
Standard Article

International J of Engine Research
2021, Vol. 22(11) 3263–3285
� IMechE 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1468087420974148
journals.sagepub.com/home/jer

Deep feature learning of in-cylinder
flow fields to analyze cycle-to-cycle
variations in an SI engine

Daniel Dreher1, Marius Schmidt2 , Cooper Welch2 , Sara Ourza1,2,
Samuel Zündorf1, Johannes Maucher3, Steven Peters1 ,
Andreas Dreizler2, Benjamin Böhm2 and Alexander Hanuschkin1

Abstract
Machine learning (ML) models based on a large data set of in-cylinder flow fields of an IC engine obtained by high-speed
particle image velocimetry allow the identification of relevant flow structures underlying cycle-to-cycle variations of
engine performance. To this end, deep feature learning is employed to train ML models that predict cycles of high and
low in-cylinder maximum pressure. Deep convolutional autoencoders are self-supervised-trained to encode flow field
features in low dimensional latent space. Without the limitations ascribable to manual feature engineering, ML models
based on these learned features are able to classify high energy cycles already from the flow field during late intake and
the compression stroke as early as 290 crank angle degrees before top dead center (�2908CA) with a mean accuracy
above chance level. The prediction accuracy from �2908CA to �108CA is comparable to baseline ML approaches
utilizing an extensive set of engineered features. Relevant flow structures in the compression stroke are revealed by
feature analysis of ML models and are interpreted using conditional averaged flow quantities. This analysis unveils the
importance of the horizontal velocity component of in-cylinder flows in predicting engine performance. Combining
deep learning and conventional flow analysis techniques promises to be a powerful tool for ultimately revealing high-
level flow features relevant to the prediction of cycle-to-cycle variations and further engine optimization.

Keywords
Deep learning, machine learning, feature analysis, particle image velocimetry, in-cylinder flow, cycle-to-cycle variations,
IC engine

Date received: 15 August 2020; accepted: 21 October 2020

Introduction

Cycle-to-cycle variations (CCVs) decrease the perfor-
mance of spark-ignition (SI) internal combustion (IC)
engines and increase their emissions. Rigorous experi-
mental research is required to provide detailed data for
the development of accurate models of engine phenom-
ena and the reduction of CCVs.1 Over the last decades,
advancements in laser and imaging technology have
enabled IC engine research to expand to high-speed,
crank angle-resolved2–4 and high-resolution boundary
layer velocity and fuel film measurements5–8 as well as
multi-parameter measurements to examine the propa-
gation of the early flame kernel.9 With the increase in
technology, also comes the ability of generating better
statistics for flow and flame data obtained from
advanced laser diagnostics in IC engines and the subse-
quent use of machine learning (ML)-based processing

and analysis techniques to better understand the phe-
nomena involved in engine CCV.

Variations of in-cylinder flows have a profound
effect on CCVs and have been investigated with condi-
tional statistics,10,11 proper orthogonal decomposi-
tion,12–14 and analysis of engineered features.11,15,16

With larger experimental and simulated flow field data
sets available, ML has become a promising approach
to identify relevant non-linear characteristics of the

1Group Research, Mercedes-Benz AG, Stuttgart, Germany
2Department of Mechanical Engineering, Reactive Flows and Diagnostics,

Technical University of Darmstadt, Darmstadt, Germany
3Hochschule der Medien, Stuttgart, Germany

Corresponding author:

Alexander Hanuschkin, Group Research, Mercedes-Benz AG, HPC H515,

Sindelfingen 71059, Germany.

Email: alexander.hanuschkin@daimler.com

Urheberrechtlich geschützt / In copyright https://rightsstatements.org/page/InC/1.0/

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/1468087420974148
journals.sagepub.com/home/jer

turbulent flow responsible for CCVs,17–20 which will
ultimately enable engine design optimization.

Deep learning (DL), a sub-field of ML, allows auto-
matic feature learning and facilitates models with
unmatched predictive power,21 but requires large data
sets for training complex models. Feature learning,
sometimes referred to as representation learning,
describes the process of extracting discriminative fea-
tures of given input data into a high-level representa-
tion, that is, compressing important features of a data
set into dense encodings.22 Examples of traditional,
shallow feature learning approaches include Pearson’s
principal component analysis or Fisher’s linear discri-
minant analysis.23 For deep feature learning, the so-
called pretext task can be separated from the final
(downstream) task. Training models on the pretext task
can be self-supervised, that is, without dependence on
labeled training data, and enables them to extract gen-
eral purpose representations of the training data, for
example, abstract hierarchical representations or fea-
ture space representations with separate feature clus-
ters. A good representation of such data is valuable
even for unrelated downstream tasks.22 Alternatively,
deep neural networks (DNNs) can also be trained end-
to-end, that is, the features are learned while the net-
work is trained to solve the final task, but a large,
labeled, and task-specific data set is required.

Autoencoders (AEs) are one way of realizing
self-supervised feature learning. Under-complete or reg-
ularized AEs are trained to encode a compressed repre-
sentation of the input in latent space and decode the
information to match the input.24 Convolutional auto-
encoders (CAEs) are DNNs with convolutional layers,
reducing the number of weights to be trained compared
with fully connected layers. Tschannen et al.25 showed
that AEs can generate good general purpose feature
representations. However, AEs might not necessarily
store salient features in latent space encodings, but in
the decoder. Even if salient features are encoded in
latent space, it is not given that these features are
stored in a format favored by the downstream task.
CAEs have been used before to investigate combustion
instabilities in gas turbine engines,26 but so far, they
have not been utilized for the prediction of cyclic varia-
bility in IC engines.

In previous works by the authors, engineered feature
sets were used to successfully predict engine perfor-
mance based on in-cylinder flow field data obtained
from particle image velocimetry (PIV) measurements19

and based on the 2D cross-section of the early flame
kernel using the extracted flame contour from a PIV
setup.27 However, since finding good feature represen-
tations is a critical step in CCV analysis to reduce the
dimension of the input space,28 it was hypothesized
that with a sufficiently large data set and by using DL
methods to learn features, the prediction accuracy may
be increased. To this end, a large experimental data set
of in-cylinder flow fields obtained from PIV in an opti-
cal SI engine is used to first test ML models with

engineered features as a baseline to predict cycles of
high (HC) and low (LC) maximum in-cylinder pressure
(Pmax) values using binary classification. Then deep fea-
ture learning using CAEs is employed and the learned
features are tested against the baseline.

Methods

PIV measurements and flame extraction

A detailed description of the experimental setup is
given in Hanuschkin et al.27 and only necessary details
are summarized in the following. Experiments are con-
ducted in the optical research engine at TU
Darmstadt.2,29 The single-cylinder SI engine is
employed using a spray-guided cylinder head config-
uration with a compression ratio of 8.7:1. At an aver-
age intake pressure of 0.95 bar, engine speed of
1500 rpm, and an average intake temperature of 301K,
a stoichiometric port fuel injected mixture (iso-octane)
is ignited with a spark timing of 222.2�CA (22.2 crank
angle degrees (CADs) before compression top dead
center). A piezoelectric transducer (GU22C, AVL)
measures the in-cylinder pressure. The exhaust tem-
perature T is measured with a sampling frequency of
10Hz.

Through optical access granted via a fused-silica
cylinder liner and flat piston window, a PIV experiment
is realized in the mid-cylinder plane for in-cylinder flow
measurements and flame visualizations. A pair of laser
sheets from frequency-doubled Nd:YAG laser cavities
with variable time separations (dt=4.8–21ms) are
optimized on a CAD basis and used to illuminate sili-
cone oil droplets (Dow Corning DOWSIL 510 Fluid,
;0.5mm) issued well upstream of the intake valves near
the port fuel injector. A Phantom v1610 (1280 3 800
pixel, 12-bit) high-speed CMOS camera equipped with
a 532nm band-pass filter to suppress the flame lumin-
osity is used to record image pairs for flow field calcula-
tions. For the flame visualizations, one image from
each pair of the sample set is considered and the lack of
silicone oil droplets is used to define the cross-sectional
burned gas structure. A schematic of the optical setup
and an example of such an extracted flame contour can
be found in Figure 1 of Hanuschkin et al.27 Likewise, a
detailed description of the early flame kernel characteri-
zation is subsequently provided.

Flow fields are calculated using the commercial soft-
ware DaVis 8.4.0 (LaVision). First, image pre-
processing is conducted by means of a sliding Gaussian
background subtraction (8 3 8 pixel) and a particle
intensity normalization (5 3 5 pixel) to improve the
particle contrast. Then, a unique geometric mask for
each CAD is manually generated to eliminate the
intake valves and piston from view. Additionally, to
yield as close to the same vector grid for each cycle and
experimental run as possible, all vectors with their posi-
tion outside of the mask are eliminated and only pixels
inside the mask are considered. For the calculation of

3264 International J of Engine Research 22(11)

vectors, a multi-pass cross-correlation with decreasing
interrogation window size (2 initial passes with 64 3 64
pixel, no weighting function, and 50% overlap; 2 final
passes with 32 3 32 pixel, adaptive Gaussian weighting
function, and 75% overlap) is used. Finally, each itera-
tion in the multi-pass cross-correlation as well as the
resulting flow field underwent post-processing consist-
ing of a peak ratio criterion, in which vectors with peak
ratio \ 1.3 are deleted, a universal outlier detection
median filter of size 5 3 5 pixel, and a vector group
removal criterion of a minimum of 5 vectors, that is, if
there are less than 5 viable neighboring vectors, the vec-
tor of interest is removed.

For this study, 30 experiments with 350 consecutive
cycles are recorded and evaluated for 66 different
CADs (2330�CA to 25�CA with a resolution of
5�CA), resulting in 10,500 total cycles, each with a mea-
sured maximum cycle pressure and 693,000 total flow
fields. The 30 experiments of interest are each con-
ducted in a skip-fire sequence to improve the thermal
stability of the engine with 200, 200, and 400 fired

cycles each interrupted by 300 motored cycles. The
measurements took place during the final 350 fired
cycles and at fixed engine operation parameters (OP1,
see Hanuschkin et al.27). Notably the intake valves (IV)
opened at 325�CA after top dead center (aTDC) and
closed at 2125�CA. Additionally, 7 more experiments
(2450 cycles and 161,700 flow fields) are conducted
with slightly different but fixed engine operation para-
meters (OP2: IV opened at 310�CA aTDC and closed
at 2140�CA) and used for pre-training the DNNs and
fine-tuning the feature extractor.

Machine learning approach

Machine learning concerns the design and implementa-
tion of computer algorithms capable of learning how to
solve problems without the need to program them
explicitly. Hence, ML allows the exploitation and reve-
lation of implicit knowledge and unknown relations.
Applied ML employs ML algorithms to train an ML
model on a training set. A well-trained and regularized
model is capable of definitive inference or prediction
on separate, previously unseen test sets. Supervised
learning is a common way to train ML models. During
training, the model’s parameters are adjusted to map
experienced input samples to corresponding output
labels. Depending on the ML method, the input can
either be a set of pre-processed input feature values or
unprocessed data, from which features can be learned
(see sections Feature Engineering and Feature Learning).

Machine learning methods can be used for classifica-
tion, where the output (label) is categorical. In the case
of only two classes (categories), the problem is called
binary classification. Machine learning methods can
also be used for regression, where the output (label) is
continuous. The simplest ML method for regression is
called univariate linear regression in which there is only
one dependent variable and a single independent (expla-
natory) variable. A linear coefficient is fitted, reducing
the mean squared error of the regression. Multivariate
linear regression has several independent variables and
accordingly several coefficients to be fitted. Additional
regularization terms can be used to avoid over-fitting of
the regression by penalizing, for example, the absolute
sum of coefficients (L1-regularization; Lasso), the sum
of the squared coefficients (L2-regularization; Ridge),
or a combination of both (elastic net). Neural networks,
like multilayer perceptrons (MLPs), can also be used
for regression and promise to fit any function given a
sufficient number of neurons in the hidden layer.30,31

ML Models. To investigate CCVs in the Darmstadt
engine, a binary classification task is formulated to pre-
dict high or low classes of Pmax (HC or LC) and
identify important feature patterns. Therefore, for each
cycle the corresponding Pmax value is labeled, depend-
ing on the class boundary given by the moving
average Pmax value (Pmax,m:a:) for the particular cycle

(a)

(b)

Pmax

P m
ax

Figure 1. Cycle-to-cycle variations: (a) recorded Pmax values
during a single experimental run. The recorded Pmax values shift
due to the thermal engine load and subsequently shift the
decision boundary Pmax, m:a: (red line). HC (deep red, upward
triangles) and LC (petrol, downward triangles) are cycles with
Pmax above and below Pmax, m:a:, respectively. (b) histogram of all
(gray), HC (deep red), and LC (petrol) Pmax values.

