∶ Ω̂ → ℝ
4:

Here, the n basis functions Ni ∶ Ω̂ → ℝ typically refer to 
a p/h/k-refined version of the basis functions N̊i from (11), 
for NURBS with n refined weights wi > 0 , see (Hughes 
et  al. 2005). The corresponding n control points are 
ri ∈ ℝ

3, qi ∈ ℝ
4.

Here, the unknown control points are obtained using 
isogeometric collocation approaches (Auricchio et al. 2010), 
which are based on the solution of the strong form of the 
balance equations as given in (7). Since shear locking affects 
the accuracy and convergence of numerical discretizations of 
shear-deformable beams with small to moderate thickness-
to-length ratios, i.e., r∕L ≪ 1 , we employ two variants of 
mixed methods, in which also the stress resultants are dis-
cretized independently to avoid shear locking, see (Weeger 
et al. 2017, 2018):

Mixed method. For homogeneous cross-sections, where 
the constitutive tensor B ≡ 0 vanishes, also the internal 
forces n(s) and moments m(s) are independently discretized 
as spline curves:

Here, the same spline shape functions as above in (16) are 
used, see (Auricchio et al. 2013; Weeger et al. 2017) and 

(15)
A(s) ≡ A(u(s)), B(s) ≡ B(u(s)),

C(s) ≡ C(u(s)).

(16)

rh(�) =

n�
i=1

Ni(�) ri,

qh(�) =

n�
i=1

Ni(�) qi, ‖qh(�)‖ = 1.

(17)

nh ∶ Ω̂ → ℝ
3, nh(𝜉) =

n∑
i=1

Ni(𝜉)ni,

mh ∶ Ω̂ → ℝ
3, mh(𝜉) =

n∑
i=1

Ni(𝜉)mi.

additional unknowns in terms of the coefficients ni,mi ∈ ℝ
3 

are introduced. The discretizations from (16) and (17) are 
substituted into the strong form of the balance equations, 
the quaternion normalization condition, and the additional 
compatibility conditions of the stress resultants and are then 
collocated:

As the n collocation points 𝜉k ∈ Ω̂ , we here use the Greville 
abscissae of the spline knot vector Ξ:

which guarantees the stability of the method (Auricchio 
et al. 2013). To include the boundary conditions, f n(𝜉k) and 
fm(𝜉k) for k = 1, n are replaced with either the Dirichlet or 
Neumann boundary conditions. This mixed isogeometric 
collocation method yields a nonlinear system of N = 13n 
algebraic equations:

f o r  t h e  1 3 n  u n k n o w n  c o n t r o l  p o i n t s , 
w h i c h  a r e  g r o u p e d  i n  t h e  v e c t o r s 
r = (r

i
) ∈ ℝ

3n, q = (q
i
) ∈ ℝ

4n, n = (n
i
) ∈ ℝ

3n, m = (m
i
) ∈ ℝ

3n  . 
For the solution of this nonlinear system we employ New-
ton’s method, which uses the analytically derived tangent 
stiffness matrix K(x) = df∕dx for linearization, see Appen-
dix 1 for details.

Enhanced mixed method. For non-homogeneous cross-
sections, such as the circular bilayer, this mixed method 
may not fully resolve the locking problem due to the trans-
lational–rotational coupling with B ≠ 0 and the scale dif-
ferences between the constitutive matrices A ∼ r2 , C ∼ r4 , 
and B ∼ r3 . Thus, in (Weeger et al. 2018) an enhanced 
mixed method was introduced, in which the translational 
and rotational strain contributions to the internal stress 
resultants are separated:

(18)

f n(𝜉k) ∶= n�
h
(𝜉

k
) + n̄(𝜉

k
) = 0,

fm(𝜉k) ∶= m�
h
(𝜉

k
) + r�

h
(𝜉

k
) × n

h
(𝜉

k
) + m̄(𝜉

k
) = 0,

f q(𝜉k) ∶= q
h
(𝜉

k
)⊤q

h
(𝜉

k
) − 1 = 0,

fσ(𝜉k) ∶= n
h
(𝜉

k
) − (R�)(𝜉

k
) = 0,

f χ(𝜉k) ∶= m
h
(𝜉

k
) − (R�)(𝜉

k
) = 0.

(19)𝜉k =
𝜉k+1 +…+ 𝜉k+p

p
, k = 1,… , n,

(20)f (x) =

⎛
⎜⎜⎜⎜⎜⎝

f n(𝜉k)

fm(𝜉k)

f q(𝜉k)

fσ(𝜉k)

f χ(𝜉k)

⎞
⎟⎟⎟⎟⎟⎠
k=1,…,n

= 0 with x =

⎛⎜⎜⎜⎝

r

q

n

m

⎞⎟⎟⎟⎠
,

(21)
�𝜀 = A �, �𝜅 = B�,

�𝜀 = B⊤�, �𝜅 = C �.
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Subsequently, the respective internal force and moment con-
tributions are discretized independently:

This approach yields N = 19n unknowns, since in addi-
tion to r and q , 4 ⋅ 3n control points n�

i
, n�

i
,m�

i
,m�

i
∈ ℝ

3 
are introduced, which are gathered in the vectors 
n�,n� ,m�,m� ∈ ℝ

3n . The collocated governing equations 
then read as:

where again f n(𝜉k) and fm(𝜉k) for k = 1, n are replaced with 
either the Dirichlet or Neumann boundary conditions. This 
yields a system of 19n nonlinear equations and unknowns:

Also here Newton’s method is used to solve the nonlinear 
system of equations with an analytically derived tangent 
stiffness matrix K(x) , see Appendix 1 for details. In the fol-
lowing, we will use the notation f (x) = 0 interchangeably 
for both (20) and (24).

As shown in (Weeger et al. 2018), these mixed methods 
resolve the shear locking issue and yield optimal conver-
gence behavior. Furthermore, they reduce the continuity 
requirements on the shape functions to Ni ∈ C1[0, L] , com-
pared to a primal collocation method, which would require 
Ni ∈ C2[0, L] . While the computational effort for solving 
the linear systems with the tangent stiffness matrix in the 
Newton’s method is, of course, larger for the mixed methods 
since they involve more degrees of freedom, the total com-
putational effort is actually reduced, since evaluations of the 

(22)

n�
h
(�) =

n∑
i=1

Ni(�)n
�
i
, n�

h
(�) =

n∑
i=1

Ni(�)n
�
i
,

m�
h
(�) =

n∑
i=1

Ni(�)m
�
i
, m�

h
(�) =

n∑
i=1

Ni(�)m
�
i
.

