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Abstract: Amorphous/crystalline nanolaminate composites have aroused extensive research interest
because of their high strength and good plasticity. In this paper, the nanoindentation behavior of
Cu64Zr36/Cu amorphous/crystalline nanolaminates (ACNLs) is investigated by molecular dynamics
(MD) simulation while giving special attention to the plastic processes occurring at the interface. The
load–displacement curves of ACNLs reveal small fluctuations associated with shear transformation
zone (STZ) activation in the amorphous layer, whereas larger fluctuations associated with dislocations
emission occur in the crystalline layer. During loading, local STZ activation occurs and the number
of STZs increases as the indentation depth in the amorphous layer increases. These STZs are
mostly located around the indenter, which correlates to the high stresses concentrated around the
indenter. When the indenter penetrates the crystalline layer, dislocations emit from the interface
of amorphous/crystalline, and their number increases with increasing indentation depth. During
unloading, the overall number of STZs and dislocations decreases, while other new STZs and
dislocations become activated. These results are discussed in terms of stress distribution, residual
stresses, indentation rate and indenter radius.

Keywords: molecular dynamics (MD) simulation; nanoindentation; amorphous/crystalline nanolam-
inates (ACNLs); shear transformation zone (STZ); dislocation

1. Introduction

Metallic glasses (MGs) exhibit excellent mechanical, chemical and physical perfor-
mances owing to the lack of grain boundaries and crystal defects [1–3]. However, their
limited ductility with almost no global plasticity has impeded the wide application of MGs
as structural materials. To overcome this limitation, amorphous/crystalline nanolaminates
consisting of nanoscale amorphous and ductile crystalline layers (ACNLs) have received
attention due to their high strength and good plasticity [4–6].

At the nanoscale, the co-deformation of glassy and crystalline layers can effectively pre-
vent catastrophic and localized shear banding [7–9]. Due to the extreme difficulties of in situ
experimental observation and the microstructural complexity of amorphous/crystalline
interfaces, molecular dynamics (MD) simulation is suitable for probing atomic-level struc-
tural changes and the complex deformation mechanism. The STZ activation process in
the amorphous layers and dislocations nucleation and dynamics in crystalline layers have
recently been revealed by many MD simulations of ACNLs [10–12].

Previous studies [8,13,14] have demonstrated that ACNLs have both high-strength
and large plastic deformability because of the special mechanical behavior at the amor-
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phous/crystalline interfaces. Ass a popular experimental method, nanoindentation can
effectively investigate the mechanical properties of materials at the nanometer scale [15,16].
Atomistic models as a useful supplement can provide some important information for the
understanding complex microstructure evolution characteristics during nanoindentation;
especially they have the indisputable advantage of characterizing the dislocation move-
ment in crystalline materials [17–20] and shear bands (SB) in single-phase MGs [21–27],
respectively. Incorporating crystalline phases mitigates the poor failure resistance in MGs,
which accommodates plastic strain by dislocation slip, effectively preventing shear band
propagation [4–6,27–29]. More recent simulation studies have confirmed that the crystalline
phase inserted into the amorphous phase can impede the propagation of SBs, and plays a
vital role in the plastic deformation mechanism of ACNLs [30–37]. Furthermore, these stud-
ies also provide insight into how the microstructure, layer thickness and individual phase
properties can be tailored to optimize the mechanical properties of the composites [35–38].
Although atomic simulation of the nanoindentation behavior and the influence of different
factors on mechanical properties have been considered comprehensively, the change of
the local stress distribution from the amorphous layer to the crystalline layer and the
deformation behavior during the unloading process were not discussed yet. Moreover,
the activation of STZs, dislocation nucleation and the change of the stress distribution
during nanoindentation are seldom observed in experiments, especially in the unloading
process. Therefore, the details of the activation of STZs, dislocation nucleation and stress
distribution characteristics during nanoindentation loading and unloading processes still
remain largely speculative, and the question of how STZs and dislocations contribute to
the serrated flow of ACNLs during nanoindentation is not yet fully understood. It is also
important to investigate the microstructure evolution and the change of the local stress
distribution during nanoindentation, which is helpful for further understanding the plastic
deformation behavior and the deformation mechanism of ACNLs during nanoindentation.

In this paper, nanoindentation tests on ACNLs were performed by using MD sim-
ulations to examine the evolution of dislocation nucleation, STZ activation and stress
distribution from amorphous to crystalline layers. On an atomistic level, the activation and
distribution of STZs and dislocation nucleation at maximum indentation depth and after
complete unloading are discussed in detail. The aim was to investigate the serrated flow be-
havior of ACNLs under nanoindentation and reveal the activation and evolution processes
of STZs and dislocations and the deformation mechanisms during loading and unloading.
The present work provides important information for understanding the nanoindentation
behavior and plastic deformation mechanisms of ACNLs from an atomistic perspective.