Dreher et al. 3265

(Figure 1(a)). The Pmax,m:a: slightly increases during the
course of each experiment due to the increasing engine
temperature induced by the thermal load of consecu-
tively fired cycles. Transient boundary conditions are
unavoidable in realistic operation of optical engines,
but the adaptive decision boundary counteracts this
inherent thermal effect. In Figure 1(a), Pmax values of
HC are colored deep red, LC petrol blue, and Pmax,m:a:

is shown by the red line. The moving average at cycle n
is calculated by the average Pmax values of the cycle set
[n–10, n+9]. At the edges, for example n410, the set is
appropriately reduced. The classes are balanced by
sub-sampling the majority class, that is, by randomly
selecting an equal number of cycles to match the
minority class, resulting in 9638 cycles for training.
Boosted decision trees (AdaBoost)56 and logistic regres-
sion models are trained on the training sets and evalu-
ated on the test sets of the 10-fold stratified cross-
validation (CV), that is, the data set is split into 90%
training and 10% test sets 10 times while preserving the
ratio of samples per class. Reported accuracies and
standard deviations (std) are derived from the accura-
cies of the ML models’ inference on the 10 test sets.
Hyper-parameters are fitted once at 230�CA and are
used for all other CADs to avoid information leakage
to the ML models. Hyper-parameters of the AdaBoost
include 85 estimators and a learning rate of 0.1. A regu-
larization strength of C = 100 and a maximum of 1000
iterations are used for the logistic regression. Flame
features are preprocessed with a standard scaler (mean
subtraction and scaling to unit variance) and applying
a principle component analysis (PCA)63 explaining at
least 97% of the variance. The best hyper-parameters
for the MLP used in the downstream task are a=0:8,
a batch size of 64, and a maximum of 1000 iteration
steps with 5 neurons in the first layer. All other para-
meters are the default values defined in Scikit-learn v.
0.19. Reported feature importance is derived from the
AdaBoost model, since decision tree methods allow
direct feature importance calculations, for example,
using the Gini importance.32

Furthermore, to investigate CCVs in this study, dif-
ferent ML models (linear regression (LR) and MLP)
are trained to predict the cyclic Pmax value for given
features. The LR minimizes the mean squared error;
the quality of the regression was quantified by the mean
absolute error between predictions and labels. Hyper-
parameters of the LR with elastic net regularization
(LREN) are a=0:01, a L1 ratio of 0:99, and a maxi-
mum of 500 iteration steps. The best hyper-parameters
for MLPs are a=100, lr=0:01, and a batch size of
512 with 2 and 5 neurons in the first and second hidden
layer, respectively. They are fitted once at �80�CA. All
other parameters are the default values defined in
Scikit-learn v. 0.19. Feature importance cannot be
extracted from the coefficient of a LR or the weights
and biases of a neural network directly. Instead, indi-
rect and iterative methods like LOCO (leave-one-cov-
ariate-out) can be applied.

Feature engineering

To solve supervised learning tasks, ML models are
trained with data samples and their corresponding out-
put labels. Samples use either manually engineered fea-
tures for the given problem, or raw data from which
ML algorithms have automatically extracted features.
In the following section, engineered features of flow
fields and flame contours are described. In the succeed-
ing section, DNNs are employed for automatic feature
learning.

Flow field features. Features derived from basic flow field
statistics have been shown to be sufficient for predict-
ing HC and LC and are not inferior to high-level engi-
neered features like the in-plane tumble flow.19 For the
mid-cylinder symmetry plane, 90 distinct features are
extracted for each CAD (Table 1), that is, for each of
the 9 sections (illustrated in Figure 6(a)) and the global
field of view (FOV), the minimum, maximum, and
mean value of the in-plane velocity components (x and
y), and in-plane magnitude are evaluated.

Flame features. The development of the early flame ker-
nel at �158CA is quantified by a defined set of features
(see Table 2). In a cross-section of a flame, discrete con-
tours of the flame can emerge since the flame is a 3D
structure forming and propagating around the spark

Table 1. Engineered flow features as in Hanuschkin et al.19: The
set {vx, max, vx, min, vx, mean} is abbreviated by vx: (max/min/mean).
Sections defined in Figure 6(a).

Feature Description Region

1 to 9 vx, vy, vj j: (max/min/mean) Global
10 to 18 vx, vy, vj j: (max/min/mean) Section 1
19 to 27 vx, vy, vj j: (max/min/mean) Section 2
28 to 36 vx, vy, vj j: (max/min/mean) Section 3
37 to 45 vx, vy, vj j: (max/min/mean) Section 4
46 to 54 vx, vy, vj j: (max/min/mean) Section 5
55 to 63 vx, vy, vj j: (max/min/mean) Section 6
64 to 72 vx, vy, vj j: (max/min/mean) Section 7
73 to 81 vx, vy, vj j: (max/min/mean) Section 8
82 to 90 vx, vy, vj j: (max/min/mean) Section 9

Table 2. Engineered flame features inspired by Hanuschkin
et al.27

Feature Description Feature Description

1 Total area 8 Rightmost x
2 Perimeter 9 Distance

bottommost-piston
3, 4 Centroid x,y 10 Contour height
5 Bottommost y 11 Contour width
6 Topmost y 12, 13 Distance contour-piston

(mean, std)
7 Leftmost x 14, 15 Contour x-values

(mean, std)

3266 International J of Engine Research 22(11)

plug, and is imaged in a 2D plane. Engineered features
describe global quantities such as the total area (first
feature), summed perimeters (second feature) position
of the center of mass (features 3 and 4), and extreme
points of the flame contour or contours (e.g. features 5
to 8). Features 9 to 11 are derived from these global
features and hence might be correlated to them (see
Appendix). The contour height and width is given by
the distance between features 5 and 6, and 7 and 8,
respectively. The distribution (mean and std) of the
contour points in the y-direction are given by features
12 and 13. Features 14 and 15 are used for the distribu-
tion in the x-direction. In a previous study,27 engineered
flame features were shape (and orientation) and posi-
tion related, which is possible for single contours in the
flame cross-section. However, this restriction to only
single contours reduces the amount of available samples
and most certainly biases the model, thus having an
effect on the accuracy of the models’ prediction. Single
and multiple flame contours of experiments (OP1,
Pmax 2 �34, 35½ � bar) with a high particle contrast are
extracted (1724 samples). After class balancing, that is,
matching the number of samples for each class, by sub-
sampling the majority class, 1280 samples remain.

Feature learning

While DNNs are often trained end-to-end, it can be
advantageous to train the feature extractor separately
(transfer learning). A general (pretext) task can be
defined on a large data set for feature learning, which
is different from the specific classification or regression
(downstream) task.22,25 In-between these two steps, an
optional fine-tuning step can be introduced to adjust
the learned features to the downstream task. Figure 2
illustrates how a pretext task, fine-tuning, and a down-
stream task build on each other.

In the following, autoencoding24 is used as a self-
supervised pretext task to encode, or to compress the
flow field to features in latent space, and decode, or to
expand the compressed features back into flow field
samples. Optionally, the obtained encoder is then
extended with an MLP and fine-tuned in the down-
stream task. In the final step, the obtained encoder
extracts feature values from the flow field to be used in
an AdaBoost classifier to achieve comparable results to
AdaBoost classifiers trained on hand-engineered fea-
tures. In this process, the decoder is only used for the
training, that is, evaluation of the CAE.

Deep neural networks allow automated feature
learning but require manual pre-processing steps to
enable or enhance the learning process. To process the
flow fields, the 2D velocity vectors ~v with components
vx and vy are transformed into 3D vectors

�
vx
~vj j ,

vy
~vj j, and

~vj j
C

�
to separate the vectors’ directions from their

magnitudes. The constant C was chosen as 120m/s
to normalize the velocity magnitude

� ~vj j
C
2 ½0; 1�

�
.

Normalizing input values enhances learning performance

of DNNs because it reduces vanishing or exploding gra-
dient problems during training.33,34

Autoencoding (pretext task). Feature representations can
be extracted in a self-supervised fashion using AE (see
Figure 2; pretext task). The task of undercomplete or
regularized AEs is to compress the input information
and reconstruct it, by encoding the input in a lower
dimensional space (latent space, representing simple or
abstract features) into a bottleneck layer, followed by
decoding this compressed representation. The ML
algorithm is trained on samples of pre-processed (see
above) in-cylinder flow fields, which at the same time
serve as the output target. A bottleneck size of 96 neu-
rons is chosen (see section Investigated CAE architec-
tures in the Appendix) to approximately match the size
of the engineered feature set dimension of 90 (see sec-
tion Flow Field Features).

Convolutional autoencoders use convolution layers
to detect local low-level features in shallow layers and
combine them to increasingly higher-level features with
increasing vicinity to the bottleneck layer. By defining
a set of relatively small convolution filters (kernels) of
size 3 3 3 with 9 weights and 1 bias (see Figure 3), the
number of trainable parameters is significantly reduced
compared to AE with fully connected layers. A small

Figure 2. Feature learning: first a convolutional autoencoder
(CAE) is trained to compress flow fields in a lower dimensional
feature space (bottleneck) before decoding a reconstruction of
the input. Secondly, the weights of the encoder are fine-tuned to
be suitable for the downstream task. In the preliminary classifier
training step, the decoder is replaced by an MLP which is trained
on a similar task to the downstream task. The layers of the
encoder are frozen during this step (petrol color). Then the
encoder and the MLP are trained jointly, while only keeping the
first layer frozen. Finally, the fine-tuned encoder is fixed (layers
frozen) and used for feature extraction in the downstream task.

Dreher et al. 3267

kernel size further allows resolving small and local fea-
tures in lower levels. In practice, smaller kernel sizes
with deeper NNs have shown to be superior to larger
kernel sizes with shallower NNs.35,36 This leads to the
need of increasingly deeper NNs to achieve perfor-
mance increases.

To perform a compression from the 110 (vectors) 3

98 (vectors) 3 3 (components) dimensional input to the

96 dimensional bottleneck, a stride of 2 is used in the

encoding convolutional layers. The stride defines how

the kernel convolves the input. A stride of 2 shifts the

receptive field of a kernel by 2 units, downsampling the

kernel’s input. The number of feature maps is increased

with the depth of the convolutional encoder. This

enables the network to learn more distinct high-level

features in deeper layers. The lossy compression ratio

between input and latent space coding is 336:9. For

decoding, transposed convolutions are used. The ‘‘same

padding’’ is used for all convolutional-based layers,

that is, the minimal padding size p is chosen such that

i+2p� k is divisible by the stride of 2 or equals zero

in the case of a stride of 1, where i is the input size and

k=3 the filter size. Rectified linear activation units

(ReLU)37 are used as the activation function in all

except the final convolutional-based layers to induce

nonlinearity. A linear activation unit is employed in the

final layer. The structure of the CAE is sketched in

Figure 3.
Samples of both engine operation points (OP 1 and

OP 2), but either only during the compression stroke or
during the intake and compression strokes are consid-
ered for training of the CAE. Restricting training data

to the compression stroke reduces the amount of sam-
ples with piston-reduced FOV and allows an analysis
of learned feature generalization to data in the intake
stroke. The CAE’s reconstruction performance of the
original input is measured by the mean squared error
(MSE) and is used in the loss function (compare
Appendix). The CAE is trained jointly, that is, the
CAE is trained as a whole and not layer-wise (stacked
training). The loss function is optimized with the adap-
tive moment estimation (ADAM) algorithm with the
learning rate set to 10�3. Models are trained in mini-
batches of size 512, for a maximum of 100 epochs.
Early stopping is used to reduce iteration times and
regularize the model. If the minimum change of the
model’s validation loss does not exceed 53 10�4 for 10
epochs, it is assumed that the learning algorithm has
converged. Finally, the best models of a training run
are determined by the lowest validation loss. All tested
hyper-parameters are selected empirically.

Fine-tuning. To optimize the learned features for the
downstream task, that is, the classification of HC and
LC, the pre-trained encoder is fine-tuned by training
on the same task with a different but similar data set.
All samples of the compression stroke of OP2 are used
and a 70:30 train-test split is applied. Since the fine-
tuning and downstream tasks are the same, samples
from OP1 are not used to avoid information leakage
into the model.

