Effective Integration of Sophisticated Operators in
Isogeometric Analysis with igatools.

Nicola Cavallini, Oliver Weeger, M. Sebastian Pauletti, Massimiliano Martinelli, Pablo Antolin

Abstract igatools is a newly released library for operators assembly in isogeometric analysis. The
library, which is object oriented designed and written in C++11, is general purpose, therefore it is not
devoted to any specific application. In this paper we show that such a design makes igatools an
effective tool in assembling isogeometric discretizations of sophisticated differential operators. This
effectiveness will be demonstrated by showing code snippets relating one-to-one with the operators
written on paper. To embrace a wide audience, applications from nonlinear incompressible solid
and fluid mechanics will be addressed. In both cases we are going to deal with mixed isogeometric
formulations. The applicative nature of this paper will be stressed solving industrially relevant tests
cases.

Key words: isogeometric analysis, nonlinear incompressible elasticity, computational fluid dynam-
ics

1 Introduction

Scientific computing is an area where expertise from several backgrounds such as computer science,
engineering, mathematics, and physics come together. Contributions to this scientific field range
from most theoretical to the most applied ones. With this work we address the numerical solution

N. Cavallini

Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste, Italy, e-mail: nicola.cavalli@sissa.it
O. Weeger

TU Kaiserslautern, Faculty of Mathematics, P.O. Box 3049, 67653 Kaiserslautern, Germany, e-mail: weeger@rhrk.
uni-kl.de

M. S. Pauletti

Instituto de Matemdtica Aplicada del Litoral (IMAL), Consejo Nacional de Investigaciones cientificas y técnicas
(CONICET), Santa Fe, Argentinia.

M. Martinelli

Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI), Consiglio Nazionale delle Ricerche (CNR),
Pavia, Italy

P. Antolin

Universita degli Studi di Pavia, Dipartimento di Ingegneria Civile ed Architettura, Via Ferrata 3, 27100 Pavia, Italy

Availableunderonly therightsof useaccordingto UrhG.

nicola.cavalli@sissa.it
weeger@rhrk.uni-kl.de
weeger@rhrk.uni-kl.de
Team DPUB
Schreibmaschinentext
Available under only the rights of use according to UrhG.

2 N. Cavallini et al.

of nonlinear partial differential equations arising from industrial applications in solid and fluid
mechanics. The aim of the paper is to demonstrate that the newly released software library igatools
allows an effective implementation of isogeometric finite element discretizations of rather complex
differential operators, here in particular mixed formulations of nonlinear incompressible elasticity
and Navier-Stokes equations, defined on complex domains.

As the software prefix iga suggests, we are dealing with isogeometric type of spaces. Isogeometric
analysis has been introduced in [25] with the aim of bridging scientific computing and computa-
tional geometry. The basic idea here, is to use the shape functions that describe the geometry, as
basis functions for a Galerkin method. Several aspects in computational modeling benefit from this
linking. In particular, an appealing aspect of this approach is the higher inter element continu-
ity that characterizes the shape functions describing the geometry and numerical solution. Among
other contributions we would mention [I4] for structural vibration, [28] for shell structures and [36]
in non-linear vibration analysis. In fluid dynamics we would like to mention [6] [7] for a variational
multi scale modeling approach to turbulent flows and [20] for divergence conforming B-splines.

igatools is an object oriented library for discretization of partial differential equations, using iso-
geometric type of spaces. It has been first presented in [30] and it is available under GPL conditions
at www.igatools.org. The idea that underlays the software design is encapsulating mathematical con-
cepts used in isogeometric method into objects, namely classes. Mapping the interaction between
classes we get methods used in the actual integration. The software is implemented in C++11 [8] [27]
and it makes an extensive use of generic programming, templates in C++. In this context, generic
programming is particularly useful to obtain dimension independent code, a very interesting feature
of the software.

This paper is devoted to the community of scientists curious about numerical solution imple-
mentation of partial differential equations. In this respect we thought at two model readers. Those
who might be skeptic about object oriented programming in scientific computing, and to those
who already have an acquaintance with this programming style. We aim at involving the first class
of readers showing that a carefully designed software can help in implementing non elementary
operators. In the second case we would like to capture their attention in a collaborative way. To
pursue this twofold objective, we think there is no better way rather than presenting a simple way
of implementing sophisticated operators. The implementation ease will be demonstrated providing
code snippets, that prove a one-to-one correspondence between the way we write the operators on
paper and the way these operators are coded in assembly loops.

Validation of the software will be provided with respect to literature test cases and, industrial
applications will be presented to prove feasibility of the software in applicative contexts. In order
to embrace the widest possible audience, we present two systems of partial differential equations,
one arising from solid mechanics and one from fluid dynamics. In both cases the problems are
nonlinear. Though this paper is not focused on numerical treatment of nonlinear systems, we would
like to remark that the nonlinearities treatment is a matter of linear algebra strategies, that do not
interfere with operators assembly.

One of the goals of this paper is to show that igatools can be an effective tool in industri-
ally relevant applications. igatools development has been supported by several institutions and
projects. In the context of this paper, a special mention goes to the TERRIFIC project, as the
presented applications are partial fulfillment of the project itself. TERRIFIC (Towards Enhanced
Integration of Design and Production in the Factory of the Future through Isogeometric Technolo-
gies) is a project within the seventh framework program of the European Union, that lasted from
1st of September 2011 to the 31st of August 2014. The aim of the project was to inject isogeometric

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools. 3

analysis in an industrial context. The geometries presented are courtesy of ALENIA aeronautica, in
particular the authors are grateful to L. Morrone and G. Mirra. The other supporting institutions
and projects will be listed in the acknowledgments.