(23)

f n(𝜉k) ∶=
(
n𝜀
h
(𝜉

k
) + n𝜅

h
(𝜉

k
)
)�
+ n̄(𝜉

k
) = 0,

fm(𝜉k) ∶=
(
m𝜀

h
(𝜉

k
) +m𝜅

h
(𝜉

k
)
)�
+ m̄(𝜉

k
)+

r�
h
(𝜉

k
) ×

(
n𝜀
h
(𝜉

k
) + n𝜅

h
(𝜉

k
)
)

= 0,

f q(𝜉k) ∶= q
h
(𝜉

k
)⊤q

h
(𝜉

k
) − 1 = 0,

f 𝜀
σ
(𝜉

k
) ∶= n𝜀

h
(𝜉

k
) − (R�𝜀)(𝜉

k
) = 0,

f 𝜅
σ
(𝜉

k
) ∶= n𝜅

h
(𝜉

k
) − (R�𝜅)(𝜉

k
) = 0,

f 𝜀
χ
(𝜉

k
) ∶= m𝜀

h
(𝜉

k
) − (R�𝜀)(𝜉

k
) = 0,

f 𝜅
χ
(𝜉

k
) ∶= m𝜅

h
(𝜉

k
) − (R�𝜅)(𝜉

k
) = 0,

(24)f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f n(𝜉k)

fm(𝜉k)

f q(𝜉k)

f 𝜀
𝜎
(𝜉

k
)

f 𝜅
𝜎
(𝜉

k
)

f 𝜀
𝜒
(𝜉

k
)

f 𝜅
𝜒
(𝜉

k
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
k=1,…,n

= 0 with x =

⎛⎜⎜⎜⎜⎜⎜⎝

r

q

n𝜀

n𝜅

m𝜀

m𝜅

⎞⎟⎟⎟⎟⎟⎟⎠

.

nonlinear force residual vectors in (20) and (24) are faster, 
the methods require less Newton iterations until convergence 
and also allow larger load steps. The reduced order of differ-
entiation is also beneficial for shape and design optimization 
since the analytical derivation of sensitivities is simplified 
and their numerical evaluation accelerated, as will be shown 
in Section Gradient and design sensitivities.

Beam structures. To model structures with interconnected 
beams, such as meshes and lattices, the nonlinear residual 
vectors f (x) of all beams are assembled into a global vec-
tor. Then, Dirichlet boundary conditions can be eliminated 
and interface conditions must be applied. Here, we enforce 
a rigid coupling, i.e., the current centerline positions r and 
changes of orientation ΔR = RR̊

−1 must be equal for all nI 
beams that are interfacing with each other at a node. Further-
more, the equilibria of linear and angular momentum must 
be fulfilled at the interfaces. As in (Weeger et al. 2017), the 
equilibrium conditions are implemented by summing up the 
(signed) internal force contributions of each adjacent beam 
end-point into the collocated nonlinear force vector entry of 
the “first” beam of the interface:

where I(i) = −1 if it is the first collocation point ( � = 0 ) and 
I(i) = 1 if it is the last collocation point ( � = 1 ) of the beam 
i. The consistency conditions for positions and rotations are 
then replacing the collocated equilibrium equations of beam 
ends i = 2,… , nI:

where q∗ denotes the conjugate of a unit quaternion q.
Iterative solution process. As already mentioned, New-

ton’s method is used for the iterative solution of the nonlin-
ear system f (x) = 0 . Now and in the following, f  stands for 
the assembled residual vector of a beam structure, to which 
coupling conditions have already been applied and from 
which Dirichlet boundary conditions have been eliminated. 
x denotes the combined vector of all degrees of freedom 
from all beams. Thus, also the tangent stiffness matrices 
of the beams are assembled into a global stiffness matrix 
K(x) = df∕dx , which is also modified according to the inter-
face conditions.

Then, given a starting value x0 , the solution vector is 
iteratively updated for i = 0, 1, 2,… as:

until convergence is reached in terms of ‖Δxi‖ < 𝜖 and 
‖f (xi)‖ < 𝜖 . Typically, loads or prescribed Dirichlet 

(25)
f (1)
n

←
∑n

I

i=1
I
(i) f (i)

n
,

f (1)
m

←
∑n

I

i=1
I
(i) f (i)

m
,

(26)
f (i)
n

← r
(1)

h
− r

(i)

h
,

f (i)
m

← q
(1)

h
q̊(1)∗ − q

(i)

h
q̊(i)∗,

(27)xi+1 = xi + Δxi with K(xi)Δxi = −f (xi),
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boundary conditions are applied gradually over several 
load steps, for which the solution is computed using the 
converged solution from the previous load step as starting 
value x0.

4  Isogeometric design and shape 
optimization

The spline parameterizations of the centerline curve and the 
cross-sectional properties are now used as design variables 
for optimizing beams and beam structures. Thus, a nonlinear 
optimization problem is formulated and then solved using 
gradient-based optimization methods. The gradient of the 
objective function is computed using the adjoint method and 
for this purpose analytical sensitivities are derived.

For conciseness, in the following we formulate the 
approach in terms of a single beam. Nevertheless, the exten-
sion to a beam structure is straightforward. Thus, quantities 
such as x, f , can be understood as referring to a single beam 
or to assembled vectors of a beam structure.

4.1  Nonlinear optimization problem

The discrete representation of the initial centerline curve r̊ 
and the parameterization of the axial variation of the cross-
sectional properties u were introduced as spline curves in 
Section 3.2 and Section Parameterization of cross-section 
properties, see Eqs. (11) and (14), respectively. While we 
take the definitions of the spline spaces and shape func-
tions N0

i
 and Nu

i
 in terms of the respective knot vectors 

Ξ0 and Ξu and also the corresponding NURBS weights 
ẘi,w

u
i
 as fixed, the control points r̊i and ui of both param-

eterizations serve as design variables for the mechanical 
optimization of a beam. Therefore, we summarize them 
into two vectors r̊ = (r̊i)i=1,…,n0

∈ ℝ
N0 with N0 = 3n0 and 

u = (ui)i=1,…,nu
∈ ℝ

Nu with Nu = dunu . Note that includ-
ing the weights of NURBS as design variables would offer 
even more design freedom, see (Costa et al. 2019), but also 
complicate the derivations and evaluations of the design 
sensitivities.

A nonlinear optimization problem is now mathematically 
formulated for the minimization of a scalar objective func-
tion g in terms of the design variables r̊ and u:

(28)

min
r̊,u

g(r̊,u;x)

s.t. f (x;r̊, u) = 0,

r̊m ≤ r̊ ≤ r̊M ,

um ≤ u ≤ uM ,

h(r̊,u) ≤ 0.

.

The objective function g depends (often explicitly) on the 
state variables x in the equilibrium configuration of the 
beam, which has to be determined through solving f (x) = 0 , 
see (20) or (24), for the current design instance given by 
(r̊,u) . Thus, f (x;r̊,u) = 0 is here included in the formulation 
as an implicit constraint with a dependence also on r̊ and u . 
Furthermore, the design variables are typically constrained 
by lower and upper bounds, r̊m, r̊M ∈ ℝ

N0 and um,uM ∈ ℝ
Nu , 

respectively. Additionally, other types of (nonlinear) inequal-
ity constraints, such as volume, parameterization, or direc-
tional constraints, can be defined in terms of a vector-valued 
function h ∶ ℝ

N0 ×ℝ
Nu → ℝ

Nc . For the formulation of such 
constraints, we refer to (Weeger et al. 2019, Sect. 4.3). In the 
examples demonstrated here in Section Numerical results, 
no nonlinear inequality constraints are applied. However, 
they could be adopted if required by a concrete application 
of the method.

Since the evaluation of g requires the computation of 
the deformed configuration x for the current design (r̊,u) , 
i.e., the solution of the nonlinear equation system f (x) = 0 
through iterative procedures that potentially require many 
load steps with several Newton iterations each, the objective 
function evaluation can generally be considered as compu-
tationally expensive, while the subsequent evaluation of its 
gradient dg∕du is relatively cheap. This motivates the use 
of gradient-based local optimization methods, in contrast 
to derivative-free global methods, which typically require 
many more function iterations (Haftka and Gürdal 1992).