For fine-tuning, the pre-trained encoder is separated
from the rest of the AE (see Figure 2; fine-tuning) and
the existing decoder is replaced with fully connected

Figure 3. Autoencoder architecture: the flow field input is compressed in the encoder by convolutional layers with increasing
number of feature maps and increasing vicinity to the bottleneck. The flow field is finally encoded in the latent space of the
bottleneck layer. A set of transposed convolutional layers with decreasing number of feature maps build the decoder. A fixed kernel
size of 3 3 3 for each layer is used. Depending on the layer, a stride of 1 or 2 and ReLU or linear activation functions are applied.
The same padding is used for convolution-based layers except the final layer. Cropping is omitted.

3268 International J of Engine Research 22(11)

layers for classification. To this end, the encodings of
the bottleneck are flattened and passed to a two-layer
MLP consisting of 16 neurons in the hidden layer and 1
neuron in the output layer. A MLP is chosen because,
in contrast to other classifier method (e.g. AdaBoost), it
simply extents the neural network structure and hence
allows fast training. The hidden layer of the classifier
applies a ReLU activation function.37 A sigmoid activa-
tion function (1=(1+ e�x)) is applied at the MLP’s out-
put layer and the binary cross-entropy serves as the
models’ loss metric (compare Appendix). The fine-
tuning procedure is further subdivided into two steps:
first, the newly attached classifiers are pre-trained in
isolation until convergence, that is, all trainable para-
meters of the feature extractor are frozen and only the
classifier layers remain trainable. This can prevent cata-
strophic forgetting due to weight changes in the feature
extractor that are too drastic. Second, both the feature
extractor and binary classifier are trained in unison. In
order to maintain filters trained to extract low-level fea-
tures, weights in the first convolution layer of the fea-
ture extractor remain frozen.

During fine-tuning, the models are trained with
mini-batches of size 512 for a maximum of 104 epochs.
Once again, early stopping is employed to reduce itera-
tion times and regularize the model. The patience is set
to 200 epochs with a delta of 10�3. The loss function is
optimized with the ADAM algorithm. For the pre-
training of the classifier, the learning rate is set to 10�3.
For the joint training of the feature extractor and the
classifier, the learning rate is reduced to a value of 10�4

to retain already learned features in the feature extrac-
tor. The specific values of hyper-parameters are also
selected empirically.

Downstream task. The first two previous steps, training a
CAE on the pretext task and optionally fine-tuning its
encoder part (see Figure 2), generate ML models which
are able to encode flow fields into a suitable low dimen-
sional representation (latent encodings). These latent
encodings are learned feature representations and can
be used, in an additional final step, to train subsequent
ML models on the specific downstream task of classify-
ing HC and LC based on the given flow fields. To this
end, the generated feature representations are fed into
subsequent AdaBoost or MLP classifiers and trained
for each CAD individually to classify HC and LC (see
Figure 2; downstream task). The AdaBoost algorithm
evaluates the Gini impurity to train individual weak
learners (single trees) and the misclassification rate to
calculate their stage value (see Appendix). Binary cross-
entropy is used as loss function in MLP training (see
Appendix). Hyper-parameters are fitted at 230�CA
and their values are given in the Results and Discussion
section. The results are evaluated with 10-fold CV train-
ing on all OP1 samples.

Feature analysis. Class activation maps38 reveal spatial
regions of interest. These allow the interpretation of the
classifier’s decisions but do not expose the specifics of
learned features directly. Activation maps are generated
class-wise with the gradient-weighted class activation
mapping (CAM) algorithm38 and are averaged over 250
cycles. To narrow down the most informative regions, a
threshold of 0.5 is applied to the activation map. Values
below the threshold are zeroed out. Finally, the aver-
aged centers of mass are calculated for all time points
to visualize temporal and spatial attention shifts over
the course of a cycle.

Python 3.6 is used throughout the study with the
AdaBoost, logistic regression, MLP, and LR imple-
mentations in Scikit-learn39 (v. 0.19). DNNs are imple-
mented in TensorFlow (Tf v. 2.0, CUDA v. 10.0.130).
Tf-Explain (v. 0.2.1; Sicara SAS, France) and Tf-
Keras-Vis (v. 0.4.1)40 are used to interpret classification
decisions with class activation maps (GradCAM)38 and
GradCAM++, respectively. DNN models are trained
on a workstation outfitted with 16 Intel Xeon Silver
4112 quad core CPUs and three Nvidia V100 GPUs.
Results of the DNN inference are visualized with
OpenCV (v. 4.2.0.32). Data plots are generated with
matplotlib (v. 2.0.0 or 3.1.2) and post-processed with
Inkscape (v. 1.0).

Results and discussion

Two different ML approaches are applied and com-
pared in the following. ML methods using engineered
input features are investigated first. This approach has
been successfully applied to smaller data sets of flow
fields and flame contours.18,19,27 In the second ML
approach presented in this work, features are learned
by a CAE. Results of the first approach serve as a base-
line for comparison with the second ML approach.

Machine learning with engineered features

In this section, different ML approaches, namely classi-
fication and regression, are employed using engineered
input features. To disentangle the features’ influences
on CCV predictions, different engineered feature sets
(see section Feature Engineering) are tested. First, 90
flow field-derived features (fvf) and 90 flow field fea-
tures combined with the exhaust temperature T (fvf, T)
are used as feature sets. The first features set is extended
with 15 flame contour-derived features (fvf, flame).
Finally, a feature importance analysis for the velocity-
derived features is performed.

Classification. A binary classification task is defined by
splitting the measured engine cycles into high and low
Pmax cycles (HC and LC, respectively), where the class
boundary is given by the moving average Pmax value
(Figure 1(a)). Results for classifier models (AdaBoost)
with the feature set fvf are shown in Figure 4(a). After

Dreher et al. 3269

�2908CA, that is, already during the intake phase, the
model is able to classify HC and LC with mean accura-
cies at least one std above the baseline (chance level at
0.5) with few exceptions (�2508CA to �2408CA). The
accuracies increase during the compression and the
highest accuracies are achieved after ignition at
�108CA (0.686 0.01). The increase in accuracy after
�2408CA coincides with a transition of the flow from a
strong intake-dominated structure to an emerging tum-
ble structure with high velocity magnitudes from the
impinging wall jet near the exhaust side (see Figure
6(a)). Accuracies then reach a plateau and increase
again after �1308CA. At this CAD, on average, the
tumble center moves into the FOV. Both observations
might indicate the relevance of the tumble flow and the
coherent structures that define it for the early combus-
tion processes around the spark plug. On a similar,
though smaller data set, it has been previously shown
that such a binary classification approach is capable of
revealing spatial flow field features important for high
IMEP values at individual time points during the com-
pression phase.19 The results shown in Figure 4(a) are
consistent with these findings and hence the applied
methods seem to be robust in different experimental
setups and specific engine types. However, in the pres-
ent study, the ML models already distinguish HC and
LC during the intake phase, pushing the boundary of
this ML approach beyond what was previously possible
to earlier time points during the combustion cycle. This
might be explained by the larger data set (9638 sample
cycles after pre-processing) compared to the previous
study (544 sample cycles) even though it cannot be
ruled out that it is a result of the different experimental
engine types and operational conditions used. For
example, a port fuel injection engine configuration is
used in this study, which might explain why early
intake flows might be more informative than in a direct
injection configuration.

The logistic regression classifier (Figure 4(b), gray
color) shows qualitative and quantitative similar beha-
vior compared with the results of the AdaBoost classi-
fier (average accuracy and pooled variance:
0.5716 0.013 AdaBoost, 0.5756 0.014 logistic regres-
sion). Adding flame features obtained at �158CA
(fvf, flame; deep red color) remarkably increases the
mean accuracies of the ML models during intake and
early compression. Their mean accuracies are at least
one std above the flame-features-only baseline between
�808 and �158CA with the highest accuracies at
�308CA (0.696 0.06). The baseline is given by the
accuracy of a ML model trained on flame features
alone (logistic regression; 0.616 0.04; black horizontal
line). Note that non-causal models before �158CA are
generated because at each evaluated CAD before igni-
tion, information about the flame contour at �158CA
is present. fvf, flame has a smaller total sample size of
1280 cycles because flame contours are only extractable
in a subset of experiments, and the majority class was
sub-sampled to balance the classes. This leads to much
larger std compared with models trained with feature
set fvf (9638 cycles; Figure 4(a) and (b)). Due to the
large std, a direct comparison to the classification with
only flow field-derived features is difficult to make.
Nonetheless, a comparison shows that the highest
mean accuracies are slightly higher for feature sets aug-
mented with features of the flame contour in the range
of [�808;�158�CA:

Regression. Various regression methods are tested to
build an ML model that can predict individual Pmax

values given the feature sets fvf, fvf, T, and fvf�global, T (9
global flow field features and T). Since the Pmax value
correlates with T, a univariate linear regression (LR)
model of Pmax given T serves as the baseline in the
following. The mean absolute error (MAE) of this
baseline is 1.04 bar. The best regression models, namely

Figure 4. Classification results based on engineered features: (a) binary classifier (Adaboost) trained to distinguish HC and LC
based on fvf (deep red color). Chance level is indicated by the dashed line at the accuracy of 0.5. Time of ignition is given by the solid
vertical line at 222.2�CA. (b) binary classifier (logistic regression) trained on additional flame features (fvf , flame; deep red color).
Accuracy based on 15 flame features alone at 215�CA is given by the horizontal solid black line. The binary classifier (logistic
regression; fvf) is given as the baseline (gray color).

3270 International J of Engine Research 22(11)

LR with elastic net regularization (LREN) and MLP,
achieve an MAE of 0.996 0.02 bar and 1.006 0.02 bar,
respectively, on the CV test sets for fvf, T at �808CA
(Figure 5(a)). Interestingly, models trained with
fvf�global, T are only slightly inferior (not shown, LREN

1.026 0.02 bar; MLP 1.026 0.02 bar) at �808CA. The
average MAEs of ML models trained with feature set
fvf, T (see Figure 5(a)) are at least one std below the
baseline after �808CA and reach the best performance
at �408CA (0.936 0.02 bar). Without the temperature
feature (fvf), the average MAEs are at least one std
below baseline solely at �108CA (0.956 0.03 bar) and
exhibit higher std.

Classification and regression results show similar
qualitative behavior (Figures 4 and 5(a)). The mean
accuracies of the classification models increase while
the MAEs of the regression models drop toward the
ignition. The approaches exhibit their highest accuracy
(classification) or lowest MAE (regression) at �408CA.
However, the classification approach already allows the
prediction of HC and LC cycles during the intake phase
after �2908CA, while the regression model is on aver-
age one std below the baseline only after �1308CA.

Furthermore, the std of classification models are far
lower than the std of the regression models, even
though both approaches were trained with the same
sample size.

To analyze this further, a histogram of the
experimental Pmax values (gray color) is shown in
Figure 5(b). Overlaid on this histogram, is a histogram
of correctly classified Pmax values (deep red color) and
a histogram of well-predicted Pmax values, defined by
an absolute error below the baseline value (1.04; petrol
color). Ratios of correctly predicted classes (upward tri-
angles, deep red color) and well-predicted Pmax values
(downward triangles, petrol color) to the population
are superimposed (secondary y-axis). It becomes obvi-
ous that the classifier works perfectly (ratio = 1) for
extreme samples of either very high or very low Pmax

values, while the regressor is very accurate (ratio ;1)
close to the average Pmax value. These findings can be
explained by the differences of the underlying ML algo-
rithms. Classification algorithms aim to find decision
boundaries, for example, by optimizing model para-
meters in order to separate the classes. In the case of a
binary classifier, extreme samples with very high or low
Pmax will be easily separated, but perform worse in
closer proximity to the decision boundary. By contrast,
regression algorithms aim to fit with the majority of
the samples to reduce the overall fitting error. This
leads to regression models that predict samples with
average behavior, for example, average Pmax values,
more easily than extreme samples, for example, very
high or low Pmax values.

Feature importance. The feature importance can be
directly calculated for each CAD from the AdaBoost
classifier (see section Methods). For each CAD the fea-
ture importance is section-wise-averaged (sections as
marked in Figure 6(a), left column) and presented in
Figure 6(b). Regions marked by I and II in Figure 6(b)
do not contribute to the ML models (feature impor-
tance = 0, white area) because the piston covers the
corresponding sections during these CADs and classi-
fiers cannot extract information.