In Section 2] we continue with a brief summary of igatools design. As the applications we are
going to deal with require mixed formulations, we recall the isogeometric formulation of Taylor-
Hood elements in Section [3] In Section [4 we detail our computational mechanics applications and
in Section [5] our fluid dynamics applications are addressed. Finally, in Section [6] we conclude the

paper.

2 igatools Design Description

The software prefix iga restricts the discussion to isogeometric methods. Isogeometric methods
commonly address Galerkin approximations, characterized by high inter element continuity of basis
functions. Originally, in historical sense, basis functions for isogeometric methods are B-Splines and
NURBS, the interested reader can refer to [31}, [32] for a precise definition, and to [30] for igatools
related notation. Other than these, new reference spaces have been introduced lately. The reader
can refer to [5, 16, 2], B3] for T-splines, to [I5] for locally refined splines, and to [21], 23] [35] for
hierarchical splines. In this paper, we are going to use B-splines. B-splines of degree d and regularity
r (0 <7 < d) will be addressed as Splines S¢. In this section we briefly review the objects, or classes,
that build the backbone of the software. As extensively explained in [30], these objects are designed
to resemble the key mathematical concepts in isogeometric methods. A visual sketch of the major
players is outlined in Figure

Reference Space (BSplineSpace and NURBSSpace)

The classes BSP1ineSpace and NURBSSpace represent the shape functions defined on the parametric
domain (usually the unit square in two dimensions and the unit cube in three dimensions). These
spaces can be non-homogeneous, in the sense that they can be characterized by different degrees
and regularities in each dimension.

Mapping (Mapping)

The mathematical mapping is the object that maps the parametric domain into the physical one.
Notice that, in principle, there is no reason why this mapping should be restricted to isogeometric
type of maps. Moreover, in the desired case of an isogeometric type of map, Mapping is not supposed
to be refined together with the reference space to achieve convergence.

Push Forward (PushForward)

The PushForward object combines the Mapping together with the TransformationType. The trans-
formation type defines how to transform functions. Depending on the different transformations,

4 N. Cavallini et al.

igatools Classes

TransformationType: Manbing:
H(grad, 22), H(div, 2), Moo E
H(curl, 2), L2(£). Pl

PushForward

Q C Rdimfcodim

ReferenceSpace J

PhysicalSpace
2 C Run

Fig. 1 In this sketch we picture the major object we isolated in isogeometric analysis, together with their mathe-
matical symbols. We outlined that in general the dimension of the reference space can differ from the physical space,
this difference is addressed as codimension codim.

different operators can be preserved throughout the transformation itself. Example transformations
are H(grad, 2), H(div, 2), H(curl, £2) and L?(2).

Physical Space (PhysicalSpace)

The combination of the ReferenceSpace with the PushForward gives the PhysicalSpace. This
class contains all the information necessary to recover point values of functions and derivatives on
the physical domain. This point values are the ones used to assemble the desired operators.

Element Iterator (ElementIterator)

One of the similarities between standard finite elements and the isogeometric method, is the decom-
position of the domain in a collection of elements where a small number of functions have support.
The global matrix, is built ¢terating through all the elements in the grid. In object oriented program-
ming the mechanism that points to an element, and modifies itself to point to the next element is
called iterator. In [30] we pointed out that we consider the previously mentioned classes as grid-like
containers, this why the element level information is accessed via the ElementIterator class.

For an immediate flavor on how a simple [Vu Vv operator is assembled, we sketch a sort of
“Hello World” program, in Listing [I| In the first four lines we define the presented classes. We
start with a CartesianGrid, namely the knots without repetitions. This class is used to build
the corresponding BSplineSpace. The transformation type (h_grad, in this case) couples with a
Mapping to build the PushForward. Finally it only remains to instantiate the PhysicalSpace as
the combination of BSplineSpace and PushForward. The mechanism that implies the initialization
of the cache elem->init_values() and its filling is detailed in [30]. In this paragraph we limit
ourselves to emphasize that we access the shape function values, using PhysicalSpace as a grid-
like container, to assemble the local matrix.

0~ Uk W

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools. 5

auto grid = CartesianGrid<dim>::create(box, n_knots);

auto ref_space = BSplineSpace<dim>::create(grid, deg);

map = BallMapping<dim>::create(grid);

space = PhysicalSpace<BSplineSpace<dim>, PushForward<h_grad, dim>>::create(

ref_space, PushForward<h_grad, dim>::create(map));

auto elem = space->begin(); const auto elem_end = space->end();
ValueFlags fill_flags = ...
elem->init_values (fill_flags, elem_quad);

for (; elem != elem_end; ++elem){
elem->fill_values ();
for (int i = 0; i < n_basis; ++i){

for (int j = 0; j < n_basis; ++j){
for (int gqp = 0; gp < n_gp; ++gp){
loc_mat(i,j) += scalar_product(
elem->get_basis_gradient (i,qp),
elem->get_basis_gradient(j,qp))* w_meas[qpl;}}}

Listing 1 A first “Hello World” like code. Intended to assemble a simple f Vu Vv operator.

3 Mixed methods with isogeometric finite elements

The mathematical description of physical phenomena involves several mechanisms interplaying at
the same time. It often happens that different independent variables are necessary to describe a
given mechanism. When such independent variables are discretized using different solution spaces
we have a mixed method.

