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p53 plays a central role in defending the genomic integrity of our cells. In

response to genotoxic stress, this tumour suppressor orchestrates the

expression of hundreds of target genes, which induce a variety of cellular

outcomes ranging from damage repair to induction of apoptosis. In this

review, we examine how the p53 response is regulated on several levels in

individual cells to allow precise and context-specific fate decisions. We dis-

cuss that the p53 response is not only controlled by its canonical regulators

but also controlled by interconnected signalling pathways that influence the

dynamics of p53 accumulation upon damage and modulate its transcrip-

tional activity at target gene promoters. Additionally, we consider how the

p53 response is diversified through a variety of mechanisms at the pro-

moter level and beyond to induce context-specific outcomes in individual

cells. These layers of regulation allow p53 to react in a stimulus-specific

manner and fine-tune its signalling according to the individual needs of a

given cell, enabling it to take the right decision on survival or death.

Introduction

In every part of our life, we are challenged with mak-

ing difficult decisions. No matter if we consider family

issues, business strategies or politics, our approaches

are often similar: when important decisions are about

to be made, we collect all available information and

consult with the people most affected to ensure that

the outcome is as favourable as possible under the

given circumstances. Cells in our body need to take

decisions as well. They have to choose between prolif-

eration and differentiation or sometimes even between

survival and death. Wrong choices can have severe

consequences: if damaged and genetically altered cells

decide to proliferate instead of inducing apoptosis,

cancer can arise. One of the proteins in charge of such

vital decisions is the transcription factor (TF) p53.

However, even the guardian of our genome is not able

to do the job on its own. To determine the appropriate

cell fate, p53 relies not only on the source and degree

of the stress, but it also combines this information

with additional cell-intrinsic inputs and environmental

cues. Here, we aim to elucidate how different layers of

regulation allow the p53 response to integrate the vari-

ous sources of information and enable individual cells

to faithfully decide whether to live or to die (Fig. 1A).

P53 is activated by a variety of different stresses

ranging from nutrient deprivation and hypoxia to

damage of our genome [1]. For the purpose of this

review, we focus on the well-characterized role of p53

in the response to genotoxic stress, specifically in form

of double-strand breaks (DSB). As a TF, p53 controls

Abbreviations

DSB, DNA double-strand breaks; PTM, post-translational modification; smFISH, single molecule fluorescence in situ hybridization; TF,

transcription factor.
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Fig 1. Regulatory levels of the p53 response. (A) The p53 response to DNA damage is regulated and adjusted on several levels. As a first

layer, a tightly regulated interplay of canonical regulators in combination with crosstalk to other signalling pathways allows a damage and

context-specific response. The resulting p53 dynamics are decoded on the promoter level. In this step, several mechanisms allow the

diversification of the single p53 input signal. Using stochastic gene expression, time-varying patterns of PTM as well as controlled

oligomerization and interaction with cofactors, the expression of distinct target genes and different cellular outcomes can be induced. In the

final step, the possible target expression dynamics are expanded and fine-tuned due to their specific mRNA and protein stabilities and

depending on the cellular state. (B) Schematic overview of the p53 network in response to DSB. Upon genotoxic stress, the kinases ATR,

DNA-PK and ATM mediate the stabilization and activation of p53 directly and via the checkpoint kinases CHK1 and CHK2. P53 can then

induce the expression of its target genes including the negative regulators WIP1 and MDM2. These two proteins terminate the p53

response. (C) p53 dynamics in response to different stimuli. In response to DNA DSB, p53 shows a series of pulses with fixed amplitude

and duration with the number of pulses increasing with the damage dose. After UV radiation, only a single pulse is formed whose

amplitude and duration increases with the degree of damage. Upon cisplatin treatment, the p53 levels increase over time. (D) P53 dynamics

control cell fate. In response to DNA DSB, p53 shows a series of pulses with fixed amplitude and duration. In contrast, certain

chemotherapeutic drugs induce sustained high levels of p53. While pulsatile dynamics lead to cell cycle arrest and repair, high sustained

levels are associated with terminal cell fates like apoptosis and senescence.
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the expression of several hundreds of genes [2] and is