Interestingly, an area of low importance (indicated
by the dashed line in Figure 6(b)) is observable during
;[�2208; � 1508�CA of sections 7–9, which belong to
the upper part of the cylinder. During this period, the
intake valves begin to close, the intake mass flow and
therefore intake velocities decrease, and most of the
cylinder filling has already taken place. After bottom
dead center (BDC), the upward moving piston pushes
cylinder gases back into the intake duct until the valves
fully close. Therefore, the flow field close to the cylin-
der head during that period provides little or at least
less important information useful for predicting HC or
LC. The classifier deems global features, that is, fea-
tures which are obtained from the entire FOV as
important all of the time, except for the period
;[�1408; � 608�CA.

Figure 5. Regression results based on engineered features: (a)
linear regression (elastic net) trained to predict Pmax values using
fvf (deep red color) or fvf, T (petrol color). Baseline of linear
regression (elastic net) with only the temperature feature is
given by the horizontal dashed line. The vertical solid line marks
the ignition. Error bars indicate one std. (b) distribution of
experimental (gray), correctly classified (deep red), and well-
predicted (MAE below baseline, petrol) Pmax values at 280�CA.
The percentage of correctly classified (deep red, upward
triangles) and well-predicted (MAE below baseline, petrol,
downward triangles) samples.

Dreher et al. 3271

In a similar analysis, Hanuschkin et al.19 observed a
clear spatial-temporal pattern of feature importance
evolution during the compression stroke (see Figure
6(e) in Hanuschkin et al.19). In the results of the present
work, however, the spatial-temporal pattern (Figure
6(a) middle and right columns, arrows in deep red
color) is comparable but less structured. This might be
a result of the different experimental setups and engine
types used. Notably, the tumble in the mid-cylinder
plane is weaker in the investigated engine, which might
be the reason for the less distinct spatial-temporal pat-
tern of importance. Nevertheless, it seems that at the
beginning of the compression stroke, sections 1 and 2
are important, which are later replaced by sections 3, 5,
and 7. The phase-averaged flow field during this early
compression period is dominated by the impinged wall
jet, which disappears from the FOV through sections 1
and 2 (Figure 6(a)). When sections 3, 5, and shortly
after, 7 become important, the opposing side of the
tumble reappears with high velocity magnitudes in sec-
tions 3, 5, and 6. Interestingly section 6 is not deemed
important at all, which might be a result of correlation
and therefore redundant information between different
sections. During the second half of the compression
stroke the sections of highest importance roughly coin-
cide with the regions below the tumble center. During
that period and at the end of the compression stroke
;[�358; � 158� CA section 8 becomes progressively
more important. After ignition ;[�108; � 58� CA sec-
tion 9 takes over. Since the piston is nearly at top dead

center (TDC) and the cylinder content is compressed to
a small volume, only sections 7–9 are populated. The
dominating importance of section 8 (and 9) is in line
with previous studies that analyzed flame-derived fea-
tures only. It was found that the flame development
into the negative x-direction, and in general the center-
ing of the flame inside the cylinder volume, is of major
importance.27

Machine learning with learned features

In this section, DNNs are employed for unsupervised
feature extraction. An AE is trained on 70% of all flow
field samples from either the compression stroke only
or intake and compression strokes until the loss para-
meter (i.e. the MSE between input and reconstruction
(compare Appendix)) has converged. Figure 7 shows
three exemplary flow fields and their corresponding
CAE reconstructions from a single cycle during the
early intake stroke (�3058CA), mid-compression stroke
(�1058CA), and late-compression stroke (�58CA) after
ignition. The CAE can correctly reproduce the shape of
the flow field down to small structures, which are visi-
ble close to the flow field borders. Areas of the flow
field that are missing data due to, for example, thrown
out vectors in the top right corner at �3058CA, are
interpolated in the reconstruction. In general, the CAE
smooths both the velocity direction and magnitude
information. The CAE generalizes in the intake stroke
since it was trained on data from the compression

Figure 6. Feature importance analysis: (a) average (single experiment, 350 cycles) flow field at 2210�CA (left, velocity range 0–
20 m/s) with numbered spatial regions, at 2130�CA (middle, vmax= 8 m/s), and at 250�CA (right, vmax= 10 m/s). Thick arrows in the
middle and right plots (deep red color) illustrate the change of regional importance with CAD (small white numbers, deep red
background). (b) Section-averaged velocity feature importance (section 0 = global). Velocity features are calculated in 9 spatial
sections as depicted in panel A. Two regions marked by I and II are highlighted. All panels share the same color bar (color gradient
from dark petrol (v = 0 (a); very important (b)) to white (v = vmax (a); not important (b))).

3272 International J of Engine Research 22(11)

stroke only. At �58CA, many of the seeding particles
are burned in the flame region and the CAE is still able
to reproduce this partial and irregularly shaped flow
field. However, an artifact of this prediction is visible
in the top right region of the example where a tiny flow
field recording is hallucinated. This artificial creation
of data might be explained by a high probability of a
flow field in this region at this time, which is utilized in
one or more features of the encoding.

Classification. Features extracted from the encoder part
of a CAE trained on 70% of all flow field samples are
used to train AdaBoost classifiers for each CAD using
10-fold CV (Figure 8; black color; DLi, c, noFT;
AdaBoost: lr=0.2, n_est=400). The results are quali-
tatively similar to the baseline results of AdaBoost clas-
sifiers trained on engineered features (Figure 8; gray
color and Figure 4(a)). After �2908CA accuracies are
at least one std above chance level throughout the cycle
with few exceptions (�2558CA to �2408CA) and
increase slowly toward the late compression stroke
(.�908CA), where accuracies of the models increase
further. During this period, the fine-tuning of the enco-
der, that is, pre-training of the encoder on a task simi-
lar to the downstream task, increases the models’
accuracies remarkably (Figure 8; deep red color; DLi, c;
AdaBoost: lr=0.3, n_est=140), while for earlier
times, there is no performance gain. Flow field infor-
mation in this period has more predictive power for the
downstream task, as shown by the baseline models,
and hence might be better suited for fine-tuning the
encoder. Interestingly, the late compression stroke is
also the period where the piston moves into the FOV.
It might be that the fine-tuning process guides the
encoding from representing the piston position to flow
field-related features important for the downstream

task. The performance of the CAE trained on flow field
samples from the compression stroke only (Figure 8;
petrol color; DLc; AdaBoost: lr=0.2, n_est=400) is
the highest and reaches accuracies near the baseline in
late compression (.�908CA). The accuracy gain in
the late compression stroke, however, does not sacrifice
the accuracy during the intake stroke.

During late compression at �58CA, all CAE-based
models’ accuracies are better than the baseline. At this
CAD, the in-cylinder content is compressed to a very
small volume, the experimental flow fields are restricted
to the cylinder head region, and the flame evaporates
most of the seeding particles, resulting in partial flow
field data. The CAEs learned features for this state that
are superior to the engineered flow field features, which
are not designed to handle either of the two aforemen-
tioned factors. In contrast, by accurately encoding flow
fields at �58CA, the coding capacity for earlier flow
fields might be lowered. This can lead to a lower aver-
age accuracy of the model during times where the pis-
ton is not in the FOV. However, this effect is not
quantified, yet nonetheless reasonably acceptable, since
the accuracies of the CAE methods are all nearly the
same as that of the baseline throughout the rest of the
cycle.

At the time of the initial flame kernel (�158CA) the
results of AdaBoost models with engineered flow field
features (0.676 0.02), engineered flame features
(0.626 0.03), a combination of the former two
(0.636 0.04), and learned features (0.626 0.01), can be
compared (Figures 4(a), (b), and 8). Models based on
hand-engineered flow field features are superior to
other approaches at this CAD. The weak performance

Figure 7. CAE reconstruction examples: recorded flow fields
(top row) and CAE’s reconstructed flow fields (bottom row;
DLc) for three different times (columns) of a single combustion
cycle. Contours of the cylinder head, spark plug, piston, and
valves are given for orientation. The color bar is shared with
Figure 6: velocity range from 0 to 60 m/s (left), 15 m/s (middle),
and 20 m/s (right).

DLc

DLi,c,noFT

DLi,c

fvf

Figure 8. Results of DL: AdaBoost classifier with features
extracted from the encoder part of the CAE. For each CAD the
mean and std of a 10-fold CV is given for the encoder either
with (deep red downward triangles, DLi, c) or without fine-tuning
(black upward triangles, DLi, c, noFT). The encoder with fine-tuning
trained in the compression stroke only is shown (petrol
diamonds, DLc). AdaBoost with engineered features (fvf) is given
as a baseline (gray upward triangles, compare Figure 4(a)).

Dreher et al. 3273

of models based on engineered flame features is dis-
couraging, due to the effort needed for the algorithmic
extraction of hand-engineered flame features from raw
PIV images, which is error-prone and requires tedious
verifications.27 The superior performance of the flow-
based features may be related to a fundamental charac-
teristic of flow field data: if the temporal resolution is
better than the characteristic time scales of coherent
flow structures, the flow field carries information about
the future trajectory of itself. In comparison to the
mere flame position encoded in the flame features
derived from particle-void regions, flow-based features
therefore seem to correlate better with the cycle
performance.

Still, it is surprising that the greatest prediction accu-
racy at �158CA is achieved with the engineered flow
field feature model, which has spatially unresolved fea-
tures (compared with the spatially superior resolved
features of the learned feature model and the position
information incorporated in the engineered flame fea-
ture model). Further, it appears that features in section
8 alone have enough predictive power (based on the
temporal feature importance analysis) to be superior to
the other models. The distinct increase in model accu-
racy observed already during the late intake indicates a
deterministic flow development from the intake to the
late compression flow near the spark plug, even in this
limited 2D section in the symmetry plane. This high-
lights the importance of a predictable and repeatable
intake flow design in avoiding CCVs11 and allows the
optimization of future engine designs by identifying
important early flow structures that can be influenced
by intake flow phenomena.

Even though the engineered features for the baseline
models have a low spatial resolution and use coarse fea-
tures like average velocity and extreme velocity values
during the compression stroke, the accuracies of models
with learned features are consistently (except �58CA)
lower than the baseline models’ accuracies. A set of fea-
tures learned during the pre-text task encode informa-
tion irrelevant to the downstream task, for example, the
piston’s position. While the fine-tuning elevates the
encoder’s performance, the baseline accuracy is not
reached. Spatial-temporal fine structures, measured by
the MSE between input and reconstruction, might be
relevant for a high CAE performance. However, they
might hinder the learning of abstract or unspecific fea-
tures, which may be important for the downstream task
of investigating CCVs. Learning to encode regular pat-
terns in flow fields with high precision does not increase
the performance of classifiers if these patterns do not
have predictive power.

The highest accuracies are obtained for the CAEs
which are trained and fine-tuned on data from the com-
pression stroke only (DLc; CAD-average accuracy and
pooled std: 0.5646 0.015 (AdaBoost) and 0.5586 0.021
(MLP)). By this, the complexity of the feature space is
reduced while the model is still able to generalize to the
intake stroke. Furthermore, this approach reduces the

effect of learning irrelevant features or features with
low predictive power, because CCV analysis is difficult
during the intake stroke. When using the whole data set
of flow fields from intake and compression stroke,
while qualitatively and on average quantitatively simi-
lar (DLi, c; 0.5636 0.015), a clear accuracy difference is
visible in the late compression stroke. Using a suffi-
ciently large data set from the same CAD might be
beneficial in reducing the feature space by encoding
only the CAD-specific flow shape and might result in
higher downstream task accuracy. Without fine-tuning
(DLi, c, noFT), and for the baseline model (fvf) the aver-
age accuracies are 0.5566 0.015 and 0.5716 0.013,
respectively.

One explanation for the generally low performance
of the presented ML classification models (accuracy of
0.67, shortly before ignition) is the definition of the
class boundary (see Appendix; compare19,27), the shape
of the Pmax-distribution (see Figure 1(b)) combined
with the inherently increasing uncertainty a classifica-
tion algorithm exhibits near the defined decision
boundary (see discussion of Figure 5(b)). In addition to
the possibility that the patterns used to derive the
learned features do not have predictability for the given
downstream task, another explanation for the low pre-
dictive power of the ML models, is the difficulty of the
ML task itself. Despite the significant experimental
effort, the extensive data set used in this study is still
limited considering it only includes two vector compo-
nents in a 2D cross-section of the 3D flow field. Other
influencing factors that cause CCVs such as the exhaust
gas distribution, spark energy and spark movement,
turbulent flame development, and flame-wall interac-
tions are neglected by design of this study. Still, some
of these influencing factors might be embedded in the
flow data. Although the unsupervised nature of the
learned feature approach allows for a more abstract,
downstream task-specific and higher-level feature gen-
eration, which might also incorporate these hidden
influences, basic local flow field statistics like the ones
used in the engineered feature set seem to be as predic-
tive for the given task or encode less irrelevant informa-
tion (e.g., piston position) and at the same time need
less samples for training. Furthermore, the interpreta-
tion of ‘‘black-box’’ models like the CAE is more diffi-
cult and discussed in the following section.