A typical case is an equation of motion coupled with an incompressibility constrain. In the
applications we are going to address, namely incompressible elasticity (Section and incompressible
Navier-Stokes (Section [f]), the independent variables are two. The first one will be referred to as
u and will be used to describe velocities or displacements. The second one is going to be p that
represents the Lagrangian multiplier of the incompressibility condition. In both mechanical and
fluid dynamical contexts the discretization and linearization of the continuous operators will lead
to a block linear system of the form:

A BT u) [(f
(5) ()= ()

If we consider the two discrete spaces V;, and Qp, for u and p respectively, it is well known that
these two spaces have to satisfy the inf-sup condition, see [I} [0, [10]. In standard finite elements, an
established choice is the Taylor-Hood element. Here the discrete spaces for u and p share the same
triangulation and the inf-sup condition is fulfilled when the degree of the shape functions for u is
d + 1, being d the shape functions degree for p.

The isogeometric counterpart of standard Taylor-Hood elements is constructed choosing V;, =
(iji)dim and Q = Sfll_l, being dim the dimension. This type of element has been first used in [4]

and a stability proof can be found in [II]. For sake of clearness we represent in one dimension the
shape functions corresponding to S3/S7 pair in Figure

6 N. Cavallini et al.

0.9

0.8~

0.7

0.6
0.5
'

0.4 '
'

'

0.3 H
'

0.21- 1
'
'
'

0.1

T
1
1
1
1
1
1
1
1
1
1
Y
1
1
1
1
1
1
1
1
1
1
!

]
5 05 0.75 1

) S

0 0.

(a) Space Qp = 812 for the Lagrangian multiplier p

T
1
1
1
1
1
1
1
1
1
1
9
v
1
1
1
1
1
1
1
1
1
!

)
'
'
'
'
'
'
'
'
'
!

.7

0 0.25 05 0.75 1

(b) Space V), = S} of primal variable u

Fig. 2 In this figure we sketch one dimensional shape functions for the Taylor-Hood type of spaces. In particu-
lar we represent Sf’ splines for the velocity, and S% splines for the pressure. The corresponding knot vectors are:
Zu ={0,0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1, 1, 1} for the velocity and =, = {0,0,0,0.25,0.5,0.75,1, 1,1} for the
pressure.

As mentioned in Section[2] the software design should resemble the mathematical concepts needed
to integrate the boundary value problem we are interested in, in a one-to-one correspondence. As
different spaces are required to solve for u and p, the same situation will be reproduced in the code.

Listing [2] reports the code necessary to define Qj, and V. We first focus on the solution space
for p, namely BSplineSpace<dim>. As previously mentioned, one of the most appealing features of
igatools is its code dimension independence. In the present case of a scalar space, we only need
to define the first template parameter as dim, the other template parameters are default defined to
give a scalar space. A bit different is the situation for the vector space V. In this case mathematics
is elegantly resembled by specifying the second template parameter, the equations range is the same
as the problem dimension, this is why we get BSplineSpace<dim,dim>.

In code snippet in Listing [2] the reader can also notice how two different vectors, mult_u and
mult_p, are defined to assign the right multiplicity to each knot. Following the Taylor-Hood element
definition, the two spaces must have the same regularity and different degree, and we need to set
the knots multiplicity to obtain compatible spaces.

0~ Uk W

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools. 7

using PreSpace = BSplineSpace<dim>;
using VelSpcae = BSplineSpace<dim, dim>;

deg_u = deg_p + 1;

shared_ptr<BSplineSpace<dim>> pre_space;
shared_ptr<BSplineSpace<dim, dim>> vel_space;

vector<int> mult_p(n_knots, deg_p - reg);
vector<int> mult_u(n_knots, deg_u - reg);
mult_p[0] = mult_p[n_knots-1] = deg_p + 1;
mult_u[0] = mult_uln_knots-1] = deg_u + 1;

pre_mult.fill (mult_p);
vel_mult.fill (mult_u);

pre_deg.fill(deg_p);
vel_deg.fill(deg_u);

auto grid = CartesianGrid<dim>::create(n_knots);
pre_space = PreSpace::create(grid, pre_mult, pre_deg);
vel_space = VelSpace::create(grid, vel_mult, vel_deg);

Listing 2 Definition of to different spaces for the variables u and p. In this listing we detail the construction of
spaces with different degrees and multiplicites.

4 Computational Mechanics: Nonlinear Incompressible Elasticity

As a first application for the igatools implementation of a mixed method, we present the isoge-
ometric discretization of nonlinear elasticity, i.e. large deformation kinematics and a hyperelastic
constitutive law, subject to an incompressibility constraint.

Incompressible elasticity has been studied already by a few researchers in the context of isogeo-
metric formulations. Elguedj et al. investigated the use of B- and F-projection methods for linear
and nonlinear incompressible elasticity. Taylor [34] and Mathisen et al. [29] employed a three-field
mixed approach for nonlinear incompressible elasticity with independent approximation of u, p and
0. Here we use a classical mixed method with independent variables u and p, as presented in the
previous Section, and outline its implementation using igatools. The developed solver is validated
using a well-known benchmark example and then applied to an industrial test case.