thereby able to induce cell fates ranging from cell cycle

arrest to senescence and apoptosis upon DNA damage

[3]. Many tumours have mutations either of p53 itself

or of members of its signalling pathway underlining its

importance as a tumour suppressor [4]. To prevent

inappropriate induction of senescence or cell death,

the p53 level in the cell is tightly controlled through its

activating pathways. These pathways are directly con-

nected to the DNA damage response machinery and

thereby allow a sensitive and precise response to geno-

toxic stress [5]. Under nonstressed conditions, p53

levels in the cell are kept low due to MDM2-mediated

ubiquitination and subsequent proteasomal degrada-

tion of p53 [6]. When the cell senses genotoxic stress,

three kinases of the PI3K like kinase family are acti-

vated: ATM, ATR and DNA-PKcs, which phosphory-

late p53 on S15 and stabilize the TF [7–9] (Fig. 1B).
Beside S15, several other residues of p53 are phospho-

rylated in the course of the DNA damage response.

For instance, ATR and ATM activate the checkpoint

kinases CHK1 and CHK2 which phosphorylate p53

on S20 and thereby contribute to preventing its degra-

dation [10]. After accumulation in the nucleus, the TF

promotes the expression of its target genes, mediating

the cellular response to the damage. Among the target

genes are negative regulators of p53 such as MDM2

and the phosphatase WIP1 (encoded by the gene

PPM1D), which limit p53 accumulation [11,12]. In

addition to stabilizing modifications, p53 is also phos-

phorylated on other residues that can modify its activ-

ity. For example, phosphorylation at S46 by the

kinase HIPK2 is associated with the induction of genes

involved in apoptosis [13,14] (for detailed review about

phosphorylation of p53, see [15]).

This interplay of positive and negative regulators

constitutes the core of the p53 network. However, it

only represents one of several layers of regulation that

enable cells to generate stimulus-specific responses, to

diversify these responses and to fine-tune them accord-

ing to their individual needs (Fig. 1A).

P53’s dynamics: a key to
understanding the encoding of
individual stress levels

A first layer of regulation is implemented at the level of

p53 dynamics. As previously reviewed by Purvis and

Lahav [16], the dynamics of proteins are defined as the

change of their level, their localization or of other fea-

tures over time. Several TFs show complex dynamical

behaviours after activation. The resulting patterns range

from transient and sustained responses to periodic

activation. For instance, NF-jB, ERK and NFAT4

(NFATC3) exhibit repeated pulses of cytoplasmic to

nuclear translocation upon defined stimuli [17–19]. TF
dynamics contribute to encoding the kind and strength

of stimuli and control subsequent cellular responses.

Using single cell measurements and image analysis, the

specific features of these dynamics can be quantified.

Relevant features in the context of p53 include the

amplitude and length (duration) as well as the timing of

accumulation. Early studies of the temporal changes of

p53 levels in individual breast carcinoma cells revealed

that the tumour suppressor exhibits a series of discrete

accumulation pulses with fixed amplitude and duration

in response to DSB [20–23] (Fig. 1C). The features of

these pulses are independent of the strength of the dam-

age stimulus. Already low degrees of damage or tran-

sient input signals can trigger a full p53 pulse. For

instance, damage occurring during proliferation induces

spontaneous p53 pulses with the same characteristics as

pulses that are formed in response to externally induced

DSB [24]. This excitability of the p53 network allows it

to react with high sensitivity to all levels of damage.

Remarkably, no discrete threshold in the number of

DSB was found for inducing a p53 pulse. Individual

cells with a similar number of DSB exhibited different

p53 dynamics depending on the state of a given cell [25].

These cell-specific activation thresholds occurred in

genetically identical cell of the same type and could be

explained by variability in WIP1 protein levels [26]. As

WIP1 removes modifications of p53 and MDM2 that

are required for p53 accumulation, cells with higher

levels of WIP1 needed higher levels of active ATM and

consequently more DSB to induce a p53 pulse.

While the features of p53 pulses do not generally

reflect the severity of the stress, the number of pulses

that are triggered in response to genotoxic stress

increases with the damage dose, indicating that p53

dynamics encode the strength of the input. However,

even isogenic cells in the same environment show vari-

ations in their p53 dynamics and sister cells soon lose

their correlation most likely due to bursty gene tran-

scription and the resulting stochastic changes in

mRNA and protein abundance [22]. This heterogeneity

in the response emphasizes the importance of measur-

ing p53 dynamics in individual cells und raises the

question how one molecular network can induce dif-

ferent dynamics in genetically identical cells.