Interpretation and understanding of the deep neural network
model. The interpretation and understanding of DNN
models is a vivid ongoing research topic.41 While it is
challenging to understand decisions and learned fea-
tures of DNNs due to their non-linear and complex
natures, several methods like class activation mapping
(CAM)38 can be employed for interpretation.

Class activation mapping. Class activation mapping does
not expose the specifics of learned features, but the
resulting regions of interest allow a visual explanation

3274 International J of Engine Research 22(11)

of the classifier’s decisions. Figure 9 shows the tem-
poral focus of attention results of CAM applied to 250
HC (top row) and 250 LC cycles (bottom row). For
each CAD, a threshold of 0.5 is applied to the CAMs
and the averaged centers of mass are calculated, which
are interpreted as the attention focus for the decision-
making of the DNNs. The following qualitative state-
ments are not found to be sensitive to the threshold. At
the beginning of the intake stroke, the attention focus
of HC, located slightly off-center in the upper region
toward the intake valves, is not stable but jumps
around. After about �2308CA, a counterclockwise
attention trajectory in the mid-bottom-right region of
the FOV emerges. During the compression stroke, a
more stable pattern emerges. As the FOV shrinks dur-
ing compression, the attention shifts rapidly toward
positions in the top part of the FOV close to the spark
plug. While similar regions are of importance, attention
shifts of LC (Figure 9, bottom row) during the intake
are more structured and the spatio-temporal trajectory
is less fluctuates less than in HC. Clear temporal and
spatial attention shifts are observed in both the intake
and compression strokes. During the intake stroke, the
focus of attention shifts from the intake valve down-
wards, toward the top-center at about �2308CA, and
finally settles in the mid-bottom part of the FOV.
Next, during the compression stroke, the attention

shifts counterclockwise upwards, first toward the
exhaust valves, then toward positions close to the spark
plug, and finally to the intake valves.

The tumble trajectories in Figure 9 (signified by
colored triangles, gray represents LC in the HC panel
and vice versa) both show a tendency of movement
from the mid-bottom of the cylinder upwards toward
the exhaust valves, then finally toward the spark plug
as the piston reaches TDC. At a first glance, the atten-
tion movement for HC and LC generally resembles the
tumble center trajectories, if the initial downwards
movement from around �1808CA to �1308CA is disre-
garded, since this is induced by the limited FOV and
the tumble center visibility. In addition to appearing
more leftward (negative x-direction), the positions of
the tumble centers for HC also appear closer to the top
of the cylinder earlier than cycles of LC. However, after
closer inspection, it is clear that the CAM attention
centers actually move to higher positions near the spark
plug and intake valves much earlier than the tumble
centers. This very quick movement to the late flame
propagation region (section 8 and 9, Figure 6(a)) dur-
ing early compression indicates that the flow directions
and magnitudes in this region alone may be sufficient
for the prediction of HC using the CAE. Since the flow
structures in this flame propagation region are tied to
the location and strength of the tumble flow, these
regions correlate with and are able to predict informa-
tion about the entire flow field. While the conventional
ML model using engineered flow data can only capture
local information on a section-by-section basis, the
CAE takes the entire flow field into consideration. This
is why the feature importance trajectories in Figure 6
vary significantly to the CAM trajectories in Figure 9.

Conditional flow fields. To further conceptualize the
CAMs, average 2D CAMs of the HC class are shown
in the left column of Figure 10 as well as the condi-
tional averaged flow fields (represented by arrow direc-
tions and lengths) of 80 HC cycles. Therefore, all HC
cycles of a single experiment with Pmax values at least
1 bar above the class boundary are selected. The CAMs
reveal a broad attention area of the DNN and clear
patterns underlying the decision of the DNN are not
easily visible when comparing the conditional CAMs
and visible average flow features. However, the deci-
sion process of the applied ML techniques can be fur-
ther elucidated by analyzing separate aspect of the
conditional (HC: 80 cycles; LC: 79 cycles) averaged
flow fields. The middle and right columns of Figure 10
show the differences in magnitude (middle column) and
the x-component velocity vx (right column) for select
CADs. Average flows between the two classes of cycles
differ as revealed by the overlaid vector arrows (white:
HC, black: LC) and the difference in flow magnitude.
This analysis reveals patterns that can be used for the
differentiation between cycles of high and low Pmax,
while an analysis based solely on instantaneous velocity

Figure 9. Feature analysis: class-depended mapping of the
highest attention (CAM) for HC (upper row) and LC (lower row)
cycles. CAMs of 250 cycles are averaged and a threshold of 0.5 is
applied. Shown are the center of mass for each time (circles, CAD
color-coded). The tumble trajectory is given for the compression
stroke (HC: upward pointing triangles; LC: downward pointing
triangles; CAD color-coded; gray triangles: LC tumble trajectory in
the HC row and vice versa). The black grid marks the regions of
engineered features.

Dreher et al. 3275

magnitude flow fields (e.g. Figure 7, top row) is
challenging.

Deep feature learning can directly exploit the average
differences between HC and LC flow fields in magnitude
and flow direction, for example, by learning features
representing large patches of higher or lower velocities
and regions of different flow directions. Furthermore,
by observing the conditional differences, it becomes
obvious why ML models based on simple and spatially
coarse engineered features are able to achieve high pre-
diction accuracies. Regions of consistent differences of
the conditional average flow fields are large and span
one or multiple sections of the engineered features
shown in Figure 10 (black grid; right column). Hence,
averages as well as maximum and minimum flow field
quantities have potentially high predictive power even in
the case of noisy instantaneous flow fields.

A detailed analysis reveals the link between the
important engineered features and observed differences

in the conditional averages. To this end, the contours of
the 0.5 threshold of the CAMs (deep red: HC, black:
LC) as well as their centers of mass, the calculated tum-
ble centers and sections of engineered features are
shown in Figure 10. Beginning from �1308CA, it is
clear that the tumble center is outside of the FOV and
not identified correctly by the algorithmic detection.
Locations of the center of mass of the CAMs and the
tumble centers for HC and LC are therefore only simi-
lar by chance. But the magnitude flow field reveals a
sporadic spread of velocity differences throughout as
well as pronounced vector angle differences near the
calculated tumble center, the intake side bottom of the
FOV, and near the spark plug. Evaluating the average
feature importance of the AdaBoost classifier (not
shown), vx-related features are superior to vy- and
magnitude-related features in the late compression
stroke. For this reason, it is helpful to analyze the dif-
ference of the x-component velocity Dvx (Figure 10;

Figure 10. Difference between conditional average flow fields: Left column: CAM for the HC class and their respective 0.5
threshold (deep red contours), center of mass (circles), and tumble center (upward triangles) at 2130, 295, and 250�CA (rows).
The black arrows represent the flow direction and magnitude. Middle column: color-coded average magnitude difference between
HC (white arrows) and LC (black) flow fields at the same CADs as in the left column. Positions of HC (deep red; upward triangle)
and LC (black; downward triangle) tumble centers are marked. The CAMs’ center of mass are again marked by circles and the CAMs’
contour lines at 0.5 are given by solid lines (HC: deep red, LC: black). Right column: Color-coded average vx difference between HC
and LC. Symbols and their colors are the same as in the left columns. The black grid marks the regions of engineered features.

3276 International J of Engine Research 22(11)

right column), where one can observe bigger cohesive
regions of absolute differences of up to 220%. At
�1308CA, Dvx matches well with the sectional feature
importance (Figure 6 and overlaid sections in Figure 10
right column), where section 3 (bottom-left) is the most
important in predicting HC. Further in the compression
stroke at �958CA, section 3 (bottom-left), 7 (top-right),
and 1 (bottom-right) are deemed important by the
AdaBoost classifier and show notable difference in vx
for HC and LC. Yet, the CAMs at �958CA differ in
their morphology. From �1058CA to �958CA the cen-
ter of mass of HC’s CAM transitions diagonally across
the FOV with section 1 (bottom right) losing and 9 (top
right) gaining attention. This indicates that during this
period, two regions with high attention are present.
This manifests in an intermediate center of mass and
explains the difference in the center of mass trajectory
between LC and HC (see Figure 9), since such a transi-
tion is not observed in the case of LC, where only one
region of importance is present. Finally, at �508CA, the
highest feature importance of sections 4 (middle-right),
5 (middle-center), and 8 (top-center) also correspond
well to the regions of large absolute Dvx. These regions
are also encompassed by the attention of the CAMs,
though these are more focused toward the top-left of
the FOV. The high importance of vx-components is in
line with previous findings, which related a high Pmax to
the horizontal position of the early flame kernel.27

The differences of the velocity magnitude (Figure 10;
middle column) are more difficult to interpret since they
take into account the y-component of the velocity, which
shows a more granular distribution and may be less indi-
cative in the cyclic prediction since the flame mainly pro-
pagates in the x-direction in a 2D plane. Since vx-based
features have high predictive power, the feature impor-
tance of magnitude- and vy-based features is low in the
AdaBoost classifier. On the other hand, as previously
mentioned, the decision of the deep feature learning-
based model takes into account the flow magnitude and
direction as the whole field, instead of component-wise
parts as defined in the engineered feature set.

Overall, a qualitative correlation between differences
in the conditional flow fields and the sectional impor-
tance seems to be present for most of the compression
stroke, but is harder to deduce for the CAMs of the
DNN. Still, the conditional average flow field analysis
might further help to explain the differences in predic-
tion accuracy and the difference between the center of
mass trajectory of the CAM to the spatio-temporal fea-
ture importance trajectory of the AdaBoost classifier.
The input to the DNN has high dimensionality (133
3100 3 3; the entire flow field at full resolution,
including local information about both x- and y-com-
ponents) and separated into normalized direction and
magnitude information, while the engineered features
already include unnormalized vx information averaged
over large areas which turned out to be useful for clas-
sifying HC based on the conditional averaged flow field
analysis. The deep learning approaches lack these direct

features and might be hindered by the unimportant fea-
tures, such as the y-component of the velocity, to find
an optimal solution given the limited training set.
While a sectional analysis of ML is much more spa-
tially coarse, the resulting breakdown on a section and
component basis yields slightly higher prediction accu-
racy than the complex CAE model. Finally, CAE mod-
els allow resolving fine structures of the flow which
seem to be less informative for the given task, maybe
due to a lack of robustness.

Conclusion and outlook

To our knowledge, this study is the first to have suc-
cessfully applied self-supervised deep feature learning
of in-cylinder flow fields during the intake and com-
pression stroke of IC engine operation. These learned
features are used in an ML approach for binary classifi-
cation of cycles with high and low maximum pressure
to investigate CCVs. Features learned with CAEs from
compression stroke data generalize to the intake stroke
and allow the prediction of HC already during the early
intake stroke at �2908CA with a mean accuracy above
chance level. From then on, the mean accuracy is
always at least one std above chance level with a few
exceptions. This indicates a distinct deterministic flow
development from the intake to the late compression
flow near the spark plug, which influences the combus-
tion and enables future engine optimizations. By
analyzing the encoder of the CAE, the focus of spatio-
temporal attention is investigated with high resolution.
Revealed attention-shifts differ for HC and LC during
the compression stroke, where LC attention and tumble
trajectories are observed to be closer to the cylinder
wall. We show that models based on learned features
achieve the same qualitative and comparable quantita-
tive results as models based on hand-engineered features
with coarse spatial resolution.19 Deep neural networks
require larger data sets for training, more resources, for
example computing time and power, and their learned
features are harder to explain compared to interpretable
models using engineered features. Given that the deep
feature learning produces similar but not superior pre-
diction accuracies for the investigated application, latter
approach may be preferred in practice.42,43

Conditional average flow field analysis reveals
CAD-specific large spatial regions of differences
between HC and LC flow fields, which can be exploited
for CCV classification of individual cycles. These dif-
ferences are well-captured by the engineered features,
allowing the ML models high prediction accuracies.
The spatio-temporal feature importance calculated by
these models corresponds with the difference of the x-
velocity component Dvx. In the future, it might be ben-
eficial to explore differently structured spatial feature
regions and additional engineered features such as his-
tograms of oriented gradients to further improve the
accuracies. Our analysis suggests that a classification

Dreher et al. 3277

approach is favorable to a regression approach to
investigate CCVs, since classifiers are strongest in
detecting outliers far from the class boundary. In addi-
tion, combining engineered flame and flow features
allows models with slightly higher mean accuracies in
the later compression stroke, but such models might
require tedious manual verification of the automati-
cally extracted flame contours.