In this paper we employ the Langrangian or material description of the large deformation elas-
ticity problem in dim = 2,3 dimensions, as for instance introduced in [T, 37]. Thus, a body in its
undeformed, Lagrangian configuration is given by its reference or material domain 2 € R%® and
its deformed, current configuration is expressed with the mapping ¢ : 2 — R":

P(X) = X + 0(X). 1)

Following the notation of [I] from the displacement field & we can derive the kinematic quantities
such as the deformation gradient

F=F()=T+Va, 2)

8 N. Cavallini et al.

and the right Cauchy-Green strain tensor

C=C(a) =FTF. (3)

J = det F is the determinant of the deformation gradient and for a purely incompressible material
it must hold J = 1.

Using Lamé parameter p and a pressure-like variable p we can introduce the elastic energy
functional for a purely incompressible Neo-Hookean material:

Helast(ﬁaﬁ) = /

n{;u [I:C—d] _Mlnj+p1n(j)}drz—f(ﬁ,v)~ (4)

Here F(1,) denotes the external energy functional and has the form

f(ﬁ,y)zy(/gf.ﬁd9+/mp-ﬁdrz>, (5)

where f is a body load, p a traction force acting on the Neumann boundary of the domain I'y C 62
and v € R a load parameter.

For the minimization of the energy functional it follows from the calculus of variations that
the total differential of I1.;,s; must be zero,

dHelast(ﬁyﬁ) [Va q] = Oa

for all generic virtual displacement fields v and pressure fields gq. Explicitly this reads:

F—F7]:Vv pE T Vv — F(viny) = v
;L/Q[F F]:V +/QpF Vv —F(v;y) =0 Vv, "
/an(j)q:() Vg.

The nonlinear system of equations @ is then discretized using isogeometric Taylor-Hood ele-
ments in order to obtain displacements &1 € V;, and pressures p € Q. We also need to evaluate the
second derivative of the energy functional , in order to setup a Newton’s method for our solver:

dQHelast(ﬁaﬁ)[<u>p)7 (V> Q)] = a“/(ua V) + b'y(vap) + bv(ua Q>7 (7)

where
w @)= [Vai Vvt [e BT B,
2 n
3 (8)
by(v,q) ::/ gFT:.Vv.
7]

This formulation is a good example of what the authors intend as “sophisticated formulation”.
If we were to give a precise definition of “sophisticated” in this context, we would define it as an
open scale, where grade zero is the classical [o Vu- Vv arising from a Poisson’s problem. Of course
we do not aim grading every possible operator, but we think that a good measure of complexity is
the number of manipulations beyond the classical grad — grad. It is in such cases that igatools
can help.

0O U W

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools. 9

In particular we focus on the term

/qF*T:Vv
Q

from , which serves as a good example for the difficulties in this formulation. Its implementation
is sketched in Listing [3] We first start by noticing that this is a mixed element. As we have two
different spaces for u and p we need to iterate trough both of them and therefor we need two different
iterators: the fist one is defo_elem, which iterates over the elements of the deformation space, and
the second one is prex_elem, which iterates over the elements of the pressure like space. The single
terms such as F, Vv, or q are defined as tensors, and we refer to igatools documentation of the
Tensor class for details [26]. Two classical for loops are used to evaluate Vu and p at quadrature
points. Then F~7 can be easily evaluated combing the inverse and the transpose functions. Once
all the variables have been evaluated, they can be combined to obtain the local contribution to the
tangent matrix evaluation. The remaining terms of the residual and tangent matrix are assembled
in an analogous way. Once all the operators are in place, the setup of a Newton’s method is a matter
of linear algebra.

for (; defo_elem != defo_end ; ++defo_elem, ++prex_elem)
{
for (Index q = 0; q < n_qgp; ++q)
{
for(Index i = 0; i < defo_loc_ndofs; ++i)
defo_grad_q += defo_vec(dof) * grad_phi_ql[il;
for(Index i = 0; i < prex_loc_ndofs; ++i)

prex_q += prex_vec(dof) * prex_phi_ql[il;
defgrad_q = unit_defgrad + defo_grad_q;

inverse (defgrad_q,defgrad_inv_q);
defgrad_invT_q = transpose(defgrad_inv_q);

for (Index i = 0; i < defo_loc_ndofs; ++i)
defo_loc_res (i) += mat_mu * prex_ql[0] *

scalar_product (defgrad_invT_q, grad_phi_ql[il) *w_meas[q];

}

Listing 3 Assembly of the mixed term in the second variation of the energy functional.

For validation of the implementation we chose the well-known Cook’s membrane problem as
benchmark [I3]. This is a well established test in the context of finite element and also isogeometric
methods [I7, 29]. It is used by a number of researchers to validate solvers and benchmark perfor-
mance of discretizations. Cook’s membrane is a 2D panel, clamped on its side and subject to a
shear load on the right side, causing combined bending and shear deformation. Geometry, dimen-
sions and values of parameters can be found in Figure 3| The quantity of interest is the horizontal

10 N. Cavallini et al.

48 mm

Uy

16 mm F

44 mm
E = 240.565 MPa
v = 0.4998
F =100 kN

L

Fig. 3 Cook’s membrane problem. A 2D panel clamped on the left side, subject to shear load on right side

deformation of the top right corner of the panel u,, which is used to study p/k- and h-convergence
and locking-free behavior of mixed elements.

In Figure E| convergence behavior of u, with respect to the total number of degrees of freedom
is shown. We compare the isogeometric Taylor-Hood elements with pure displacement isogeometric
formulations. The Poisson’s ratio v is set to 0.4998 that correspond to nearly incompressible mate-
rial. The displacement-based show a rather slow convergence gradient due to locking. On the other
hand, as expected, the Taylor-Hood elements converge quickly for p/k- and h-refinement. These
results also match very well with the ones obtained by [I7], where an isogeometric F-method was
used instead of a mixed formulation.