This characteristic is even more striking when we

consider different forms of DNA damage. In contrast

to the pulsatile dynamics in response to DSB-inducing

ionizing radiation, p53 shows different dynamics after

UV radiation or treatment with chemotherapeutic

drugs [27,28] (Fig. 1C). Treatment with the
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chemotherapeutic drug cisplatin, for example, induces

a constant accumulation of p53. While the underlying

mechanism for these altered dynamics is not well

understood, the p53 response to UV radiation has

been characterized in molecular detail. Here, only one

single pulse is formed that increases in amplitude and

duration with increasing dose. This can be explained

by the observation that in contrast to DSB-inducing

IR, UV radiation results in the exposure of single-

stranded DNA as a repair intermediate, which leads to

the activation of the kinase ATR. As the ATR- and

ATM-driven p53 networks have different topologies of

their negative feedbacks, also the resulting p53 dynam-

ics differ [27]. But what is the purpose of this complex

dynamical behaviour? It was shown by pharmacologi-

cal and genetic perturbations that p53 dynamics deter-

mine gene expression programmes and define cell fates

[29,30]. While a pulsatile response leads to cell cycle

arrest, a sustained p53 response activates different sets

of genes and induces senescence (Fig. 1D). Consis-

tently, a further study indicated that low levels of the

chemotherapeutic drug etoposide induced pulsatile

dynamics and cell cycle arrest, while high doses led to

a strong monotonic increase and apoptosis [31]. In this

context, it was proposed that for the induction of

apoptosis in response to cisplatin treatment, the p53

levels must exceed a time-dependent threshold [28].

While we mainly focus on context-specific decisions

in individual cells of a given cell type here, it should

be noted that studies comparing p53 dynamics in a

variety of cell lines revealed diverging cell type-specific

dynamics as well. For example, some cell lines showed

dose-dependent changes in the features of the pulsatile

p53 dynamics induced by IR, which could be linked to

the state of the damage sensing network and the kinet-

ics of DSB repair [32]. Nevertheless, the qualitative

features of p53 dynamics are conserved not only across

different cell lines but also across various species [33].

All things considered, p53 is robustly induced by vari-

ous levels of damage, while its complex dynamics allow

cell- and stimulus-specific responses. As ATM and

WIP1 are central for regulating p53 dynamics, it is not

surprising that these two proteins are major players

when it comes to crosstalk with other signalling path-

ways. This integration of the context of the cell further

shapes p53 dynamics and can lead to a different

response to the same stimulus within the same cell type.

Thinking outside the box: integration
of external stimuli in the p53 response

To enable appropriate decisions, p53 needs to integrate

damage stimuli with inputs from other signalling

sources. Cells are constantly challenged with varying

internal and external signals, and these different con-

texts have to be considered for the cell’s final fate deci-

sion. The corresponding crosstalk between signalling

pathways forms an additional layer of regulation,

which can take place at multiple levels within the p53

network. For example, key players of the networks

can interact directly with each other and change their

corresponding activity. Alternatively, transcription of

pathway regulators or target genes can be altered to

rewire the network and modify signalling outcomes.

For several pathways, such interactions with the p53

response were reported, including STAT, NF-jB and

TGF-b signalling (Fig. 2).

TGF-b signalling regulates several cellular processes

including proliferation and migration [34]. In brief,

TGF-b binds to TGF-b-receptors, which induces the

recruitment of SMAD2 and 3 (Fig. 2A). After complex

formation with SMAD4, the proteins enter the nucleus

and regulate the expression of their targets [35]. Several

members of the p53 network were shown to interact

with the TGF-b signalling pathway. For instance, the

activity of ATM in response to ionizing radiation is

modulated by TGF-b signalling [36]. In addition,

recent studies have shown that the phosphatase WIP1

dephosphorylates SMAD4 at Thr277, a MAPK phos-

phorylation site that modulates the nuclear accumula-

tion of SMAD4 [37]. Thereby, WIP1 oppresses TGF-

b’s antiproliferative effects. Moreover, p53 itself plays

an important role in TGF-b-induced growth arrest and

physically associates with SMAD2/3 in a TGF-b-de-
pendent manner [38]. Several targets of TGF-b sig-