The trained CAEs are able to encode and decode
input flow fields with small reconstruction errors.
Spatial-temporal fine structures might be relevant for
high CAE performance. However, they might also hin-
der the learning of abstract or unspecific features,
which may be important for the downstream task of
investigating CCVs. Learning to encode regular pat-
terns in flow fields with high precision does not increase
the performance of classifiers if these patterns them-
selves do not have predictive power. Alternative DNN
architectures preserving spatial information (e.g.,
Ronneberger et al.44) or other pretext tasks for deep
self-supervised learning of flow field features might be
explored in the future.45 Examples of the latter are
generation-based methods (e.g., variational AE),46 gen-
erative adversarial networks,47 image inpainting,48 and
image super resolution,49 context-based methods (e.g.
solving of a jigsaw puzzle),50 free semantic label-based
methods (e.g., semantic segmentation)51 or contour
detection,52 and cross modal-based methods (e.g., opti-
cal flow estimation).53 In general, larger consistent data
sets result in better ML models and reduce over-fit-
ting.54 Due to the fixed recording angle and flow orien-
tation of the current data set, conventional data
augmentation techniques cannot be applied to increase
training variability. Specific flow field-related augmen-
tations are difficult to define and might introduce arti-
facts in the artificially augmented samples.

Techniques to visualize the attention of deep neural
networks allow the investigation of the spatio-temporal
importance focus during intake and compression stroke
with high spatial resolution.38,41 While the CAM cen-
ters of mass and tumble centers during the late intake
stroke seem to have similar trajectories in that they
begin in the bottom-right section of the FOV and move
upward along the y-axis into the near-spark plug
region, they have different meanings. As soon as the
tumble center begins to take prominent form, the
CAM center of mass shifts away and remains in the
flame propagation region because other features like vx
are more informative than the tumble center to classify
HC and LC. This finding is consistent with previous
results, where simple flow field features are superior to
derived, high-level tumble features.19

ML methods are powerful in exploring high dimen-
sional data. An extension of our approach to 3D flow
fields with time-dependent features is possible in the
future (e.g., scanning PIV, tomographic PIV, and LES/
DNS), despite the immense challenges and required
resources associated with obtaining an experimental or
simulation data set large enough for such an analysis.

To this end, a CAE with 3D convolutions and recur-
rent neural network could be used and alternative pre-
text tasks for deep self-supervised learning could be
applied. Such a feature learning approach has the
potential to identify deterministic high-level flow com-
ponents that appear at any point in a cycle which may
look stochastic and are hard or impossible to find using
conventional analysis in order to predict the cycle’s per-
formance. Furthermore, the presented method of flow
field analysis is not limited to only in-cylinder IC
engine data. For example, deep feature learning might
reveal high-level flow features of coolants to reduce the
complexity of heat transfer problems.

The presented results of ML models with learned
and hand-engineered features are qualitatively similar
to previous studies using smaller sample sizes19,27 and
show very high precision (low std of the accuracy).
Applying our approach of combining deep learning
and conventional flow field analysis not only to the 2D
cross-section of the mid-cylinder plane, but also to the
whole flow field of the 3D cylinder volume could ulti-
mately reveal unknown high-level flow features relevant
to the prediction of engine CCV and engine optimiza-
tion in the future.

Acknowledgement

Daniel Dreher and Alexander Hanuschkin would like
to thank Carola Krug for discussing the learning of
flow field features with generative adversarial networks.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest
with respect to the research, authorship, and/or publi-
cation of this article.

Funding

The author(s) disclosed receipt of the following finan-
cial support for the research, authorship, and/or publi-
cation of this article: Deutsche Forschungsgemeinschaft
through FOR 2687 ‘‘Cyclic variations in highly opti-
mized spark-ignition engines: experiment and simula-
tion of a multiscale causal chain’’ – project number
423224402 – is kindly acknowledged by the authors
from TU Darmstadt.

ORCID iDs

Marius Schmidt https://orcid.org/0000-0002-5424-1251
Cooper Welch https://orcid.org/0000-0001-9067-9405
Steven Peters https://orcid.org/0000-0003-3131-1664
Alexander Hanuschkin https://orcid.org/0000-0001-9643-
8987

References

1. Reitz RD, Ogawa H, Payri R, et al. IJER editorial: The

future of the internal combustion engine. Int J Eng Res

2020; 21(1): 3–10.

3278 International J of Engine Research 22(11)

https://orcid.org/0000-0002-5424-1251
https://orcid.org/0000-0001-9067-9405
https://orcid.org/0000-0003-3131-1664
https://orcid.org/0000-0001-9643-8987
https://orcid.org/0000-0001-9643-8987

2. Baum E, Peterson B, Böhm B and Dreizler A. On the

validation of LES applied to internal combustion engine

flows: part 1: comprehensive experimental database. Flow

Turbul Combust 2014; 92: 269–297.
3. Geschwindner C, Kranz P, Welch C, et al. Analysis of

the interaction of Spray G and in-cylinder flow in two

optical engines for late gasoline direct injection. Int J

Engine Res 2020; 21(1): 169–184.
4. Matsuda M, Yokomori T, Shimura M, Minamoto Y,

Tanahashi M and Iida N. Development of cycle-to-cycle

variation of the tumble flow motion in a cylinder of a

spark ignition internal combustion engine with Miller

cycle. Int J Eng Res. 16 April 2020. DOI: 10.1177/

1468087420912136.
5. Jainski C, Lu L, Dreizler A and Sick V. High-speed

micro particle image velocimetry studies of boundary-

layer flows in a direct-injection engine. Int J Eng Res

2013; 14: 247–259.
6. Renaud A, Ding C-P, Jakirlic S, Dreizler A and Böhma

B. Experimental characterization of the velocity bound-

ary layer in a motored IC engine. Int J Heat Fluid Flow

2018; 71: 366–377.
7. Schmidt M, Ding C-P, Peterson B, Dreizler A and Böhm

B. Near-wall flame and flow measurements in an opti-

cally accessible SI engine. Flow Turbulence Combust.

Epub ahead of print 21 August 2020. DOI: 10.1007/

s10494-020-00147-9.
8. Ding C-P, Vuilleumier D, Kim N, Reuss DL, Sjöberg M

and Böhm B. Effect of engine conditions and injection

timing on piston-top fuel films for stratified direct-

injection spark-ignition operation using E30. Int J Eng

Res 2020; 21(2): 302–318.
9. Peterson B, Baum E, Böhm B and Dreizler A. Early

flame propagation in a spark-ignition engine measured

with quasi 4D-diagnostics. Proc Combust Inst 2015;

35(3): 3829–3837.
10. Krüger C, Schorr J, Nicollet F, Bode J, Dreizler A and

Böhm B. Cause-and-effect chain from flow and spray to

heat release during lean gasoline combustion operation

using conditional statistics. Int J Eng Res 2017; 18(1–

2):143–154.
11. Stiehl R, Bode J, Schorr J, Krüger C, Dreizler A and

Böhm B. Influence of intake geometry variations on in-

cylinder flow and flow–spray interactions in a stratified

direct-injection sparkignition engine captured by time-

resolved particle image velocimetry. Int J Eng Res 2016;

17(9): 983–997.
12. Bizon K, Continillo G, Leistner KC, Mancaruso E and

Vaglieco BM. POD-based analysis of cycle-to-cycle var-

iations in an optically accessible diesel engine. Proc Com-

bust Inst 2009; 32(2): 2809–2816.
13. Fogleman M, Lumley J, Rempfer D and Haworth D.

Application of the proper orthogonal decomposition to

datasets of internal combustion engine flows. J Turbul

2004; 5(23): 1–3.
14. Roudnitzky S, Druault P and Guibert P. Proper orthogo-

nal decomposition of in-cylinder engine flow into mean

component, coherent structures and random Gaussian

fluctuations. J Turbul 2006; 7: N70.
15. Graftieaux L, Michard M and Grosjean N. Combining

PIV, POD and vortex identification algorithms for the

study of unsteady turbulent swirling flows. Meas Sci

Technol 2001; 12(9): 1422.

16. Stiehl R, Schorr J, Krüger C, Dreizler A and Böhm B.

In-cylinder flow and fuel spray interactions in a stratified

spray-guided gasoline engine investigated by high-speed

laser imaging techniques. Flow Turbul Combust 2013;

91(3): 431–450.
17. Truffin K, Angelberger C, Richard S and Pera C. Using

large-eddy simulation and multivariate analysis to under-

stand the sources of combustion cyclic variability in a

spark-ignition engine. Combust Flame 2015; 162(12):

4371–4390.
18. Kodavasal J, Moiz AA, Ameen M and Som S. Using

machine learning to analyze factors determining cycle-to-

cycle variation in a spark-ignited gasoline engine. J

Energy Resour Technol 2018; 140(10): 102204.
19. Hanuschkin A, Schober S, Bode J, et al. Machine learn-

ing based analysis of in-cylinder flow fields to predict

Combustion Engine Perfomance. Int J Eng Res. Epub

ahead of print 14 March 2019. DOI: 10.1177/

1468087419833269.
20. DiMauro A, Chen H and Sick V. Neural network predic-

tion of cycle-to-cycle power variability in a spark-ignited

internal combustion engine. Proc Combust Inst 2019;

37(4): 4937–4944.
21. McKinney S, Sieniek M, Godbole V, et al. International

evaluation of an AI system for breast cancer screening.

Nature 2020; 577: 89–94.
22. Bengio Y, Courville A and Vincent P. Representation

learning: a review and new perspectives. IEEE Trans Pat-

tern Anal Mach Intell 2012; 35: 1798–1828.
23. Zhong G, Ling X and L.-N. W., 2018. From Shallow

Feature Learning to Deep Learning: Benefits from the

Width and Depth of Deep Architectures. Wiley Interdis-

cip Rev Data Min Knowl Discov 2018; 9: e1255.
24. Kramer MA. Nonlinear principal component analysis

using autoassociative neural networks. AIChE J 1991;

37(2): 233–243.
25. Tschannen M, Bachem O and Lucic M. Recent advances

in autoencoder-based representation learning. arXiv:

1812.05069 [cs.LG], 2018.
26. Akintayo A, Lore K, Soumalya S and Sarkar S. Prognos-

tics of combustion instabilities from hi-speed flame video

using a deep convolutional selective autoencoder. Int J

Progn Health Manag 2016; 7(23): 1–14.
27. Hanuschkin A, Zündorf S, Schmidt M, et al. Investiga-

tion of cycle-to-cycle variations in a spark-ignition engine

based on a machine learning analysis of the early flame

kernel. Proc Combust Inst. 21 August 2020. DOI:

10.1016/j.proci.2020.05.030.
28. Keogh E and Mueen A. Curse of dimensionality. In:

Sammut C and Webb G (eds) Encyclopedia of machine

learning and data mining. New York: Springer, 2017,

pp.314–315.
29. Freudenhammer D, Peterson B, Ding C-P and Böhm B.

The influence of cylinder head geometry variations on the

volumetric intake flow captured by magnetic resonance

velocimetry. SAE Int J Eng 2015; 8(4): 1826–1836.
30. Hornik K, Stinchcombe M and White H. Multilayer feed-

forward networks are universal approximators. Neural

Netw 1989; 2: 359–366.
31. Cybenko G. Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 1989; 2(4):

303–314.

Dreher et al. 3279

32. Breiman L, Friedman JH, Olshen RA and Stone CJ. Clas-

sification and regression trees. Monterey, CA: Wadsworth

& Brooks/Cole Advanced Books & Software, 1984.
33. Hochreiter S. Untersuchungen zu dynamischen neuronalen

Netzen. Munich: Technische Univ, Institut f. Informatik,

1991.
34. Hochreiter S, Bengio Y, Frasconi P and Schmidhuber J.

Gradient flow in recurrent nets: the difficulty of learning

long-term dependencies. In: Kremer SC and Kolen JF

(eds) A field guide to dynamical recurrent neural networks.