Even though the purely displacement formulation also converges towards the correct value of
uy for higher polynomial degree and number of degrees of freedom, the approximation of stresses
exhibits spurious oscillations, which are typical for locking phenomena. In Figure [5| we plot the
stress component o,,. The non mixed elements show a highly oscillatory behavior of volumetric
stress components — a typical sign of volumetric locking — while the stress distributions for mixed
elements are smooth.

The geometry of a pneumatic pipe, used in aircraft manufacturing, is one of the industrial appli-
cations within the TERRIFIC project. Using symmetry boundary conditions we can parametrize
only half of the pipe as a B-Spline volume with degrees d = (1,2,2) and n = (2, 34, 3) control points,
i.e. 204 control points of the volume. The first parameter direction is the thickness of the pipe, the
second the circumferential direction and the third its length. For numerical computations we degree-
elevate to d = (2, 2,2) and perform four steps of uniform A-refinement in the length-direction. Thus
we have the following Taylor-Hood spaces for pressure and displacements:

dy = (2,2,2), n, = (3,34,18), N, = 1836,

9
dy = (3,3,3), nu = (4,66,34), N, = 8976. ©)

here n stands for degrees of freedom per direction, while N indicates the total number of degrees
of freedom. The material parameters of the pipe are:

E =240.565 MPa, v =05, p=10-10% kg/m®. (10)

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools. 11

1073
8 —_ —
oo—— —
s —
6 -
)
>
3
-
g
£ 4 .
S
=
[oN)
0
5 / —— S}
> 9 |- _._S% |
—O—SS
— 55/
S9/5¢
0 111 111 I I
10! 10? 103 104

total degrees of freedom N

Fig. 4 Convergence test for the Cook’s membrane. The reader can notice the fast convergence the Taylor Hood
elements and a slower convergence for pure displacements formulation. In the following, the plots of the stresses, will
demonstrate that volumetric locking is preventing from a fast convergence.

Boundary conditions are symmetry, zero displacement at long ends and an outwarded-directed
Neumann load. We run 10 load steps increasing the magnitude of the surface load from 1.0 kN to
10.0 kN.

Figure [6] shows the deformed pipe after 10 load steps. Large displacements occur and no volume
change is visible in the Figure. In Figure |Z| the evolution of displacements u, u, and pressure-like
Lagrangian multiplier p, evaluated at the center point where maximum xz-displacement and pressure
occur, is plotted over the 10 load steps. The nonlinear behaviour can be noticed in the values of
the displacements and pressure.

5 Computational Fluid Dynamics

The laminar motion of an incompressible fluid is modeled by the the well known Navier-Stokes
equations. We first write the momentum conservation equation:

du+ (Vu)u = —Vp+ vV3u +f,

then the mass preservation one:
V-u=0.

Here u is the fluid velocity, p is the fluid pressure and v is the kinematic viscosity. The external
forces are denoted by f. As a matter of clearness, since it is going to be useful for the method

12 N. Cavallini et al.

stress xx stress xx
1.1e+7 1.1e+7
:0 :O
-2e+7 -2e+7
de+7 -de+7
-5e+7 -5e+7
(a) S3 with 4 elements per side (b) S$/S% with 4 elements per side
stress xx stress xx
1.1e+7 1.1e+7
0 0
-2e+7 -2e+7
-de+7 -de+7
-5e+7 -5e+7
(c) S3 with 16 elements per side (d) S3/S? with 16 elements per side

Fig. 5 Stress o4, for purely displacement-based and mixed formulations. The reader can notice how purely dis-
placement based formulations are affected from volumetric locking, while, as expected, mixed methods are not.

implementation, we explicitly write the component wise formulation of the momentum equation:

Uy Oz Uy Oylg g\ _ [Oup Ozag Uy + OyylUy [z
o (“y) * <aw“y ay“y) <“y> B <3yp> v <8w“y+ayyuy * fy)’

In the following, we focus on the stationary version of the problem:

(Vu)u—vV?u+Vp =f, (11)

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools. 13

u_y
0.03999
’E0.0Q
EO
-0.02
o E—0.04
R -0.04992
pressure
u_x .Be+6
0.04308
[0‘04 “2e+6
-0.03 E
Eo‘oz EO
8‘01 E—2e+6
0.00153 derb

Ed

o X

-4.1e+6

£

Fig. 6 Displacement and pressure of the pneumatic pipe after 10 load steps. Deformed pipe is colored by displacement
resp. pressure, initial un-deformed configuration is shown in translucent grey.

.10—2 106
10 I I 4.0 10 T T T T
. 4.0 |- ZI - 3.5 k
E ° Y
s 351 N 30| .
3 301 | % 2.5 =
2.5 -
£ g 2.0 |- -
qé 2.0+ . 5
o 1.5 -
% 1.5 | 2
5 10f : Lo a
© o5l 05| :
0.0 Il Il Il Il Il Il Il 0.0 Il Il Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 9 10 0 1 2 3 4 5 6 7 8 9 10

load steps

(a) displacements uz, uy

load steps

(b) pressure-like Langrangian multiplier p

Fig. 7 Evaluation of point values over load steps for pneumatic pipe provided by ALENIA.