nalling require joint control of p53 and SMAD

proteins for activation. For instance, the PAI-1 (SER-

PINE1) promoter contains neighbouring p53- and

SMAD-binding elements and p53 forms a complex

with SMAD2/3 on the promoter [39]. Depletion of p53

impaired PAI-1 expression and growth arrest in

response to TGF-b stimulation. Additionally, mutant

p53 is suggested to repress TbRII expression and

thereby impairs several stages of TGF-b signalling [40].

The p53 response was also shown to interact with

the JAK/STAT pathway. Signal transducers and acti-

vators of transcription (STAT) proteins are a family of

latent TFs involved in development, cell growth, pro-

liferation and cell death [41]. Several ligands such as

interferons, interleukins and growth factors activate

the JAK/STAT pathway upon binding to their cell

surface receptors and induce the phosphorylation of

STAT proteins by JAK tyrosine kinases, which enables

them to enter the nucleus (Fig. 2B). Several STATs

were shown to modulate the p53 response. STAT3

binds directly to the p53 promoter and inhibits its
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expression [42], which leads to reduced induction of

growth arrest upon UV radiation. In addition, STAT3

antagonizes p53-dependent repression at specific target

promoters [43]. Beside STAT3, STAT1 is also a modu-

lator of the p53 response. It interacts with p53 and

fosters apoptosis induction in response to genotoxic

stress by altering expression of p53 target genes like

BAX, NOXA (PMAIP1) and FAS [44].

Another well-documented example for a pathway

that is tightly connected to p53 is the NF-jB network.

NF-jB is a dimeric TF whose targets are involved in

the promotion of cell survival and immunity [45].

When bound to inhibitors of the IjB family, NF-jB is

unable to enter the nucleus and is therefore inactive

[46]. When extracellular ligands like TNF-a bind to

membrane receptors, a complex called IKK is acti-

vated, which phosphorylates IjBa (NFKBIA) and

induces its proteasomal degradation [46]. As a conse-

quence, NF-jB is able to enter the nucleus (Fig. 2C).

Several players of the p53 response were shown to

interact with the NF-jB network. Firstly, the phos-

phatase WIP1 dephosphorylates S536 of the p65

(RELA) subunit of NF-jB, a modification that is

essential for its transactivation abilities [47,48]. WIP1

is also a direct target of NF-jB [49], forming a nega-

tive feedback loop. Secondly, in response to DNA

damage, ATM mediates the activation of the IKK

complex and is therefore crucial for the activation of

both the p53 and NF-jB pathways upon genotoxic

stress [50,51]. Beside its role in the NF-jB network,

the IKK subunit IKK2 (IKBKB) was also reported to

phosphorylate p53 on S362 and S366 [52], which pro-

motes its degradation via b-TrCP1 independent of

MDM2. Mutation of these serine residues increases

the stability of p53 as well as target gene expression.

Furthermore, it could be shown that loss of IKK2

activity leads to increased p53 stability, promoter bind-

ing and target gene expression [53].

While many reports such as the examples given

above highlight individual interactions mediating sig-

nalling crosstalk, we lack a more systematic under-

standing of the interplay between pathways. To

address this issue, a recent study combined time-re-

solved data at single cell level with pharmacological

perturbations and mathematical modelling to provide

a framework for systematic identification of interac-

tions points between signalling pathways [54]. In this

case, NF-jB signalling was modulated using an IKK2

inhibitor and consequences on p53 dynamics upon

DSB induction were monitored by time-lapse micro-

scopy. Interestingly, several features of the p53 dynam-

ics were changed including a delayed timing of the

peak of p53 accumulation and significantly longer
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Fig 2. Crosstalk to connected pathways. Key players of the p53