4.2  Gradient and design sensitivities

Since the objective function g generally depends on the 
design variables also implicitly through the current configu-
ration, its gradient must be calculated as the total derivative:

While the explicit derivatives of g w.r.t. r̊,u and x can be 
derived in a straightforward manner and then be evaluated 
analytically, see Section Objective function, the implicit 
derivatives require the terms dx∕dr̊ and dx∕du . Using the 
adjoint method, see (Haftka and Gürdal 1992; Weeger et al. 
2019), it follows that

Here, � ∈ ℝ
N is the solution of:

(29)
Dg

D(r̊, u)
=

(
dg

dr̊
+

dg

dx

dx

dr̊
,

dg

du
+

dg

dx

dx

du

)
∈ ℝ

N0+Nu .

(30)
dg

dx

dx

dr̊
= −�⊤ df

dr̊
,

dg

dx

dx

du
= −�⊤ df

du
.

(31)df

dx

⊤

� =
dg

dx

⊤

,
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where df∕dx = K(x;r̊, u) is the tangent stiffness matrix eval-
uated for the deformed configuration x for the beam design 
given by (r̊,u) and df∕dr̊ = Kr̊(x;r̊,u) and df∕du = Ku(x;r̊, u) 
are the design sensitivities of the nonlinear force vector 
f (x;r̊,u) . Note that the tangent stiffness matrix K is not 
symmetric for collocation methods and thus the numerical 
solution of (31) requires the transposition of K.

Shape sensitivities. The analytical derivation of the 
matrix of shape sensitivities:

with ◻ ∈ {n,m, q, �,�} was described in detail in (Weeger 
et al. 2019) for a primal collocation method. For the mixed 
methods used here, this evaluation greatly simplifies since 
only first-order arc-length derivatives appear in f  . The 
required partial derivatives w.r.t. the control points r̊i are 
briefly summarized in the following. First, the partial deriva-
tives of the arc-length derivatives of r̊ and of any (vector-
valued) function y , that does not explicitly depend on r̊ , are 
required:

Then, it follows for the enhanced mixed method from (23)

The required expressions for 𝜕�
𝜕r̊i
,
𝜕�

𝜕r̊i
 can be found in (Weeger 

et al. 2019, Sect. 4.2.1). Note that these derivatives also 
include the partial derivatives of the initial cross-section 
frame R̊ w.r.t.  r̊ . Since R̊ and q̊ depend on r̊ implicitly 
through the Bishop frame, similar to (31), the computation 
of the corresponding design sensitivities requires another 
sparse linear system solve for each gradient computation, see 
(Weeger et  al. 2019, Sect.  4.2.3) for details. However, 

(32)Kr̊ =
df

dr̊
=

(
𝜕f

◻

𝜕r̊i
(𝜉k)

)
k = 1,… , n

i = 1,… , n0

∈ ℝ
N×N0 ,

(33)
𝜕r̊�

𝜕r̊i
= N0

i

�
(I − r̊�r̊�⊤),

𝜕y�

𝜕r̊i
= −N0

i

�
y�r̊�⊤.

(34)

𝜕f n

𝜕r̊
i

=
𝜕n𝜀

h

�

𝜕r̊
i

+
𝜕n𝜅

h

�

𝜕r̊
i

,

𝜕fm

𝜕r̊
i

=
𝜕m𝜀

h

�

𝜕r̊
i

+
𝜕m𝜅

h

�

𝜕r̊
i

− (n𝜀
h
+ n𝜅

h
) ×

𝜕r�
h

𝜕r̊
i

,

𝜕fq

𝜕r̊
i

= 0,

𝜕f 𝜀
𝜎

𝜕r̊
i

= −R
𝜕�𝜀

𝜕r̊
i

= −RA
𝜕�

𝜕r̊
i

,

𝜕f 𝜅
𝜎

𝜕r̊
i

= −R
𝜕�𝜅

𝜕r̊
i

= −RB
𝜕�

𝜕r̊
i

,

𝜕f 𝜀
𝜒

𝜕r̊
i

= −R
𝜕�𝜀

𝜕r̊
i

= −RB⊤ 𝜕�

𝜕r̊
i

,

𝜕f 𝜅
𝜒

𝜕r̊
i

= −R
𝜕�𝜅

𝜕r̊
i

= −RC
𝜕�

𝜕r̊
i

.

although not as efficient as the explicit smallest rotation 
method used in (Choi and Cho 2019), the computational cost 
is negligible especially for larger beam structures as this 
system is local to each beam.

For the standard mixed method from (18), it must simply 
be used that

Cross-sectional sizing sensitivities. The analytical derivation 
of the matrix of the sensitivities w.r.t. the design parameters 
of the cross-sections:

is also simpler for the mixed methods compared to primal 
collocation methods, since the constitutive matrices only 
appear in the compatibility equations of the mixed variables:

Instead of explicitly representing the third-order tensors, 
such as dA

du
∈ ℝ

3×3×nu , or implementing their application to 
the strain vectors, such as dA�

du
 , we rather compute the partial 

derivatives w.r.t. the individual parameters gathered in u , 
which form the columns of the terms, such as �f

�
�

�ui
∈ ℝ

3×nu . 
For both cases of homogeneous circular cross-sections with 
u = (E, r) and circular bilayer laminate cross-sections with 
u = (E0,E1, r, hR, �) , these partial derivatives can be found 
in Appendices 1 and 2, respectively.

Remark 1 It is important to mention that B-spline and 
NURBS shape functions such as Ni,N

0

i
,Nu

i
 all have local 

support and only p + 1, p0 + 1, pu + 1 shape functions are 
nonzero at each collocation point 𝜉k , see Section Spline 
basics. Thus, the influence of each design variable, i.e., each 
control point r̊i and ui , is only local and the expressions in 
(34) and (37) need only be evaluated if 𝜉k is within the sup-
port of N0

i
 or Nu

i
 , respectively.

4.3  Objective function

In design, shape, and topology optimization of structures 
subject to small, linear elastic deformations, the typical 

(35)
nh ≡ n�

h
+ n�

h
, f � ≡ f �

�
+ f �

�
,

mh ≡ m�
h
+m�

h
, f� ≡ f �

�
+ f �

�
.

(36)Ku =
df

du
=

(
𝜕f

◻

𝜕u
i

(𝜉
k
)

)
k = 1,… , n

i = 1,… , n
u

∈ ℝ
N ×N

u ,

(37)

𝜕f n

𝜕u
i

= 0,
𝜕fm

𝜕u
i

= 0,
𝜕fq

𝜕u
i

= 0,

𝜕f 𝜀
σ

𝜕u
i

= −R
dA�

du
N

u

i
,

𝜕f 𝜅
σ

𝜕u
i

= −R
dB�

du
N

u

i
,

𝜕f 𝜀
χ

𝜕u
i

= −R
dB⊤�

du
N

u

i
,

𝜕f 𝜅
χ

𝜕u
i

= −R
dC�

du
N

u

i
.