The spatial integration of equation is again performed using the Galerkin approach. Given the
computational domain 2 C R%® we consider V;, C (H*(£2))%" the solution space for the velocity,
and Q, C L?(2) the solution space for the pressure. We consider all the v;, € V}, the test functions
for the velocity, then the assembled viscous term V2u correspond to the matrix A such that:

Ay = [(Fu): (9%

:/ <6wum 6yux) _<8mvm 8y'ux>
o \ Oztty Oyuy i Ozvy Oyvy) .-

14 N. Cavallini et al.

The convective term is a nonlinear one. For a given value of the velocity field we obtain the matrix

N:
Oply Oyt U v
Ni-:/ Vu-u~vi:/<wwyw>($>-(z>. 12
Q(7 o \ Oztty dyuy j \Uy Yy /J 12)

The operator that couples the momentum equation and the preservation of mass is BT:

BiTj:/ij~vi:/pj(ax%‘Fay'Uy)i-
0 9]

These operators when combined together result in the following block nonlinear system:

(755 G)=6)

The nonlinearity is treated with a classical, residual-tangent strategy. Given an initial guess for the
velocity ug we first obtain the tentative solution xj = (u,p), by solving:

() 6), - 6)

For k > 0 we need to form the residual F(xy):

- (52 (3),-6)

and correct the tentative solution with an approximation of the tangent. The correction at the k-th
step will be denoted as (du, dp)i. The most popular strategies to approximate the tangent are the
fixed point and the Newton approximation. In the first case we approximate the tangent with the

function itself: (up) T
A+ N(ug) B ou) _
(B 0 > <5p>kF(Xk)'

In the second case we consider a first order expansion of the operator:

<A+N(uk) + D(uy) BT> <6u>

B 0 5p = _F(Xk)'

k

In this case we need to assemble the function Jacobian as well:

Ozptug Oyu U v
’ /Q(Ui v /Q<amu1/ ay“y) (“y>g <vy>i "

Finally, the solution is updated with its correction:

(3),, = (0), (),

the procedure stops when the residual satisfies a given tolerance.

0~ O U W

© 00~ O Ui Wi

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools. 15

Now we intend to focus on the two terms involved in the nonlinearity treatment. Looking at
the convective term, we have the velocity gradient applied to the fluid velocity. This mathematical
formulation has a pretty simple implementation in igatools. In Listing [l we have the gradient of
the trial function that acts, through the function action, on a point evaluation of the velocity vel_g.
The result of this action is scalar multiplied with the test functions, by using a scalar_product
function. In this way we obtain the local contribution to the global matrix. Almost the same
procedure applies to the evaluation of the operator . In this case the quantity that has to be
evaluated is the velocity gradient grad_vel_q. We evaluate the action of the velocity gradient on
the trial functions, and then we perform the scalar_product with the test functions to get the
local contribution to the global matrix, see Listing [5| Both vel_q and grad_vel_q are considered
as tensors. We refer to the Tensor’s class documentation for further details.

for (dof_index q = 0; gq < quad.get_num_points(); q++)

{
for (dof_index i = 0; i <local_ndofs; i ++){
auto phi = element->get_value(i,q);
vel_q = vel_g+vel[local_dofs[ill*phi;}
for (dof_index i = 0; i <local_ndofs; i ++){
for (dof_index j = 0; j <local_ndofs; j ++){
adv_ij = scalar_product(action(element->get_gradient(j,q),vel_q),
element ->get_value(i,q))=*
element ->get_w_measures () [q];]1}}
}

Listing 4 Code snippet for the advection operator assembly. In this case the reader can notice the point evaluation
of the velocity, the action of the velocity gradient on the velocity value, and the scalar product with the velocity test
functions.

for (dof_index q = 0; q < quad.get_num_points(); q++)

{
for (dof_index i = 0; i <local_ndofs; i++){
auto grad_phi = element->get_gradient(i,q);
grad_vel_q = grad_vel_q + vel[local_dofs[i]] * grad_phi;}
for (dof_index i = 0; i <local_ndofs; i++){
for (dof_index j = 0; j <local_ndofs; j++){
jac_ij = scalar_product(action(grad_vel_q,element->get_value(j,q)),
element ->get_value(i,q))*
element ->get_w_measures () [q];}}
}

Listing 5 Code snippet for the Jacobian assembly. In this case we have the point evaluation of the velocity gradient.
Then the velocity gradient acts on the trial functions. The result of this multiplication is scalar multiplied with the
test functions, to get the local contribution to the global matrix.

0~ O Uk W

16 N. Cavallini et al.

The solver is tested using the cavity flow test case. This is a typical test case for stationary
Navier-Stokes equations [22] 24]. The horizontal velocity u, is imposed at the top of a square
domain. Its value is:

sin(mx/2a) ifo0<z<a
ug(x) = 1 ifa<z<l-a
sin(m(l1 —x)/2a)if 1l —a<z<1

with @ = 1/32. No-slip boundary conditions are imposed elsewhere. It is known that isogeometric
shape functions are not interpolatory to the degrees of freedom. It is then necessary to define values
for the imposed degrees of freedom. In igatools, Listing[6] this is done defining a CavityVel class
that inherits form the base class Function and providing implementation for the virtual function
function evaluate. At this point the user is let to define an instance of his own class CavityVel
and igatools will take care of evaluating an L? projection of the boundary function on the velocity
trace space. The resulting dof _values will be applied to global matrix, right hand side and solution.

class CavityVel : public Function
{
public:

CavityVel () : Function() {}

void evaluate(const ValueVector & points,
ValueVector & values) const;

}

CavityVel cv;
project_boundary_values (cv,velocity_space,face_q,direchelet_id,dof_values);
apply_boundary_values (dof_values ,matrix,rhs,solution)

Listing 6 In this code snippet we present how to impose non constant boundary conditions for our problem. The
user needs to create a derived class that represents the function to be evaluated. Implementation for the evaluate
virtual function has to be provided. igatools will take care of L? projecting the function on the velocity boundary
trace space. The resulting values will be applied to the global matrix, right hand side and solution.