response and p53 itself interact with connected signalling pathways

and vice versa. (A) TGF-b signalling. A complex of SMAD2, SMAD3

and SMAD4 regulates the expression of targets upon activation of

the signalling pathway. This process is impaired by

dephosphorylation of SMAD4 by WIP1. Additionally, the expression

of several targets of the TGFb signalling requires additional binding

of p53. (B) JAK/STAT network. STAT proteins modulate the p53

response on promoter level: STAT3 inhibits the expression of p53

itself and antagonizes p53-mediated repression. In contrast,

additional STAT1 binding enhances the expression of apoptosis-

related genes. (C) NF-jB network. The IKK complex is activated

upon binding of ligands to the membrane receptors and enables the

translocation of NF-jB to the nucleus. Among the targets of NF-jB is

the phosphatase WIP1 which can also oppress NF-jB-dependent

gene expression by dephosphorylation of p65. In response to DSBs,

ATM facilitates the activation of the IKK complex. In turn, the IKK

complex can promote the degradation of p53.
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interpeak intervals. Notably, these changes resulted in

differences in target gene expression profiles. Using

two complementary computational approaches, it was

shown that the modulated p53 dynamics could not be

explained by single interactions between NF-jB and

p53. Instead, crosstalk at multiple independent nodes

was necessary. These nodes could be narrowed to pro-

cesses affecting the activation and degradation of p53

as well as the degradation of MDM2. The framework

for investigating crosstalk between signalling pathways

introduced in this study can now be applied to help to

systematically decipher the manifold interactions

between p53 and other cellular networks.

Promoter puzzles: decoding and
diversifying the p53 response

To enable cells to take appropriate fate decisions, cell-

specific p53 responses need to be translated into con-

text-specific expression patterns of its target genes. To

this end, the transcriptional activity of p53 at the pro-

moters of its targets is subject to further layers of reg-

ulation. Time-varying post-translational modifications

(PTMs), regulated oligomerization and interaction

with alternating cofactors allow to further diversify the

p53 response.

The central process in the regulation of target

gene expression is the conversion of free p53 accu-

mulated in the nucleus to an active TF at the pro-

moter. In essence, this allows the cell to decode the

information contained in the dynamic p53 response.

The cis-regulatory architecture, location and sequence

of p53 response elements in target gene promoters

and, as a consequence, the affinity of the TF to

these binding sites varies widely. Not surprisingly,

target gene mRNAs are expressed with different tem-

poral dynamics upon damage induction [55]. How-

ever, several studies demonstrated that despite

varying expression patterns, the dynamics of p53

binding to its target promoters are similar across

many loci including pro-apoptotic and pro-arrest

genes [55–57]. This indicates that upon induction of

DSB, a linear relationship exists between overall p53

levels in the nucleus and the amount of TF bound

at the promoter for most genes. The correlation

between p53 levels and chromatin binding seems to

be retained when p53 dynamics are altered either

pharmacologically using the MDM2 inhibitor Nutlin-

3 or by using UV as an alternative damage stimulus

[56,58]. However, TF binding has so far mainly been

measured at the population level using methods such

as ChIPseq. Due to the heterogeneity of p53 dynam-

ics in individual cells within a population, measuring

p53 recruitment to chromatin on the single cell level

may reveal regulated recruitment to target gene pro-

moters [59].

Remarkably, despite similar temporal changes in

p53 binding to target gene promoters in response to

DSB, even isogenic cells show a high degree of vari-

ability during transcription. One factor contributing

to this heterogeneity is transcriptional bursting

(Fig. 3). Due to stochastic activation and inactivation

of the promoter, mRNAs are not continuously tran-

scribed. Instead, gene expression switches between

transcriptionally inactive (OFF) and active (ON)