 O. Weeger 

1 3

   43  Page 10 of 22

objective is to maximize the stiffness of a structure, i.e., 
minimize its compliance, subject to constraints that limit 
the weight. However, at finite deformations maximizing 
the stiffness is typically not a desirable target. Instead, 
we formulate objective functions for matching desired 
deformed shapes or resulting forces and moments:

The first term gr corresponds to the mismatch between the 
current deformed centerline curve rh and a desired target 
given as a spline curve rt ∶ [0, L] → ℝ

3 . The error is evalu-
ated in terms of the squared vector norm and summed over 
the collocation points 𝜉k . Depending on the initial configu-
ration given by (r̊,u) , the mismatch between rh and rt can 
initially be very large, which may result in undesirable local 
minima being obtained by gradient-based optimizers. Thus, 
another term g� is introduced, which measures the differ-
ence between the curvature in the deformed state � and the 
curvature of the target curve �t ≡ �(rt) ∶ [0, L] → ℝ

3 . As 
the numerical examples in Section Numerical results will 
show, combining these two terms often yields better opti-
mization results. Furthermore, we also introduce the term 
gp , which only considers matching of the end-points of the 
centerline curve. It is specified by the two control points 
r1 and rn and their respective target points rt

1
, rt

n
∈ ℝ

3 . The 
final terms gn and gm consider the matching of given val-
ues nt

k
,mt

k
∈ ℝ

3 (k = 1, n) for the internal forces n and 
moments m at the beam ends, i.e., for 𝜉1 and 𝜉n . For the 
(enhanced) mixed formulations used here, it is simply 
n(𝜉1) = n𝜀

1
+ n𝜅

1
≡ n1, n(𝜉n) = n𝜀

n
+ n𝜅

n
≡ nn, etc. All of 

these terms can be enabled and weighted using coefficients 
Cr,C� ,C

1
p
,Cn

p
,C1

n
,Cn

n
,C1

m
,Cn

m
≥ 0 , depending on the desired 

formulation of the objective.
Except for � , which requires an arc-length derivative, see 

(2), none of the terms and expressions in the formulation 
of the objective function in (38) depends explicitly on the 
design variables r̊ and u . Thus, it is

(38)

g(r̊,u;x) = gr + g𝜅 + gp + gn + gm with

gr =
Cr

2

n�
k=1

‖rh(𝜉k) − rt(𝜉k)‖2,

g𝜅 =
C𝜅

2

n�
k=1

‖�(𝜉k) − �t(𝜉k)‖2,

gp =
C1
p

2
‖r1 − rt

1
‖2 +

Cn
p

2
‖rn − rt

n
‖2,

gn =
C1
n

2
‖n(𝜉1) − nt

1
‖2 + Cn

n

2
‖n(𝜉n) − nt

n
‖2,

gm =
C1
m

2
‖m(𝜉1) −mt

1
‖2 + Cn

m

2
‖m(𝜉n) −mt

n
‖2.

(39)
dg

du
= 0,

dg

dr̊
=

dg𝜅

dr̊
,

with

The gradient of g w.r.t. the control points of the discretiza-
tion x can be analytically derived from (38) in a straightfor-
ward manner:

with the nonzero partial derivatives being

 

5  Numerical results

In the following, we present the numerical application of 
the unified isogeometric sizing and shape optimization 
approach. For this purpose, the methods have been imple-
mented in a C++ code, which is based on the isogeometric 
analysis library G+SMo (Jüttler et al. 2014) and the nonlin-
ear optimization library NLopt (Johnson n.d.), from which 
we employ the gradient-based Method of Moving Asymp-
totes (MMA) and Sequential Least Squares Programming 
(SLSQP) algorithms.

5.1  2D cantilever beam

To demonstrate the capabilities of sizing and shape optimi-
zation of beams, we first discuss a rather simple 2D example, 
which is illustrated in Fig. 3. A cantilever beam of length 
L = 1 with a circular cross-section with radius r = 0.02 , 
Young’s modulus E = 108 , and Poisson’s ratio � = 0.5 is 
subject to a point force n̂L = (0, 0,−20)⊤ at its free end. 
Numerically, the beam is discretized using B-splines with 

(40)
𝜕g𝜅

𝜕r̊i
= C𝜅

n∑
k=1

(
�(𝜉k) − �t(𝜉k)

)⊤ 𝜕�
𝜕r̊i

(𝜉k).

(41)dg

dx
=

dgr

dx
+

dg�

dx
+

dgp

dx
+

dgn

dx
+

dgm

dx
,

(42)

dgr

dri
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n∑
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(
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)⊤ d�
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(𝜉k),

dgp

dr1
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(
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1

)⊤
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drn
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)⊤
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p = 6,� = 16 . Now, the beam shall be optimized such that 
its deformed configuration shows a constant curvature, i.e., 
is a circular arc, as it would result from applying a moment 
m̂L = (0, 10, 0)⊤ instead of the force, see Fig. 3a. Using 
the shape-matching objective function g = gr + g� with 
Cr = 10,C� = 0.2 , see (38), the initial objective value is 
g = 0.76.

For the following optimizations, the cross-sectional 
properties and the initial centerline curve are param-
eter ized with pu = p0 = 3, �u = �0 = 2, nu = n0 = 5 . 
Then, either only the Young’s modulus, u ≡ (E) , only the 
radius, u ≡ (r) , only the shape of the centerline curve, r̊ , 
both modulus and radius, u ≡ (E, r) , or all three vari-
ables combined, u ≡ (E, r), r̊ , are optimized. As bounds 
for the design variables, 107 ≤ Ei ≤ 109 , 0.1 ≤ r ≤ 0.4 , 
and (0,−0.05,−0.5)⊤ ≤ r̊i ≤ (1.5, 0.05, 0.5)⊤ are chosen. 
Since the beam must be clamped at its left end, for shape 
optimization the first two control points of the centerline 
curve are excluded, i.e., r̊ = (r̊3,… , r̊n0 ) . As can be seen in 
Fig. 3b–3f, in all five cases the deformed shapes of the opti-
mized beam designs resulting from n̂L are visually indis-
tinguishable from the target shape and overlap it almost 
perfectly. Similar results are also achieved when the homo-
geneous cross-section is replaced by a circular bilayer, as is 

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

Fig. 3  Verification example of a 2D cantilever beam subject to a point force. Deformed shapes of the optimized configurations (in blue) almost 
perfectly overlap the target (in green). (Color figure online)

Table 1  Verification of the analytically derived gradient with a finite 
difference evaluation for the first iteration of the optimization of 
(E, r, r̊) of the 2D cantilever

Variable Analytical FD

E1
−1.206E-08 −1.206E-08

r1
−2.412E+02 −2.406E+02

E2
−8.156E-09 −8.156E-09

r2
−1.630E+02 −1.627E+02

E3
−2.421E-09 −2.420E-09

r3
−4.835E+01 −4.827E+01

E4 1.762E−10 1.762E−10
r4 3.564E+00 3.570E+00
E5 3.729E−10 3.729E−10
r5 7.464E+00 7.460E+00
r̊3,1 3.156E-01 3.157E-01
r̊3,2 2.210E−13 1.485E-03
r̊3,3 −1.022E+00 −1.047E+00
r̊4,1 1.363E+00 1.363E+00
r̊4,2 3.578E−13 6.106E-03
r̊4,3 −3.377E+01 −3.339E+01
r̊5,1 2.763E+00 2.763E+00
r̊5,2 1.868E−13 2.755E-03
r̊5,3 2.070E+01 2.056E+01
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shown in Fig. 3g–3i. Here, the initial design is chosen with 
E0 = E1 = 108, r = 0.02, hR = 0.5 , i.e., equivalent to the 
homogeneous beam, and then only the moduli, u = (E0,E1) , 
all cross-section parameters, u = (E0,E1, r, hR) , or cross-sec-
tion and shape, u = (E0,E1, r, hR), r̊ , are optimized.