Once the solver is implemented we start with the experiments. In Figure |8 we represent the
residual and the correction for Reynolds’s number Re = 100 for each iteration of the nonlinear
solver. As expected, the residual and correction drop linearly with the fixed point type of iterations,
and quadratically with the Newton’s solver.

In the present case of the cavity flow experiment we used S} splines for the velocity and S?
splines for the pressure with mesh size h = 1/32. Efficient linear algebra solvers for this system is
still an active research area, the reader can refer to [I8] [19] as example references. In this experiment
and in the ones that follow case we set for a standard direct solver.

In a second set of experiments we consider increasing Re numbers. The solution space is still
S1/53, but the mesh size is 64 x 64 elements. In Figure |§|we present the velocity streamlines. The
colormap pictures the velocity magnitude that ranges from zero to one. The agreement with results
from [22] is good and the solver can be considered as validated.

The industrial test case we are considering is a ventilation outlet of an aircraft cabin, see Figure
I10(a)| for the geometry. Dirichlet inlet boundary conditions and Neumann boundary conditions at
the outlet are applied with Re = 10,000. Shape functions spaces are S? for the velocity and S? for

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools. 17

1074} @@ Fixed Point 1078 F S b fo (@@ Fixed Point
®—® Newton H @& Newton

107 107" ; :
o 10712 _ 107
=l g
iel
S g
g 10—16 g
3 /e

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Iteration Iteration
(a) Solution correction. (b) Residual.

Fig. 8 Correction and residual for the cavity flow test case with Re = 100.

the pressure. The mesh is 16 x 32 x 8 resulting in approximately 200,000 degrees of freedom for the
velocity. The final results are visualized in Figure where Figure shows the pressure map
and the velocity is represented in Figure At this Reynolds number the fluid velocity does
not diffuse uniformly along the outlet section and higher velocities are concentrated in the middle
of the section.

6 Conclusions

In this paper we showed how igatools is an effective tool for assembling isogeometric discretizations
of sophisticated operators. igatools has been recently released and its design has been presented in
[30]. Only time will say if its design will be capable to attract new users and developers. We intended
to demonstrate that we are on a good track in this direction. We picked sophisticated operators
arising from industrial applications, and showed that a one to one relationship exists between how
we write operators on paper, and how we implement them using igatools. We believe this attempt
has been successful both in computational mechanics and computational fluid dynamics. In order
to demonstrate a realistic effectiveness of the software we solved industrially relevant applications.

Acknowledgements

The authors are grateful to C. Lovadina for the useful discussion. N. Cavallini and O. Weeger
have been supported by the TERRIFIC project, European Community’s Seventh Framework Pro-
gramme, Grant Agreement 284981 Call FP7-2011-NMP-ICT-FoF. In all the experiments in this
paper we used linear algebra packages from deal.II [2] [3].

18 N. Cavallini et al.

(d) Re = 5000.

Fig. 9 Cavity flow test case for the Navier-Stokes solver. Colormap represents the velocity magnitude in a scale the
ranges from zero to one.

Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools. 19

pressure

M‘HHOMHMWHHMH

o
o©

o
o

~

©
N

-0.00862 %0

(a) Pressure map. (b) Velocity quiver.

Fig. 10 Pressure map and velocity quiver for the aircraft cabin ventilation outlet. In this simulation Re = 10000,
shape functions are S% / S%, the number of knots, without repetitions, is 17 x 33 x 9. Inlet velocity is imposed, stress
free on the outlet, and no slip at the boundary.

References

10.

11.

12.

. Ferdinando Auricchio, Loureno Beiro da Veiga, Carlo Lovadina, Alessandro Reali, RobertL. Taylor, and Peter

Wriggers. Approximation of incompressible large deformation elastic problems: some unresolved issues. Compu-
tational Mechanics, 52(5):1153-1167, 2013.

. W. Bangerth, R. Hartmann, and G. Kanschat. deal.Il — a general purpose object oriented finite element library.

ACM Trans. Math. Softw., 33(4):24/1-24/27, 2007.

. W. Bangerth, T. Heister, and G. Kanschat. deal.II Differential Equations Analysis Library, Technical Refer-

ence. http://www.dealii.org.

. Y. Bazilevs, L. Beirao da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli. Isogeometric analysis: Ap-

proximation, stability and error estimates for h-refined meshes. Math. Mod. Meth. Appl. S., 16(07):1031-1090,
2006.

. Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott, and T. W. Sederberg.

Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Engrg., 199(5-8):229-263, 2010.

. Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale modeling of wall-

bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput. Methods
Appl. Mech. Engrg., 199(13-16):780-790, 2010.

Y. Bazilevs, Christian Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale modeling
of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput.
Methods Appl. Mech. Engrg., 199(13-16):780-790, 2010.

Pete Becker. Working draft, standard for programming language C++. Technical Report N3242=11-0012,
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, February 2011.
D. Boffi, F. Brezzi, and M. Fortin. Mized Finite Element Methods and Applications. Springer Series in Compu-
tational Mathematics. Springer London, Limited, 2013.