IEEE Press, 2001.
35. Bengio Y and LeCun Y. Scaling learning algorithms

towards AI. In: Bottou L, Chapelle O, DeCoste D and

Weston J (eds) Large-scale kernel machines. Cambridge,

MA: The MIT Press, 2007, pp.321–360.
36. Simonyan K and Zisserman A. Very deep convolutional

networks for large-scale image recognition. arXiv:

1409.1556, 2014.
37. Hahnloser RHR, Sarpeshkar R, Mahowald MA, Dou-

glas RJ and Sebastian Seung H. Digital selection and ana-

logue amplification coexist in a cortex-inspired silicon

circuit. Nature 2000; 405: 947.
38. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh

D and Batra D. GradCAM: visual explanations from

deep networks via gradient-based localization. Int J Com-

put Vis 2019; 128(2): 1573–1405.
39. Pedregosa F, Varoquaux G, Gramfort A, et al., 2011. Sci-

kit-learn: machine learning in python. J Mach Learn Res

2011; 12: 2825–2830.
40. Kotikalapudi R. Keras-vis. GitHub, 2017, https://github.

com/raghakot/keras-vis
41. Montavon G, Samek W and Müller K-R. Methods for

interpreting and understanding deep neural networks.

Digit Signal Process 2018; 73: 1–15.
42. Rudin C. Stop explaining black box machine learning

models for high stakes decisions and use interpretable

models instead. Nat Mach Intell 2019; 1: 206–215.
43. Rudin C and Carlson D. The secrets of machine learning:

ten things you wish you had known earlier to be more

effective at data analysis. arXiv:1906.01998 [cs.LG], 2019.
44. Ronneberger O, Fischer P and Brox T. U-Net: convolu-

tional networks for biomedical image segmentation. Med

Image Comput Comput Assist Interv 2015; 9351: 234—

241.
45. Jing L and Tian Y. Self-supervised visual feature learning

with deep neural networks: a survey. arXiv:1902.06162,

2019.
46. Kingma DP and Welling M. Auto-encoding variational

bayes. arXiv:1312.6114 [stat.ML], 2013.
47. Donahue J, Krähenbühl P and Darrell T. Adversarial fea-

ture learning. arXiv:1605.09782 [cs.LG], 2016.
48. Pathak D, et al. Context encoders: feature learning by

inpainting. arXiv:1604.07379 [cs.CV], 2016.
49. Ledig C. Photo-realistic single image super-resolution

using a generative adversarial network. arXiv:1609.04802

[cs.CV], 2016.
50. Wei C, Xie L, Ren X, et al. Iterative reorganization with

weak spatial constraints: solving arbitrary jigsaw puzzles

for unsupervised representation learning. arXiv:

1812.00329 [cs.CV], 2018.
51. Pathak D, et al. Learning features by watching objects

move. arXiv: 1612.06370 [cs.CV], 2016.
52. Li Y, Paluri M, Rehg JM and Dollár P. Unsupervised

learning of edges. arXiv: 1511.04166 [cs.CV], 2015.

53. Ilg E, et al. FlowNet 2.0: evolution of optical flow estima-

tion with deep networks. arXiv:1612.01925 [cs.CV], 2016.
54. Studer S, Bui B, Drescher C, Hanuschkin A., Winkler L,

Peters S and Mueller KR. Towards CRISP-ML(Q): a

machine learning process model with quality assurance

methodology. arXiv:2003.05155, 2020.
55. Das A and Rad P. Opportunities and challenges in

explainable artificial intelligence (XAI): a survey.

arXiv:2006.11371, 2020.
56. Freund Y and Schapire RE. A decision-theoretic general-

ization of on-line learning and an application to boosting.

J Comput Syst Sci 1997; 55(1): 119–139.
57. Rosenblatt F. The perceptron: a probabilistic model for

information storage and organization in the brain. Psy-

chol Rev 1958; 65: 386–408.
58. Rumelhart D, Hinton G and Williams R. Learning repre-

sentations by back-propagating errors. Nature 1986; 323:

533–536.
59. Bengio Y. Learning deep architectures for AI. Found

Trends Mach Learn 2009; 2(1): 1–127.
60. Fukushima K and Miyake S. Neocognitron: a new algo-

rithm for pattern recognition tolerant of deformations

and shifts in position. Pattern Recognit 1982; 15(6): 455–

469.
61. Krizhevsky A, Sutskever I and Hinton GE. ImageNet

classification with deep convolutional neural networks.

Commun ACM 2017; 60(6): 84–90.
62. Ciresan D, Meier U and Schmidhuber J. Multi-column

deep neural networks for image classification. In: Pro-

ceedings of the 2012 IEEE conference on computer vision

and pattern recognition, Providence, RI, 16–21 June 2012.

New York: IEEE.
63. Hotelling H. Analysis of a complex of statistical variables

into principal components. J Educ Psychol 1933; 24(6):

417–441.

Appendix

Introduction to machine learning and terminology

Machine learning describes the method of applying
algorithms to learn a mapping from input to output. A
machine learning model is trained for this mapping.
Mapping an input by the machine learning model is
called model inference or prediction. If the output is
continuous, a regression model is trained while for dis-
crete output a classification model is trained. The task
is called supervised learning, if for each input the corre-
sponding output value, called label, is given during
training. The task is called self-supervised learning if for
each input the corresponding output label is not given
explicitly, but if such a label can be generated by the
machine learning algorithm itself. For example, autoen-
coders (AEs) are trained by mapping the input to itself,
that is, each input serves as its own label. Each training
example, simply called input sample, consists of a set of
variables called features or covariates. Inputs can either
be engineered features, that is, manually designed and
selected depending on the task and based on domain
knowledge, or raw features, for example, an array of
image pixel values.

3280 International J of Engine Research 22(11)

The more features needed to represent an input sam-
ple, the higher the feature space dimension, that is, the
space spanned by the feature axes. The number of sam-
ples needed to sufficiently cover the feature space
increases exponentially with the number of dimensions.
Hence, reducing the feature space, known as a feature
selection, can lead to higher model accuracies. For
example, highly inter-feature-correlated features can be
removed. Alternatively, principle component analysis
(PCA)63 can be applied, projecting the feature space to
a lower dimensional orthogonal space, where the new
basis set is derived from the features’ covariance
matrix. By this, correlated features are projected onto a
new common axis and individual dimensions of the
transformed data are linearly uncorrelated. Depending
on the data set and machine learning algorithm, further
data pre-processing methods are recommend to
improve the model performance. For neural networks,
the input features are commonly mean subtracted and
scaled to unit variance. This procedure is also called
standard scaling. Another way of limiting the features’
values between negative one and positive one is feature
normalization, where individual values are divided by
the maximal absolute value of this feature encountered
in the data set.

Machine learning models have to be trained on a
training set and their performances have to be evalu-
ated on a separate test set. Thereby, training and test
sets are disjoint subsets of the available data set. This is
important because a good model should generalize.
Over-fitting occurs if a trained model is too attuned to
the training set and therefore unable to generalize on
the test set. For classification, the model’s accuracy is
given by the number of correctly classified test samples
divided by the total number of test samples; but a vari-
ety of different specific performance measures exists.
The training set can be further split into a training and
validation set, where the latter is used to evaluate the
model performance during training. A common method
to automatically generate multiple training and valida-
tion sets is cross-validation (CV). The training set is
split into k-folds and for each instance k� 1 splits are
used for training and the remaining split for validation.
In total, k different training and validation sets result
from such a CV. Cross-validation can be used for
hyper-parameter optimization, where the machine
learning algorithm with different hyper-parameter set-
tings train on the training set and its performance is
evaluated on the validation set. Hyper-parameters are
parameters of the algorithm, describing the machine
learning model and how it is trained; for example the
maximum number of training iterations. The CV allows
a statistical evaluation of the trained machine learning
model performance.

Machine learning algorithms optimize parameters of
a machine learning model to minimize a cost function,
for example, during training the algorithm minimizes
the summed losses or errors that the model produces
by mapping the input to the output. Therefore, a loss

function of a sample’s prediction and label is applied
measuring a penalty. A common cost function is
the mean squared error (MSE), where the cost is given
by the average squared difference 1

n

Pn
i yi � ŷið Þ2

between predicted output ŷi and label yi. For binary
classification tasks, that is, where only two different
output class labels are present, binary cross entropy
can be used, where the loss is given by
� ylog pð Þ+ 1� yð Þlog 1� pð Þð Þ for p being the prob-
ability of predicting one of the classes and y the corre-
sponding label in {0,1}. Different machine learning
algorithms and consequently different machine learning
models exist for binary classification. The algorithms
can be linear (e.g., linear regression or logistic regres-
sion), non-linear (e.g., classification and regression
trees (CART)32), or ensemble methods (e.g., bagging
and boosting).

Inherently interpretable models, which are loosely
defined as providing their own explanations of the
model’s mapping,42 allow the understanding of the
models’ mapping functions. For example, a decision
tree model can be directly transferred to a set of distinct
rules. Deep neural networks are not inherently interpre-
table and are sometimes considered black box models
because humans cannot understand the complicated
and non-linear mapping directly. Current research on
explainable artificial intelligence (XAI), where machine
learning is a subfield of AI, focuses on deriving expla-
nations of the black box models’ inferences.55 For
example, class dependent activation mapping (CAM) is
an explanation method for deep neural networks reveal-
ing spatial input regions of interest that are important
for a specific classification task.38 Additionally, the fea-
ture importance can be evaluated. Feature importance
is a measure of how important an individual feature is
for the performance of the model for a given training
set. From some machine learning models it can be
derived directly. The feature importance of a decision
tree can be calculated from the node importance,32 for
example, taking into account the Gini impurity
(depending on the tree model) weighted by the normal-
ized probability (derived from the training samples) of
reaching the node, of the node itself, and its child
nodes. Conceptually in this case, feature importance is
derived from the training sample distribution and the
model’s shape, which in turn is also determined by the
training sample distribution and the specific hyper-
parameter setting. Indirect and iterative methods like
LOCO (leave-one-covariate-out) can be applied if the
feature importance cannot be derived directly.

A binary decision tree model essentially asks a set of
‘‘if - else’’ questions until a leaf node with an associated
(class) value is reached. Different machine learning
algorithms exist for decision tree, such as classification
and regression tree (CART)32 or iterative dichotomizer
3 (ID3), defining the splitting rules at each node based
on certain criteria like Gini impurity (CART) or infor-
mation gain (ID3). Decision trees are interpretable,
since they provide simple rules which are easy to

Dreher et al. 3281

understand and visualize. An ensemble of weak deci-
sion tree classifiers can create a strong classifier, com-
monly referred to as a boosted decision tree. Thereby, a
single decision tree is trained and the succeeding tree is
trained to correct for its errors, for example, by fitting
the second tree to a weighted version of the original
data set. To obtain a strong classifier, additional deci-
sion trees are added in the same way. AdaBoost56 is a
boosting method which performs very well on binary
classification problems by using decision trees with only
one level, which are also called decision stumps. The
quality (stage value) of each weak learner is calculated
from the weighted sum of the misclassification rate,
where training samples have a weight and the misclassi-
fication rate is given by the ratio between incorrectly
classified and all training samples. The sample weights
of misclassified samples are changed depending on the
stage value. For inference, the predictions of each tree
are summed and weighted by the stage values of each
tree.56

Multi-layer perceptrons (MLPs)57 are feed-forward
connected networks of artificial neurons (units). This
type of neural network consists of an input layer, an
output layer, and at least one hidden layer, where the
layers are fully connected, that is, all neurons of one
layer are connected to all neurons of the next layer,
and non-linear activation functions are applied on the
summed and weighted input for each neuron. The
weights are optimized using the backpropagation algo-
rithm.58 For classification, the neurons in the output
layer represent the different classes and a softmax func-
tion can be applied. With a sufficient amount of hidden
neurons, MLPs have been proven to be universal
approximators30,31

A key feature of deep learning is the ability to learn
how to form feature hierarchies by combining low-level
features of shallow layers to increasingly more abstract
high-level features in deeper layers59 of a neural net-
work. While MLPs are capable of learning abstract fea-
tures, their reliance on fully connected layers leads to a
high number of trainable parameters, which in turn ren-
ders the models harder to train and prone to over-fit-
ting. Additionally, MLPs require a flattened feature
vector as their input and therefore rely on a global view
of multidimensional data, possibly leading to redun-
dant features, to handle spatial variances in the input
data. Convolutional neural networks (CNNs) alleviate
these problems to some degree by learning how to
detect local features while at the same time reducing the
number of trainable parameters by weight sharing.
Their design was inspired by the biological visual cor-
tex. While first usage of CNNs can be traced back to
the 1980s,60 recent advances in computer hardware and
increased availability of large data sets allowed training
CNNs with groundbreaking predictive power.61 For
the implementation of CNNs two new network layer
types were introduced: convolution layers and pooling
layers. The convolution layer is named after the epon-
ymous mathematical operation. Each convolution layer

consists of a customizable set of filters (kernels) with
fixed dimensions convolved over the input volume.
Sliding the filters over the width and height of the input
volume results in two-dimensional feature maps which
maintain spatial information about the filters’ activa-
tions. Each filter has its own set of weights, which are
shared for all possible spatial positions of the filter.
This in turn drastically reduces the number of trainable
parameters in the neural network. Pooling layers are
used for downsampling the feature maps. The stride
describes how many elements the filter is moved when it
is slid over the input volume. The padding describes the
convolution layer’s behavior when the input volume’s
boundaries are reached. The input can be artificially
padded to allow the filters to convolve the whole input
volume (same padding) or the convolution operation
can be constrained to remain inside the input volume’s
bounds (valid padding). The values used for the pad-
ding is customizable. A common way to pad edges is to
fill additional space with constant values, for example,
zeroes (zero padding).