For the verification of the analytical derivation and 
numerical implementation of the sensitivities and gradients 
as detailed in Section Gradient and design sensitivities, 
Table 1 shows a comparison of the gradients for optimiza-
tion of (E, r, r̊) with forward finite differences with a spac-
ing of 10−5 . The values agree very well, suggesting that the 
implementation is correct. Note that the objective function 
value here is g = O(1) and that the order of magnitude of the 
gradients is inverse to the order of the respective design vari-
ables, where E = O(108) , r = O(10−2) , r̊i,1 = r̊i,3 = O(1) , 
and r̊i,2 = O(10−1) . Thus, to improve the effectiveness of the 
numerical optimizers, in the implementation of the method 
all design variables are normalized to the range [0, 1].

The convergence behavior of the gradient-based optimi-
zation procedures is shown in Fig. 4 in terms of the evolu-
tion of g over the iterations. In all cases, convergence is 
reached in less than 40 iterations, but the final values of g 
vary substantially. When optimizing E and/or r, the target 
deformations can be matched well, as Fig. 3 shows. How-
ever, although gr becomes very small, the numerical values 
of the resulting curvatures actually match not as well (even 
this is not visible) and thus the objective is only reduced to 

g ≈ g� ≈ 0.1 . The combined optimization of E and r finds 
an optimum with a slightly lower g-value, but only when r̊ 
is (also) optimized, also the curvature can be matched well, 
yielding g ≈ 10−4 . Here, we have also included a shape opti-
mization that uses a NURBS parameterization with non-
uniform weights, which is obtained by refining an initially 
quadratic spline with one element and weights {1, 1∕

√
2, 1} 

to p0 = 3,�0 = 2, n0 = 5 . The optimized shape coincides 
with Fig. 3d and also the optimization behavior shown in 
Fig. 4 is similar to the shape optimization with uniform 
weights. The fast convergence behaviors shown in Fig. 4 also 
indicate the correct derivation and implementation of the 
gradients and sensitivities. The spiky behaviors most likely 
stem from the optimizer first attempting a design update with 
a full gradient step and then reducing the step size. Note that 
this behavior highly depends on the scaling of the objective 
function and the design variables, as well as on the choice 
of optimizer and maximum step sizes.

Interestingly, the combined optimization of E, r, r̊ yields 
a slightly higher value for g than the optimization of r̊ alone. 
Similarly, also the bilayer result for E0,E1, r, hR, r̊ is worse 
than the shape optimization alone. In these cases, probably 
less optimal local minima are found due to the strong non-
convexity of the optimization problems. In particular, for 
shape optimization, too much design freedom increases the 
risk of gradient-based optimizers being trapped in subop-
timal local minima. This is not shown for conciseness, but 
while refining pu or �u would slightly improve the optimal 
solution, further refinement of p0 and especially �0 rather 
lead to less optimal local minima. Thus, the degree and num-
ber of elements should be kept rather low in particular for 
shape optimization and stabilizing constraints such as length 
or “speed of parameterization” constraints may be applied, 
see (Weeger et al. 2019).

Altogether, we conclude that cross-section parameter and 
centerline curve optimization and the combination thereof 
all delivered good results in this demonstration problem.

5.2  Lattice structure

Beam lattices and metamaterials have become ubiquitous 
through advances in additive manufacturing technologies. 
Besides stiffness-to-volume ratios, also the large deforma-
tion and buckling behavior of soft and flexible microstruc-
tures are gaining increasing attention.

As an example, we consider the optimization of the 
deformation behavior of a lattice structure consisting of 
3 × 3 × 3 truncated octahedron (Kelvin foam) unit cells, 
see Fig. 5a. The cubic unit cells each have a cell size of 
10 × 10 × 10 , such that the total 756 beams each have length 
L = 2.5

√
2 ≈ 3.5355 . The radii of the homogeneous circular 

cross-sections are initially set to r = 0.25 and the material Fig. 4  Convergence behavior for the optimization of the 2D cantilever 
beam
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parameters to E = 10, � = 0.45 . This lattice structure is 
clamped at the bottom ( z = 0 ) with 0-displacement bound-
ary conditions and at each beam end-point at the top ( z = 30 ) 
a tensile force n̂ = (0, 0, 0.1) is applied. The deformed con-
figuration is simulated with p = 6,� = 12, n = 18 (total 
N = 78, 300 DOFs) and also shown in Fig. 5a. As can be 
seen, the z-direction displacements of the top points are 
almost homogeneous with uz ≈ 15.5.

Now, the objective for optimization is to achieve, given 
the same applied forces, an inhomogeneous displacement 
of the top points such that uz(x, y) = 6 ⋅ (1 + x∕60 + y∕60) , 
which is indicated by the green planes in Fig. 5. Thus, the 
objective function is formulated with the end-point posi-
tion mismatch gp , see (38), but here only includes the top 
points and only considers the position in z-direction. First, 
a sizing optimization of only the beam radii with u = (r) 
and pu = 2,�u = 1, nu = 3 is attempted with bounds 
0.125 ≤ r ≤ 0.375 and a total of Nu = 2268 design variables. 
Then, a pure shape optimization of the centerlines r̊ with 
p0 = 2,�0 = 1, n0 = 3 is performed with a total of N0 = 4536 

design variables, since the curves at the bottom ( z = 0 ) and 
top ( z = 30 ) are not optimized. Due to the large number 
of design variables, the MMA optimizer is used. In both 

(a) (b) (c)

Fig. 5  Optimization of the deformation of a octahedron lattice structure. The undeformed lattices are shown on top and the deformed structures 
below (the target deformation being indicated by the green plane)

Fig. 6  Convergence behavior of lattice optimization
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cases, it exhibits good convergence behavior and reduces 
the objective function from g ≈ 1 to g ≈ 10−5 in 40 itera-
tions, see Fig. 6. The resulting optimized undeformed and 
deformed configurations are shown in Fig. 5b and Fig. 5c, 
respectively. It can be seen that the optimized lattices exhibit 
the desired deformation behavior under the applied tensile 
forces since the deformations of the top points align with 
the green surface. For the sizing optimization, the local stiff-
ening and softening of the structures in form of increased 
and decreased radii is clearly visible in Fig. 5b. The shape 
changes in Fig. 5c are more subtle, with only beams in the 
upper part becoming significantly curved. Since both sizing 
and shape optimization yield very good results, a combined 
optimization is not attempted here.

5.3  Metamaterial unit cell

Next, we want to demonstrate the application of our 
approach to tailoring the compressive behavior of a peri-
odic lattice metamaterial that avoids instantaneous buckling.

As initial design we use the unit cell of a body-centered 
cubic (BCC) lattice of cell size 10 × 10 × 10 , which con-
sists of 8 straight beams connecting the center of the cell 
with its corners, see Fig. 7a. The beams all have a uniform 
cross-section with Young’s modulus E = 10 , Poisson’s ratio 
� = 0.45 , and radius r = 0.2 . For the simulation, they are dis-
cretized with p = 6,� = 12, n = 18 . The effective behavior 
of the microstructure is homogenized by applying a uniaxial 
deformation to the corner nodes of the cell and enforcing 
periodic rotations at all corners. The response force f in x1
-direction, which is the sum of the end-point forces of the 4 
beams on the right face of the unit cell, compare gn in (38), 
is plotted in Fig. 7b. As can be seen, when the applied defor-
mation is equivalent to a compressive strain of � ≈ −3% , an 
instability occurs. Due to strut buckling the force–displace-
ment behavior instantaneously softens significantly.