Daniele Boffi and Carlo Lovadina. Analysis of new augmented lagrangian formulations for mixed finite element
schemes. Numerische Mathematik, 75(4):405-419, 1997.

Andrea Bressan and Giancarlo Sangalli. Isogeometric discretizations of the Stokes problem: stability analysis by
the macroelement technique. IMA J. Numer. Anal., 2012.

A. Buffa, D. Cho, and G. Sangalli. Linear independence of the T-spline blending functions associated with some
particular T-meshes. Comput. Methods Appl. Mech. Engrg., 199(23-24):1437-1445, 2010.

20

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

N. Cavallini et al.

R.D. Cook. Improved two-dimensional finite element. Journal of the Structural Division, 100:1851-1863, 1974.
J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes. Isogeometric analysis of structural vibrations. Comput.
Methods Appl. Mech. Engrg., 195(41-43):5257-5296, 2006.

Tor Dokken, Tom Lyche, and Kjell Fredrik Pettersen. Locally refinable splines over box-partitions. Technical
report, SINTEF, February 2012.

M. Dérfel, B. Jittler, and B. Simeon. Adaptive isogeometric analysis by local h-refinement with T-splines.
Comput. Methods Appl. Mech. Engrg., 199(5-8):264-275, 2009.

T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes. B-bar and f-bar projection methods for nearly
incompressible linear and non-linear elasticity and plasticity based on higher-order nurbs elements. Computer
Methods in Applied Mechanics and Engineering, 197:2732-2762, 2008.

H.C. Elman, D.J. Silvester, and A.J. Wathen. Finite Elements and Fast Iterative Solvers : with Applications in
Incompressible Fluid Dynamics: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics
and Scientific Computation. OUP Oxford, 2005.

Howard C. Elman, David J. Silvester, Andrew, and Andrew J. Wathen. Performance and analysis of saddle point
preconditioners for the discrete steady-state navier-stokes equations. Numer. Math, 90:665-688, 2000.

John A. Evans and Thomas J. R. Hughes. Isogeometric divergence-conforming B-spline for the steady Navier—
Stokes equations. Math. Mod. Meth. Appl. S., 23(08):1421-1478, 2013.

D. R. Forsey and R. H. Bartels. Hierarchical B-spline refinement. In SIGGRAPH ’88 Proceedings of the 15th
annual conference on Computer graphics and interactive techniques, pages 205-212; 1988.

U. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow using the Navier-Stokes equations
and a multigrid method. Journal of Computational Physics, 48:387-411, December 1982.

C. Giannelli, B. Jiittler, and H. Speleers. THB—splines: The truncated basis for hierarchical splines. Compute.
Aided Geometric D., 29:485-498, 2012.

R. Glowinski, P. G. Ciarlet, and J. L. Lions. Numerical Methods for Fluids, volume 3 of Handbook of numerical
analysis. Elsevier, 2002.

T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact
geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg., 194(39-41):4135-4195, 2005.

igatools 0.3.0. An isogeometric analisys tool library - documentation and manual, October 2014.

ISO/IEC 14882:2011 — Information technology — programming languages — C++, 2011.

J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wiichner, and K.-U. Bletzinger. Kirchhoff-Love shell structures comprised
of multiple patches. Comput. Methods Appl. Mech. Engrg., 199:2403-2416, 2010.

K. M. Mathisen, K. M. Okstad, T. Kvamsdal, and S. B. Raknes. Isogeometric analysis of finite deformation
nearly incompressible solids. Rakenteiden Mekaniikka (Journal of Structural Mechanics), 44(3):260-278, 2011.
M. S. Pauletti, M. Martinelli, N. Cavallini, and P. Antolin. Igatools: An isogeometric analysis library. I.M.A.T.I.-
C.N.R., pages 1-27, 2014.

L. A. Piegl and W. Tiller. The NURBs Book. Monographs in Visual Communication Series. Springer-Verlag
GmbH, 1997.

Larry L. Schumaker. Spline functions: basic theory. Cambridge Mathematical Library. Cambridge University
Press, Cambridge, third edition, 2007.

M. A. Scott, X. Li, T. W. Sederberg, and T. J. R. Hughes. Local refinement of analysis-suitable T-splines.
Comput. Methods Appl. Mech. Engrg., 213216(0):206 — 222, 2012.

R. Taylor. Isogeometric analysis of nearly incompressible solids. Int. J. Numer. Meth. Engng., 87(1-5):273288,
2010.

A.-V. Vuong, C. Giannelli, B. Jiittler, and B. Simeon. A hierarchical approach to adaptive local refinement in
isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 200:3554-3567, 2011 Dec.

Oliver Weeger, Utz Wever, and Bernd Simeon. Isogeometric analysis of nonlinear Euler Bernoulli beam vibrations.
Nonlinear Dynam., 72(4):813-835, 2013.

P. Wriggers. Nonlinear Finite Element Methods. Springer, 2008.

	Effective Integration of Sophisticated Operators in Isogeometric Analysis with igatools.
	Nicola Cavallini, Oliver Weeger, M. Sebastian Pauletti, Massimiliano Martinelli, Pablo Antolín
	Introduction
	igatools Design Description
	Mixed methods with isogeometric finite elements
	Computational Mechanics: Nonlinear Incompressible Elasticity
	Computational Fluid Dynamics
	Conclusions
	References