Class boundary definition

Due to the increasing thermal load during the course of
one experimental run of 350 consecutive fired cycles, a
single dynamic class boundary, the moving average
Pmax value (see Methods), is used. Thereby, the class
boundary is given by the moving average Pmax value,
for example, the n th cycle of a recorded sequence with
a Pmax value above the moving average Pmax value at
position n would be assigned HC. This approach com-
pensates for the experimentally observed drift in mov-
ing average Pmax value and allows the use of the entire
recorded data set. The latter is a crucial requirement
for deep learning methods requiring substantially large
data sets for training.

Alternatively, a fixed Pmax value can be used for the
class boundary definition, if the data set is constrained
to a smaller range of allowed mean Pmax values.27

However, the data set available for the ML method is
substantially reduced, hindering a deep learning
approach. By further defining a margin around the
class boundary, removing samples with Pmax values
within this margin around the class boundary, the data
set can be further constrained to only include cycles
with extremely high and low combustion energies. In
Figure 5(b) the accuracy of a classifier dependent on
the sample’s Pmax value is shown. The classifier reaches
perfect accuracies for either extremely high or low Pmax

values, and hence, an ML model based on data
obtained with such a class boundary margin would
allow perfect classification results.

In the case of an experimental setup with higher
thermal stability19 or smaller numbers of consecutive
fired cycles, the median Pmax can be chosen for the class
boundary resulting in a data set with class-balanced
labels.

3282 International J of Engine Research 22(11)

Reduced flame feature set

By definition, numerous flame features are highly corre-
lated, because features 9 to 11 are derived from features
1 to 8. Hence, they contain similar information or even
redundant information, for example, feature 5 (bottom
most point) and feature 9 (distance between bottom
most point and piston). In an additional test, highly
correlated features (r . 0.95) are neglected. These fea-
tures are 9 (r5, 9=1), 10 (r5, 10= 0.95), 11 (r11, 15= 0.97),
12 (r4, 12= 0.95) and 14 (r3, 14=0.98). A CAD-averaged
accuracy of 0.6076 0.036 results, which is similar to the
CAD-averaged accuracy of 0.6146 0.039 obtained
after applying PCA (see Results).

Investigated CAE architectures

A set of 7 different CAE architectures is defined
(Table 3). Dense or fully-connected autoencoders
(abbr.: dense) with increasing depth are investigated,
serving as baseline models. Different CAE architectures
are tested; Amax: convolution layer and subsequent
downsampling via max pooling in the encoder and
nearest-neighbor upsampling, with optional edge crop-
ping, followed by a convolution layer for the decoder;
AMaxI: as before but with increasing number of fea-
ture maps in the vicinity of the bottleneck, allowing the
network to learn more high-level features in deeper
layers of the encoder; AMaxIFc: as AMaxI but with an
MLP substituting the convolutional layer in the bottle-
neck; ASI: as AMaxI but exploiting the strides for
downsampling and likewise transposed convolutions
for up-sampling. Additionally, residual AE (Residual)
architectures are investigated, where blocks consisting
of convolution layers were replaced with residual
blocks. Finally, minimal models (Minimal) with a sin-
gle convolution layer with large kernel size and stride
with a transposed convolution in the decoder have been
tested.

Different model variants are described using an
adapted notation by Ciresan et al.62: the first input
layer for vector fields has a shape of 11039833. 8C3S2
denotes a convolution layer with 8 features maps, filter
size of 333 and a stride of 2. 8TC3S2 is the notation
for a transposed convolution with 8 feature maps, a fil-
ter size of 333, and a stride of 2. A stride of 1 is to be

assumed, if the stride has not otherwise been specified.
Padding is specified as follows: with same padding, the
input is padded in a way that ensures that the filter can
be moved across the complete original input; valid pad-
ding only uses valid input data, no additional padding
is added to the borders. For example, if the filter would
require more data to be applied on the input’s edge, the
operation would be dropped. The employed padding
type defaults to same padding. The P(v) token indicates
the usage of valid padding, for example, 16C3P(v).
MP2 denotes a non-overlapping 232 MaxPooling2D
layer and UP2 nearest-neighbor upsampling operation
with size 232. 8Res3 denotes a residual block skipping
2 convolution layers with 8 feature maps, filter size of
333, and stride of 1. FC90 describes a fully connected
layer with 90 neurons. Model names are composed of
architecture name and number of neurons in the
bottleneck.

In general, the validation loss (MSE) on the pretext
task of the (C)AE decreases with increasing bottleneck
size and corresponding decreasing compression rate.
The CAE performs better than the dense AE while hav-
ing significantly smaller numbers of trainable para-
meters in the encoder of the model. The minimal
models perform worse than the CAE and dense AE
while having more trainable parameters than the CAE
of the same bottleneck size.

Four different architectures (Dense-90, AMaxI-96,
ASI-96, Minimal-90; Table 4; see Figure 11(a)) with
similar bottleneck sizes of around 90 neurons are fine-
tuned and tested on the downstream task to systemati-
cally evaluate the influence of different architecture. All
models reach similar CAD-averaged accuracies of
0.5546 0.015 (Dense-90), 0.5676 0.016 (AMaxI-96),
0.5646 0.015 (ASI-96), and 0.5596 0.016 (Minimal-
90).

Next, different bottleneck sizes of 64, 96, 320 and
392 are fine-tuned and tested on the downstream task.
Since no difference in architecture choice was observed
before, a subset of 4 different architectures (AMaxIFc-64,
ASI-96, AMaxI-320, Amax-392; Table 4; see Figure 11(b))
was chosen to simultaneously further sample this hyper-
parameter dimension. Neither larger nor smaller bottle-
neck sizes, with the former reducing the MSE of the AE,
substantially improved the model accuracy of the down-
stream task: CAD-averaged accuracies 0.5576 0.015

Table 3. Autoencoder architectures.

Name Feature maps Encoder Decoder Bottleneck

Dense – – – Dense
Amax Fixed Max pooling 2D upsampling Conv.
AMaxI i/d Max pooling 2D upsampling Conv.
ASI i/d Conv. & stride Transposed conv. Conv.
AMaxIFc i/d Max pooling 2D upsampling Dense
Residual i/d Conv. & stride Transposed conv. Conv.
Minimal Fixed Conv. & stride Transposed conv. Conv.

conv.: convolution; i/d: encoder: increasing with depth, decoder: decreasing with depth; the dense architecture only employs a dense layer.

Dreher et al. 3283

Table 4. Model descriptions. MSE on the pretext task is evaluated on the validation set. Models trained and evaluated on intake and
compression data.

Name Description pretext task (MSE) downstream task
(Accuracy)

Dense-90 FC512-FC128-FC90-FC128-FC512-FC32340 0.038 0.554 6 0.015
Dense-765 FC1024-FC768-FC768-FC1024-FC32340 0.028 –
Dense-4096 FC4096-FC4096-FC32340 0.033 –
Dense-2048 FC2048-FC2048-FC32340 0.028 –
Amax-21560 8C3-MP2-UP2-8C3-3C3 0.002 –
Amax-5600 8C3-MP2-8C3-MP2-UP2-8C3-UP2-8C3-3C3 0.006 –
Amax-392 8C3-MP2-8C3-MP2-8C3-MP2-8C3-MP2-UP2-8C3-

UP2-8C3-UP2-8C3-UP2-8C3-3C3
0.029 0.570 6 0.016

AMaxI-11648 8C3-MP2-16C3-MP2-32C3-MP2-64C3-64C3-UP2-
32C3-UP2-16C3-UP2-8C3-3C3

0.009 –

AMaxI-4096 16C3-MP2-32C3-MP2-64C3-MP2-128C3-MP2-256C3-
MP2-UP2-256C3-UP2-128C3-UP2-
64C3-UP2-32C3-UP2-16C3-3C3

0.011 –

AMaxI-5824 8C3-MP2-16C3-MP2-32C3-MP2-UP2-32C3-UP2-16C3-
UP2-16C3-3C3

0.008 –

AMaxI-96 8C3-MP2-8C3-MP2-16C3-MP2-16C3-MP2-24C3-MP2-
24C3-MP2-UP2-24C3-UP2-24C3-UP2-16C3-UP2-
16C3-UP2-8C3-UP2-8C3-3C3

0.035 0.567 6 0.016

AMaxI-320 Input-16C3-MP2-24C3-MP2-32C3-MP2-48C3-MP2-
64C3-MP2-80C3-MP2-UP2-80C3-UP2-64C3-UP2-
48C3-
UP2-32C3-UP2-24C3-UP2-16C3-3C3

0.021 0.561 6 0.015

AMaxIFc-64 8C3-MP2-8C3-MP2-16C3-MP2-16C3-FC64-FC2912-
16C3-UP2-16C3-UP2-8C3-UP2-3C3

0.032 0.557 6 0.015

ASI-96 8C3S2-8C3-16C3S2-16C3-24C3S2-24C3S2-24C3S2-
24C3S2-24C3S2-24C3S2-24C3S2-16C3S2-16C3S2-
8C3S2-3C3

0.029 0.564 6 0.015

ASI-768 8C3S2-8C3-16C3S2-16C3-32C3S2-32C3S2-48C3S2-
48C3-48C3-32C3S2-32C3S2-16C3S2-8C3S2-8C3S2-
3C3

0.015 –

ASI-1024 8C3S2-8C3-16C3S2-16C3-32C3S2-32C3S2-64C3S2-
64C3

0.013 –

ASI-2048 16C3S2-16C3-32C3S2-32C3-64C3S2-64C3S2-
128C3S2-128C3

0.008 –

Residual 8Res3-8C3S2-8Res3-16C3S2-16Res3-16C3S2-16Res3-
24C3S2-24Res3-24C3S2-24Res3-24C3S2-
24TC3S2-24Res3-24TC3S2-24Res3-16TC3S2-16Res3-
16TC3S2-16Res3-8TC3S2-8Res3-8TC3S2-8Res3-3C3

0.032 –

Minimal-90 10C(37,33)S(37,33)P(v)-3C(37,33)S(37,33)P(v) 0.056 0.559 6 0.016

Figure 11. Comparing the performance of different autoencoder architectures for the downstream task. (a) different architectures
with bottleneck sizes comparable to the baseline model with 90 features. (b) different bottleneck sizes and different architectures.
The baseline model with engineered features (gray color, upwards triangles) and selected deep neural network (red color, diamond,
ASI-96) are the same in both panels.

3284 International J of Engine Research 22(11)

(AMaxIFc-64), 0.5646 0.015 (ASI-96), 0.5616 0.015
(AMaxI-320), and 0.5706 0.016 (Amax-392).

Dimension reduction with PCA is tested on
AMaxIFc-64 and ASI-96 but does not improve the
results: 0.5586 0.015 (AMaxIFc-64; 60 principle

components (PCs)) and 0.5576 0.016 (AMaxIFc-64;
45 PCs); 0.5596 0.016 (ASI-96; 90 PCs), 0.5606 0.016
(ASI-96; 60 PCs), and 0.5606 0.016 (ASI-96; 45 PCs).
The baseline model with engineered features reaches
0.5716 0.013.

Dreher et al. 3285