Now, the goal is to design a unit cell that has the same 
initial stiffness, but avoids this instability and exhibits a 
smooth softening behavior, as indicated by the target curve 
in Fig. 7b. To solve this force-matching problem, we take the 
shapes of the centerline curves r̊ and the radii of the cross-
sections u = (r) as design variables, which are parameterized 
for all beams using pu = p0 = 3,�u = �0 = 2, nu = n0 = 5 . 
In total, this yields 112 design variables, as Nu = 8 ⋅ 5 = 40 
and N0 = 8 ⋅ 3 ⋅ 3 = 72 (since the first and last control point 
of each beam are excluded from shape optimization). Here, 
an optimal microstructure, which almost perfectly fits the 
desired target response force curve, see Fig. 7b, is found by 
the SLSQP optimizer in only 11 iterations. Figure 7c shows 
the optimized unit cell with curved beams and axially vary-
ing thickened radii.

5.4  Active direct 4D‑printed beam structures

The direct 4D printing approach presented in (Ding et al. 
2018) allows to fabricate structures that actively deform. 
Essentially, this is achieved by incorporating an eigenstrain 
into a material through the 3D printing process, which is 
activated only upon heating due to the temperature depend-
ence of material properties. When a bilayer laminate is fab-
ricated from this active expanding material and a non-active 
material, the bilayer bends upon activating the eigenstrain 
through heating. The incorporation of these effects into the 
beam model is detailed in Appendix 1. Similarly, also many 
other 4D printing methods can be modeled.

Buckyball. As a first example, we want to optimize an 
initially flat beam mesh such that it assumes the perfectly 
spherical shape of a buckyball upon temperature activa-
tion, compare (Ding et al. 2018). The initial geometry 
consists of 102 beams of length L = 31 mm laid out in 
hexagonal patterns in the xy-plane, see Fig. 8. The beams 

(a) (b) (c)

Fig. 7  Optimization of the compressive behavior of a beam metamaterial unit cell
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all have a circular bilayer cross-section with radius r = 1.5 
mm. The initial layer height ratio is set to hR = 0.44 , since 
based on the analytical model from (Ding et al. 2018) this 
should yield a resulting curvature of � ≈ 12.9  m-1 and thus 
deform the mesh onto a sphere of radius 0.0775 m. How-
ever, as observed both numerically and experimentally in 
(Ding et al. 2018), due to the axial extension and coupling 
of bending and twisting at the joints, the resulting curva-
ture and deformation of this initial configuration are much 
smaller than expected, see Fig. 8a.

Now, the layer heights and the layer orientations 
shall be optimized such that the deformed beam mesh 
coincides with the target buckyball shape. Therefore, 
the design variables u = (hR, �) are parameterized using 
pu = 2,�u = 1, nu = 3 and the shape-matching objective 
function gr is chosen with Cr = 10−3 . For the simulation 
of the actively deformed shapes, the beams are discretized 

using p = 8,� = 8, n = 16 and the temperature is increased 
from T0 = 25◦ C to T1 = 65◦ C in 20 steps.

Using only 18 iterations, the SLSQP optimizer then 
converges from an initial objective function value of 
g = 0.55 to g = 2.2 ⋅ 10−4 . As can be seen in Fig. 8b, the 
resulting deformed shape almost perfectly matches the 
desired target buckyball. The optimized values of the 
height ratio hR range from 0.444 to 0.517, yielding higher 
curvatures than the initial value of 0.44, and the layer ori-
entations vary only slightly with � ∈ [−0.12�, 0.04�].

Helix. As another example for design optimization of 
active beams, we now want to tailor the height ratio and 
layer orientation of a long, direct 4D-printed rod such that 
it coils into a helix. As shown in Fig. 9a, the desired target 
helix has two coils, a constant diameter of 100 mm, and a 
pitch/spacing of 100 mm. This target curve can be exactly 
parameterized by a NURBS curve and has a cord length of 

(a)

(b)

Fig. 8  Optimization of a direct 4D-printed beam mesh to form a 
spherical buckyball upon activation. The flat initial shape is shown in 
gray and the target shape in transparent green. The deformed shapes 

are colored by the height ratio h
R
 in both, the 3D views on the left and 

xz-planar views on the right
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659 mm. Considering the axial expansion of the 4D-printed 
rod, its initial length is chosen as 651 mm. With a bilayer 
cross-section with radius r = 1.5 mm that is initially oriented 
along the y-axis, the straight beam simply bends around the 
y-axis, as can be seen in Fig. 9a for hR = 0.2 and hR = 0.4 , 
the latter forming a circle.

Now, the design variables u = (hR, �) are to be optimized 
such that the deformed shape coincides with the helix. For 
the design parameterization, pu = 2,�u = 4, nu = 6 and 
pu = 2,�u = 8, nu = 10 are applied. Due to the very large 
deformation from straight to helical shape to be obtained 
here, it is crucial that the shape-matching objective func-
tion includes both gr and g� (here with Cr = 0.1 and 
C� = 10−4 ). For the simulation, the beam is discretized with 
p = 8,� = 64, n = 72 and (again due to the large deforma-
tion) 80 temperature increments are used from T0 to T1.

As shown in Fig. 9d, about 35–50 iterations of the SLSQP 
optimizer are required to converge from objective function 
values g ≈ 1 to g ≈ 0.01 . For pu = 2,�u = 4 , i.e., less design 
freedom, the minimal objective function value is slightly 
higher than when pu = 2,�u = 8 is, which can also be 
seen from the agreement of deformed configurations with 
the target shape shown in Fig. 9b and Fig. 9c. The initial 
height ratio has only minor impact on the optimization, as 
the results for pu = 2,�u = 8 with hR = 0.2 and hR = 0.4 are 
basically indistinguishable. The resulting distributions of the 
design variables are plotted in Fig. 9e. As could be expected, 
the desired constant curvature and pitch can be achieved 
with an (almost) constant hR and a � that varies (almost) 
linearly along the beam length.

(a)

(d) (e)

(b) (c)

Fig. 9  Optimization of a direct 4D-printed beam to form a helix with two coils upon activation
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6  Summary and conclusions

We have presented a numerical framework for the com-
bined design optimization of the cross-sectional sizing 
parameters and the shapes of the centerline curves of 
3D beams and beam structures subject to large elastic 
deformations. The approach is based on the concept of 
isogeometric analysis, whereby not only the numerical dis-
cretization of the nonlinear differential equation but also 
the initial centerline curves and the cross-sectional sizing 
variables are parameterized using splines. The discretiza-
tion of the strong form of the boundary value problem of 
the geometrically exact, shear-deformable 3D beam model 
is carried out using mixed isogeometric collocation for-
mulations. These approaches exploit the efficiency of col-
location methods. Compared to the primal approach, they 
alleviate shear locking for thin and functionally graded 
beams and greatly simplify the analytical derivation of 
shape and sizing design sensitivities for gradient-based 
optimization. We have demonstrated the applicability of 
this unified isogeometric design optimization framework 
to various shape and force–displacement curve match-
ing problems of different complexities. In particular, it 
could be shown that the mechanical behavior of 3D lattice 
structures and periodic metamaterial unit cells, as well 
as the very large deformations of 4D-printed structures, 
could be optimized successfully. While in some problems 
a pure design or sizing optimization alone was sufficient 
to achieve the optimization target (e.g., lattice structure in 
Section Lattice structure), in others the combined optimi-
zation was necessary (e.g., metamaterial unit cell in Sec-
tion Metamaterial unit cell). This also demonstrated the 
flexibility of the framework.