states, during which a variable number of transcripts

are generated (Fig. 3A) [60]. Transcriptional bursting

can not only lead to differences in the behaviour of

individual cells within a population, diverse bursting

patterns for different genes also allow a high variabil-

ity in gene expression [61]. Studies on the single cell

level employing single molecule fluorescence in situ

hybridization (smFISH) showed that p53-mediated

target gene expression is burst-like as well [56]. Upon

p53 activation, the frequency of target gene promoter

activation is increased, while the number of tran-

scripts produced per burst remains unaltered. Fur-

thermore, the transcriptional activity of p53 targets is

gene-specific with changes between the first pulse and

the second pulse. The target genes could therefore be

grouped according to their pattern of promoter activ-

ity into ‘sustained’, ‘pulsatile’ and ‘transient’ respon-

ders, which suggests that direct regulation of

stochastic bursting contributes to establishing distinct

patterns of gene expression (Fig. 3B). Similarly, Har-

ton et al. [62] demonstrated that promoters can dif-

ferentially decode p53 dynamics despite similar

temporal patterns of chromatin recruitment by

employing signal processing features such as activa-

tion thresholds, refractory periods or dynamic filter-

ing. Moreover, time-resolved RNA sequencing

similarly revealed multiple groups of p53 dependent

expression patterns [55]. However, as the amount of

RNA and protein is determined by the balance of

production and degradation processes (Fig. 3A), the

corresponding dynamics of total mRNAs are also

shaped by their respective half-live, which was sup-

ported by additional molecular analyses [63,64]. To

further investigate the p53-driven information transfer

along the central dogma of molecular biology, a

recent study established a fluorescent reporter system

that allowed simultaneous tracking of p53 dynamics

and the RNA and protein levels of its target p21

(CDKN1A). Overall, they observed a tight correlation

between p53 protein level and p21 transcription.

Interestingly, while the transcription magnitude
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rapidly saturated, the probability for the induction of

transcription was determined by p53 levels [65].

How could we explain the diversification of target

gene promoter activity despite uniform p53 dynamics

in the nucleus? One crucial factor may be PTMs of the

TF that do not only stabilize it but also modulate its

activity. The role of acetylation for promoter binding

and activation of target gene transcription has been

steadily studied over the past decade. P53 is acetylated

on several lysine residues predominantly in the C-ter-

minal domain including K320, K372 and K382

[9,66,67]. The C-terminal parts of p53 control site-

specific DNA binding and are important for structural

features of the DNA-binding domain [68]. Early stud-

ies indicated that acetylation of the C terminus

enhances site-specific DNA binding [66,67,69,70] while

others have shown that acetylation of p53 induces

transcription by recruitment of co-activators or facili-

tating histone acetylation instead [71]. Loss of acetyla-

tion at one site can be compensated by other sites,

while simultaneous loss of acetylation at eight lysine

residues completely blocks p53 dependent activation of

both growth arrest and apoptosis [72]. Consequently,

acetylation is deemed indispensable for p53 activation.

In this context, single cell studies have shown that p53

binds only transiently to chromatin and that its bound

fraction and residence time increases after DNA dam-

age-dependent acetylation on its C terminus [59]. How-

ever, does the acetylation state of p53 also contribute

to diversification of target gene expression patterns

and cell fate decision?

Knights et al. [73] proposed that p53 acetylation cas-

settes coordinate gene expression in response to DNA

damage. Acetylation of K320 blocks the phosphoryla-

tion of important serine residues on the N terminus

and restricts activation to high-affinity p53-binding

sites that are involved in arrest. In contrast, K373

acetylation induces phosphorylations on the N termi-

nus and triggers binding to low-affinity-binding sites

such as those found in pro-apoptotic genes. Further-

more, recent studies provided evidence that the C-ter-

minal acetylation state of p53 mediates gene-specific

regulation of transcriptional activity. Specifically, the

archetype of transient expression observed in the

smFISH-based study of stochastic gene expression

mentioned above is regulated via acetylation and

methylation of K370 and K382 [56]. Interestingly,

lysine residues in the DNA-binding domain were

found to be acetylated after DNA damage. K120 is

acetylated by MOZ (KAT6A), hMOF (KAT8) and

TIP60 (KAT5) [74–76] upon exposure to different

kinds of DNA damage. Modification of this residue

was shown to be crucial for p53-mediated apoptosis

and senescence rather than growth arrest. Importantly,

acetylation of p53 does not only have direct effects on

its DNA-binding capabilities, but influences target

gene expression also via an indirect mechanism. On

the promoter of distinct p53 targets, p53 forms a com-

plex with MDM2 [77–79], which represses transcrip-

tion. Acetylated p53 does not recruit MDM2 to these

promoters and is therefore able to activate transcrip-

tion [72]. Beside its role in the choice of the correct
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cellular outcome, acetylation of p53 also serves as a fil-

tering mechanism for nonsevere intrinsic damage. Dur-

ing proliferation, p53 shows single accumulation pulses

similar to pulses occurring after high degrees of exter-

nally induced damage. However, these pulses do not

result in a full damage response due to the lack of an

activating p53 PTM profile. Consequently, acetylation

functions as a fine-tuning mechanism to filter p53

pulses induced by transient damage frequently occur-

ring in proliferating cells [24].