In future research, this numerical optimization frame-
work can be directly applied for the design of beam struc-
tures, in particular in the context of additive manufactur-
ing of lattice structures, metamaterials, and multi-material 
fabrication. Furthermore, to make it even more versatile, 
it could be combined with a ground structure topology 
optimization method. A current limitation of the employed 
beam model is that it assumes rigid cross-sections and a 
linear constitutive model, which only applies to elastic 
materials and small strains. Thus, it would be valuable to 
generalize the approach to beam models with deformable 
cross-sections, hyperelastic, inelastic, or multi-physical 
material behaviors, since soft polymer or hydrogel mate-
rials often exhibit very large strains, viscoelastic, and dam-
age effects and can, for instance, be combined with mag-
neto- or electro-active battery materials. For applications 
with only moderately soft materials, stress constraints 
should be added to the optimization formulation so that 

the material behavior remains restricted to the linear elas-
tic regime and nonlinear or failure effects can be avoided.

Appendix

Constitutive coefficients for circular bilayer laminate 
cross‑sections

According to (Bîrsan et al. 2012), it is A12 = B13 = B23 = 0 
in (4) for the case of cross-sections made from two isotropic 
materials. Then, the nonzero constitutive coefficients can be 
expressed as:

where S ⊂ ℝ
2 is the geometric domain of the cross-section, 

k1 and k2 are the shear correction factors, G = E∕(2 + 2�) and 
E are the location-dependent shear and Young’s moduli for 
� ∈ S , and � is the Poisson’s ratio. The torsion coefficient C33 
can typically not be expressed in a closed-form way.

For circular bilayer laminate cross-sections, we 
assume that �1-coordinate of the parameterization of S is 
aligned with the layer interface, see Fig. Fig. 2. The cir-
cular domain S = {� ∶ ‖�‖ < r} is defined by the radius 
r. Using the layer height hL ∈ (−r, r) or the layer ratio 
hR = (hL + r)∕2r ∈ (0, 1) , the lower layer with Young’s mod-
ulus E0 is defined by the subdomain S0 = {� ∈ S ∶ �2 ≤ hL} 
and the upper layer with Young’s modulus E1 by 
S1 = {� ∈ S ∶ 𝜁2 > hL} . For both layers we assume that 
Poisson’s ratios � = �0 = �1 and mass densities � = �0 = �1 
are equal, which is the case for different kinds of polymers. 
As shown in (Weeger et al. 2018), the constitutive coeffi-
cients can then be found as:

where k1 = k2 =
5

6
 and

(43)

A11 = k1 �S

G(�) d� , A22 = k2 �S

G(�) d� ,

A33 = �S

E(�) d� , B31 = �S

E(�) �2 d� ,

B32 = �S

E(�) �1 d� , C11 = �S

E(�) �2
2
d� ,

C22 = �S

E(�) �2
1
d� , C12 = �S

E(�) �1�2 d� ,

C33 ≡ C33(S,E),

(44)

A11 =
k1

2(1 + 𝜈)
A33, A22 =

k2

2(1 + 𝜈)
A33,

A33 = E0 Ā
0

33
+ E1 Ā

1

33
, B31 = E0 B̄

0

31
+ E1 B̄

1

31
,

C11 = E0 C̄
0

11
+ E1 C̄

1

11
, C22 = E0 C̄

0

22
+ E1 C̄

1

22
,

C33 ≡ C33(S0,E0, S1,E1),
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with � = 2 arccos(2hR − 1) . For the torsion constant C33 , we 
use the approximation:

If the layer interface is not oriented along �1-direction, which 
we assume to coincide with the local g1-direction of the 
cross-section, it is rotated in �1�2-plane by an angle � ∈ ℝ . 
Then, the constitutive matrices can be expressed as:

where A∗
,B∗

,C∗ are the “non-rotated” matrices as defined 
above using (44) and

as also shown in (Weeger et al. 2018).

Extension to modeling of direct 4D printing

In (Ding et al. 2018), the modeling of the deformation of 
direct 4D-printed structures is introduced in the context of 
the geometrically exact, shear-deformable beam model. The 
constitutive model (3) is enhanced by a thermal strain, which 
includes thermal expansion and the release of the eigenstrain 
over a one-time temperature activation through heating from 
T0 to T1 > T0:

where ΔT = T − T0 for T ∈ [T0, T1] . For a circular bilayer 
cross-section, the nonzero coefficients of the additional con-
stitutive matrices A� ,B� ∈ ℝ

3×3 take the form:

(45)

Ā0

33
=

r2

2
(2𝜋 − 𝜃 + sin 𝜃), Ā1

33
=

r2

2
(𝜃 − sin 𝜃),

B̄0

31
= −

2

3
r3 sin3(𝜃∕2), B̄1

31
=

2

3
r3 sin3(𝜃∕2),

C̄0

11
=

r4

16
(4𝜋 − 2𝜃 + sin(2𝜃)),

C̄1

11
=

r4

16
(2𝜃 − sin(2𝜃)),

C̄0

22
=

r4

48
(12𝜋 − 6𝜃 + 8 sin(𝜃) − sin(2𝜃)),

C̄1

22
=

r4

48
(6𝜃 − 8 sin(𝜃) + sin(2𝜃)),

(46)

C33 = E0 C̄
0

33
+ E1 C̄

1

33
,

C̄0

33
=

1

2
𝜋r4

(
h2
R
+ h3

R

)
,

C̄1

33
=

1

2
𝜋r4

(
(1 − hR)

2 + (1 − hR)
3
)
.

(47)A(𝜏) = A∗
, B(𝜏) = B∗R⊤

𝜏
, C(𝜏) = R𝜏C

∗R⊤
𝜏
,

(48)R� =

⎛⎜⎜⎝

cos � − sin � 0

sin � cos � 0

0 0 1

⎞⎟⎟⎠
,

(49)
� = A � + B� + A𝛼 ΔT e3,

� = B⊤� + C � + B⊤
𝛼
ΔT e3,

compare (44) and (45). Here, �0 = �t
0
+ �

p

0
∕(T1 − T0) and 

�1 = �t
1
 are the modified thermal expansion coefficients of 

material 0 and material 1, respectively. For the two materi-
als used in (Ding et al. 2018), it holds that T0 = 25◦ C and 
T1 = 65◦ C , the material parameters (at T1 ) are E0 = 0.6 
MPa, E1 = 6.0 MPa, and � = 0.5 , the thermal expansions 
coefficients are �t

0
= 2.3 ⋅ 10−4  K−1 and �t

1
= 1.7 ⋅ 10−4 

 K−1, and the printing-induced eigenstrain of material 0 is 
�
p

0
= 0.044 . Rotation of the layering in the cross-section 

plane affect A� ,B� as shown above in (47).
To obtain the final activated shape of a direct 4D-printed 

beam, the eigenstrain is applied through a temperature-
controlled simulation where T is increased from T0 to T1 . 
Note that although it is essential for this 4D printing con-
cept that the Young’s moduli are temperature-dependent, we 
here only consider the material parameters at T1 . Thus, the 
deformations during the activation/heating phase may not be 
physically correct, but the final deformations at T = T1 are.

Linearization of collocated equilibrium equations

The iterative solution of the nonlinear systems of equa-
tions stemming from the mixed isogeometric collocation 
approaches require their linearization, i.e., the derivation 
and evaluation of the tangent stiffness matrices.

Mixed method. For the mixed method from (20), the tan-
gent stiffness matrix is derived as:

The required partial derivatives can be obtained as:

(50)

A𝛼
11

=
k1

2(1 + 𝜈)
A𝛼
33
, A𝛼

22
=

k2

2(1 + 𝜈)
A𝛼
33
,

A𝛼
33

= 𝛼0E0Ā
0

33
+ 𝛼1E1Ā

1

33
,

B𝛼
31

= 𝛼0E0B̄
0

31
+ 𝛼1E1B̄

1

31
,

(51)

K(x) =
df

dx
∈ ℝ

13n×13n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0
df n

dn
i

(𝜉
k
) 0

dfm

dr
i

(𝜉
k
) 0

dfm

dn
i

(𝜉
k
)

dfm

dm
i

(𝜉
k
)

0
df q

dq
i

(𝜉
k
) 0 0

dfσ

dr
i

(𝜉
k
)

dfσ

dq
i

(𝜉
k
)

dfσ

dn
i

(𝜉
k
) 0

df χ

dr
i

(𝜉
k
)

df χ

dq
i

(𝜉
k
) 0

df χ

dm
i

(𝜉
k
)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ k = 1,… , n ,

i = 1,… , n

.
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where the expression for d�
dqi

 and dR
dqi

(⋅) can be found in 
(Weeger et al. 2017, Sect. 4.2).

As can be seen from the structure of (51), for collocation 
approaches the tangent stiffness matrices are not symmetric, 
unlike it is the case for finite element methods. Nevertheless, 
they are sparse, since at each collocation point 𝜉k only p + 1 
shape functions Ni are nonzero for NURBS of degree p.

Enhanced mixed method. Likewise, for the enhanced 
mixed method from (24), the tangent stiffness matrix reads 
as:

where

(52)

df n

dn
i

(𝜉
k
) = N

�
i
I,

dfm

dr
i

(𝜉
k
) = n

h
× (N�

i
I),

dfm

dn
i

(𝜉
k
) = −r�

h
× (N

i
I),

dfm

dm
i

(𝜉
k
) = N

�
i
I,

dfq

dq
i

(𝜉
k
) = 2N

i
q⊤
h
,

dfσ

dr
i

(𝜉
k
) = −N�

i
RAR⊤,

dfσ

dq
i

(𝜉
k
) = −

dR

dq
i

(�) − RA
dR⊤

dq
i

(r�
h
) − RB

d�

dq
i

,

dfσ

dn
i

(𝜉
k
) = N

i
I,

df χ

dr
i

(𝜉
k
) = −N�

i
RB⊤R⊤,

df χ

dq
i

(𝜉
k
) = −

dR

dq
i

(�) − RC
d�

dq
i

− RB⊤ dR⊤

dq
i

(r�
h
),

df χ

dm
i

(𝜉
k
) = N

i
I,

(53)

K(x) =
df

dx
∈ ℝ

19n×19n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
df n

dn𝜀
i

(𝜉
k
)

df n

dn𝜅
i

(𝜉
k
) 0 0

dfm

dr
i

(𝜉
k
) 0

dfm

dn𝜀
i

(𝜉
k
)

dfm

dn𝜅
i

(𝜉
k
)

dfm

dm𝜀
i

(𝜉
k
)

dfm

dm𝜅
i

(𝜉
k
)

0
df q

dq
i

(𝜉
k
) 0 0 0 0

df 𝜀
σ

dr
i

(𝜉
k
)

df 𝜀
σ

dq
i

(𝜉
k
)

df 𝜀
σ

dn𝜀
i

(𝜉
k
) 0 0 0

0
df𝜅

σ

dq
i

(𝜉
k
) 0

df𝜅
𝜎

dn𝜅
i

(𝜉
k
) 0 0

df 𝜀
χ

dr
i

(𝜉
k
)

df 𝜀
χ

dq
i

(𝜉
k
) 0 0

df 𝜀
χ

dm𝜀
i

(𝜉
k
) 0

0
df𝜅

χ

dq
i

(𝜉
k
) 0 0 0

df𝜅
χ

dm𝜅
i

(𝜉
k
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k = 1,… , n , i = 1,… , n ,

Design sensitivities of constitutive coefficients

Homogeneous circular cross‑section

For a circular cross-section made from a homogeneous 
material, we allow as design parameters the Young’s modu-
lus and the radius, i.e., u = (E, r) . From (5), the sensitivities 
of the constitutive matrices w.r.t. the design parameters can 
be calculated:

(54)

df n

dn𝜀
i

(𝜉
k
) =N�

i
I,

df n
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i

(𝜉
k
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�
i
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k
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h
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h
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i
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i
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i
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Circular bilayer laminate

For circular bilayer laminate cross-sections made from two 
isotropic materials, we allow as design parameters the two 
Young’s moduli, the radius, the height ratio, and the layer 
orientation angle, i.e., u = (E0,E1, r, hR, �) , see A.1. Thus, 
we derive the sensitivities w.r.t.  these parameters in the 
following.

Since the dependency on the layer orientation angle � is 
realized through the rotational transformations in (47), it 
holds that

with

and ◻ ∈ {E0,E1, r, hR} being any of the other design param-
eters. The derivatives of the coefficients of the (non-rotated) 
matrices w.r.t. the Young’s moduli Ei , i = 0, 1 , can be easily 
inferred from (44):

(55)

dA

dE
=

⎛
⎜⎜⎝

k1∕(2 + 2�) 0 0

0 k2∕(2 + 2�) 0

0 0 1

⎞
⎟⎟⎠
�r2,

dC

dE
=

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1∕(1 + �)

⎞
⎟⎟⎠
�r4

12
,

dA

dr
=

⎛
⎜⎜⎝

k1G 0 0

0 k2G 0

0 0 E

⎞
⎟⎟⎠
2�r,

dC

dr
=

⎛⎜⎜⎝

E 0 0

0 E 0

0 0 2G

⎞
⎟⎟⎠
�r3

3
.

(56)

dA

d𝜏
= 0,

dA

d◻
=

dA∗

d◻
,

dB

d𝜏
= B∗dR⊤

𝜏
,

dB

d◻
=

dB∗

d◻
R⊤
𝜏
,

dC

d𝜏
= R𝜏C

∗dR⊤
𝜏
+ dR𝜏C

∗R⊤
𝜏
,

dC

d◻
= R𝜏

dC∗

d◻
R⊤
𝜏
,

(57)dR� ∶=
dR�

d�
=

⎛
⎜⎜⎝

− sin � − cos � 0

cos � − sin � 0

0 0 0

⎞
⎟⎟⎠
,

(58)

dA11

dEi

=
k1Ā

i
33

2(1 + 𝜈)
,

dA22

dEi

=
k2Ā

i
33

2(1 + 𝜈)
,

dA33

dEi

= Āi
33
,
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dEi

= B̄i
31
,

dC11

dEi

= C̄i
11
,

dC22

dEi

= C̄i
22
,

dC33

dEi

= C̄i
33
.

The derivatives w.r.t. the geometric parameters ◊ ∈ {r, hR} 
require further application of the chain rule:

where it follows from (45) that

and

(59)
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d◊
=
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with

For the direct 4D-printed circular bilayer laminate cross-
sections with thermal and eigenstrains as introduced in Sec-
tion 1, the design variables should only include geometric 
parameters, i.e., u = (r, hR, �) . The derivation of the design 
sensitivities of the additional constitutive matrices A� ,B� 
based on the definition of their components in (50) is then 
straightforward.
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