In addition to PTMs and the dynamical behaviour

of p53, other mechanisms have been proposed to influ-

ence the cell fate decision. Under basal conditions,

most p53 molecules in the cell form dimers [80]. Upon

DNA damage, two p53 dimers rapidly form tetramers

that bind DNA [80,81]. The oligomerization process

itself is crucial for the transcriptional activity of p53

and might contribute to the decision between survival

and death. Mutations in the oligomerization domain

strongly impair DNA binding and mutants that lack

the ability to form oligomers are transcriptionally inac-

tive [82–84]. In this context, the oligomerization status

itself might regulate which set of genes is activated

[85]. p53 mutants that only form dimers induced the

transcription of genes involved in growth arrest,

whereas pro-apoptotic genes were only triggered by

tetrameric p53, which may be connected to the affinity

of the corresponding p53-binding sites [86,87]. Simi-

larly, mutations that impair cooperative binding to the

DNA due to changes in the quaternary structure of

the p53 tetramer also show altered cellular outcomes:

While high DNA-binding cooperativity is crucial for

p53 dependent apoptosis, it is dispensable for the

induction of arrest [88–90].
Considering the important role of oligomerization, it

is crucial to understand how the oligomerization pro-

cess is regulated. Tetramerization of p53 is triggered

rapidly after induction of DNA damage [80]; however,

the process is independent of the rise in total p53

levels. PTM of residues located in the tetramerization

domain was shown to alter p53’s oligomeric conforma-

tion. For instance, phosphorylation on S392 triggers

tetramerization of p53 while this effect is reversed by

additional phosphorylation of S315 [91,92]. Another

way to regulate the formation of tetramers is the inter-

action with proteins modulating the oligomerization

process. Proteins of the S100 family associate with the

tetramerization domain of monomeric/dimeric p53 and

abrogate the formation of tetramers [93]. Similarly, the

multifunctional protein p32 (encoded by C1QBP) was

shown to interfere with p53’s tetramerization [94]. This

way, p32 inhibits DNA binding, occupancy at target

genes and p53 dependent transcription.

Beside PTM and oligomerization, other factors con-

tribute to diversifying similar promoter-binding

dynamics to a specific target gene expression. For

example, p53 interacts with other TFs as well as with

several coregulators that modify the surrounding chro-

matin structure to specifically induce defined cell fate

programmes (for detailed reviews, see [95,96]).

When considering these different layers of regula-

tion, it is important to keep in mind that they do not

act in isolation, but instead synergize to precisely con-

trol p53’s activity. For instance, PTMs alter the

oligomerization status while the modification patterns

themselves can be changed between p53 pulses. In

turn, PTMs alter the stability of p53 and can thereby

shape p53 dynamics. Interestingly, the oligomerization

process seems to be independent of the accumulation

of p53 after genotoxic stress and tetrameric p53 was

even shown to be less stable than monomeric or

dimeric forms [80,85]. However, certain PTMs, such as

phosphorylation of S20 or acetylation on K320,

depend on tetramerization of p53, indirectly linking

the oligomerization status of p53 with the TF’s

dynamics [66,97]. Together, these mechanisms allow

diverse and context-specific target gene expression pat-

terns despite having a single protein input.

The finishing touch: adapting the p53
response to the cell cycle phase

Even after the expression of p53 target genes is set,

cells still fine-tune the response depending on their

state. A well-studied example is the regulation of p21

depending on the cell cycle phase [98–100]. While the

p53 response upon genotoxic stress is uniform in dif-

ferent cell cycle phases, p21 accumulation is heteroge-

neous and only observed during G1 and G2 phase.

This could be explained by PCNA-CRL4cdt2-depen-

dent degradation of p21 during S-phase, which leads

to its delayed accumulation in G2. Blocking the

PCNA-p21 interaction by mutation of p21’s PIP box

domain causes a more homogeneous p21 response with

p21 accumulating in all cell cycle phases. Also in

unstressed cells, p21 accumulates in a p53-dependent

manner during the mother’s G2 and daughter’s G1

phases due to DNA damage acquired in the course of

proliferation [99,101]. High levels of p21 lead to a G1

arrest through CDK inhibition, whereas low levels of

p21 do not alter G1 progression. In this case, p21 is

degraded via the ubiquitin ligases CRL4cdt2 and

SCFskp2 at the G1/S transition. All in all, p21 passes

on information about DNA damage from mother to

daughter cells and thereby alters the cell’s decision

between proliferation and arrest [101].
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Perspective

The examples given here can provide only a glimpse of

the manifold layers of regulation in the p53 pathway.

To get a more comprehensive view on the p53 response,

we are challenged with developing systematic

approaches relying on well-controlled, quantitative and

time-resolved experiments in combination with theoreti-

cal approaches such as mathematical modelling. This

will help our intuitive understanding and provide means

to decipher the complex molecular networks mediating

cellular decisions. Crosstalk with the NF-jB pathway is

a good paradigm to show how p53 is interconnected

with the complex web of signalling networks in the cell.

While for several other networks, single interaction

nodes have been determined, it is not clear yet how they

affect the p53 response. For instance, it remains to be

elucidated to what extent activation of JAK/STAT sig-

nalling or stimulation with TGF-b modulate p53

dynamics and the cellular outcome upon genotoxic

stress. Integration of these and other extracellular sig-

nals would allow p53 to adjust its dynamic response to

cellular stress depending on complex information from

the immune system and neighbouring tissues.

Another challenge is to understand how p53 dynam-

ics are decoded and to elucidate their function. A cur-

rent hypothesis for the function of the p53 pulses is

that they allow more diverse gene expression patterns.

p53 target genes themselves serve as filters for p53

pulses, and their final expression pattern is determined

by the half-life of mRNA and protein [63]. Further-

more, p53 dynamics can prevent too high accumula-

tion of target proteins such as p21 to avoid terminal

cell fates like senescence or apoptosis [65]. Yet,

changes in p53’s transcriptional activity and its modifi-

cation state between the first pulse and the second

pulse could hint towards another function of p53

pulses [56]. Pulsatile behaviour might allow an effec-

tive change in PTM patterns which in turn modulates

target gene transcription (Fig. 3C). Variations in the

PTM patterns may indicate that the underlying inter-

play of modifying enzymes changes between the first

and second pulses and might even point towards the

involvement of additional regulators that are so far

not fully appreciated. However, for what purpose

could p53’s PTM be altered in the course of the

response? One potential explanation is that the status

of the genome continuously changes while the cell

reacts to damage. When the first p53 pulse is triggered,

the DNA repair machinery has just detected the newly

formed DSB, and, as a consequence, most of the

breaks remain unrepaired. However, when the second

and subsequent pulses are induced, the cell already

recognized and marked the lesions and restored many

of them. Only a fraction of more complex and hard-

to-repair breaks remain. Through distinct molecular

barcodes, the p53 pathway might be able to differenti-

ate between acute and sustained damage [102]: The

resulting PTM can alter the oligomerization status of

p53 as well as DNA binding and the interaction with

its cofactors, which together allows the induction of

appropriate response programmes.

As a central decision-maker in the cell, the guardian

of our genome collects information from all available

sources and is itself influenced by ‘crosstalking’ to

other cellular regulators. The many different layers of

regulation in the p53 system often provide challenges

when we aim to investigate specific aspects of the sig-

nalling pathway. Even isogenic cells show a high

degree of heterogeneity given their individual state and

local environment. In different cell lines, the deviations

of the p53 response are even stronger. Diverging

dynamics as mentioned above are only the tip of the

iceberg when comparing p53 signalling in different cell

types. Virtually all layers of the p53 response can be

affected in different cell lines. For instance, different

sets of active interconnected signalling pathways as

well as cell type-specific chromatin modifications can

shift the final cell fate decision towards another out-

come (for a recent review, see [103]). Taking this into

account, it is not too surprising that there are often

controversial reports regarding specific aspects of

p53-mediated cell decisions. However, if we embrace

the complexity and use systematic approaches to inves-

tigate it, we have the opportunity to use the well-

studied p53 system as paradigm to fully understand

the regulatory potential of cellular signalling and

decision-making.
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