2. Simulation Procedure and Stress Calculation

In this work, MD simulations were carried out using an open-source LAMMPS
code [38] to investigate dislocation movement, STZ activation and stress distributions
for ACNLs during nanoindentation loading and unloading. The geometries of the model
were shown in Figure 1. The model had a cubic orientation (i.e., X-[100], Y-[010], and
Z-[001]), and the size of the box (X × Y× Z) was 250 Å× 100 Å× 250 Å. The thicknesses of
the Cu64Zr36 MG and Cu crystalline layers were both 50 Å. Free boundary conditions were
used on the top surface, while periodic boundary conditions (PBC) were applied in the x
and z directions. The atomic positions in the last three layers (10.83 Å) at the bottom were
frozen in, resembling a hard substrate. The system sizes in the directions perpendicular
to the indentation direction were chosen to be large enough to avoid spurious effects of
the PBC. In the present MD simulations, the modified Finnis–Sinclair-type potential for
Cu–Zr binary alloys proposed by Mendelev et al. [39] were used, which had previously
been successfully applied to simulate the deformation behaviors of Cu–Zr MGs and their
composites [25,35–37,40]. The atoms in the indenter were kept fixed (i.e., the indenter
was assumed to be an infinitely rigid body). At the start of the simulation, the indenter
was relaxed with the conjugate gradient method at a time step of 2 fs for 20 ps to reach a
minimum energy level. After relaxation, the indenter was inserted into the free surface
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under displacement control at an average indentation speed of v = 2.5 m/s to a maximum
penetration depth of 85 Å. The whole indentation process was completed when the indenter
returns to its initial position at the same velocity. To better highlight the material response
upon mechanical loading, the initial temperature of the system was maintained at 50 K
to avoid excess thermal activation [6,36,40]. Finally, the atomic configurations and the
microstructural evolution were analyzed using the visualization tool OVITO [41], which
provided details of the microstructural evolution of samples during nanoindentation.
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The repulsive force exerted by a rigid indenter on the system in MD simulations is
given by [42]:

F(r) = K(r− R)2 (1)

where r is the distance of an atom to the center of the indenter and R is the radius of the
rigid indenter. Similar to previous studies, for the Cu–Zr MG system, the stiffness constant
of the indenter is set to K = 10 eV/Å3 [24,43,44], and the force can be calculated by the
above Equation (1).

3. Simulation Results and Discussion
3.1. Force–Displacement Curves

Figure 2 shows the force–displacement curve for the sample with a loading rate of
2.5 m/s and an indenter radius of 25 Å during the nanoindentation loading and unloading
process. The loading force increases linearly with indentation depth after the indenter tip
touches the surface of the sample. Furthermore, small fluctuations were observed in the
Cu64Zr36 MG layer that were related to the activation of shear transformation zones (STZs).
The first STZ activation occurs when the sample enters the plastic deformation stage. At
this time, the indentation depth was about 10 Å, and the corresponding atomic shear strain
was about 0.2. With increasing indentation depth, the indenter reached the interface, the
loading force had a relatively larger change compared with the Cu64Zr36 MG layer due to
the presence of interface, and then, the indenter penetrated the Cu crystalline layer. At the
same time, the observed larger fluctuations were connected with dislocation slip. The first
dislocation nucleation occurred at the “pop-in” region, as shown in Figure 2. With further
increasing indentation depth, the indenter penetrated the Cu crystalline layer, while the
observed larger fluctuations were connected with dislocation slip. Further penetration of
the indenter overcame the resistance of dislocation movement, leading to more dislocation
slip. This implies that larger stresses induced plastic rearrangements and caused work
hardening [32,33]. In the loading stage, the loading curves increased until reaching a
maximum depth. During the unloading process, the loading force largely decreased due to
the significantly large adhesion between the indenter tip and the contact region. Moreover,
in the retraction part, the adhesive phenomena occur before the force returned to zero
when the indenter had no impact on the substrate. These results were consistent with the
results in previous studies [34,36].
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rate of 2.5 m/s and an indenter radius of 25 Å.

Figure 3a,b show force–displacement curves at different loading/unloading rates
and different tip radii, respectively. It can be seen that a higher force value was achieved
for performing simulation at a larger loading/unloading rate because the atoms did not
have enough time to release energy, resulting in higher stresses for increasing loading
rates [34,36]. Moreover, for different tip radii, this was explained by the stronger structural
recovery with increasing tip radius caused by the slip mechanism and dislocations [36,45].

3.2. Analysis of Strain/Stress Localization and Distribution

In MGs, clusters of atoms in regions with high free volume overcome the energy barrier
under the action of external shear stress and undergo a synergistic shearing motion relative
to the substrate, thus forming STZs [46–48]. As stated previously, the plastic deformation
of MGs is mainly due to STZ activation and percolation processes [49], while in metallic
crystals, it is due to the slip of dislocations [19]. Upon indentation, the accumulation of
localization plastic events caused by shear deformation leads to STZ proliferation under
the indenter and eventually forms the shear deformation region (SDR) [36,37,50–53].

Here, the local atomic shear strain for each atom was calculated for quantifying plastic
deformation at the atomic level, and atoms with a shear strain larger than 0.2 were consid-
ered to visualize the local plastic deformation within the sample [36,43,54]. For visualization,
a color code of the shear strain between 0 and 0.5 was generally used [36,44,54]. Figure 4
shows the shear strain distribution of Cu64Zr36/Cu amorphous/crystalline nanolaminates
(ACNLs) at different indentation depths. In the simulation, the radius of the indenter was
25 Å, and the loading rate was 2.5 m/s. All the atoms are colored according to the shear
strain value during the nanoindentation loading, where the red and blue atoms represent
higher and lower shear strain, respectively. The atomic shear strain distribution is shown at
different indentation depths in the range of 0 to 85 Å. The zones of high shear strain or STZs
were concentrated around the indenter, and the number of atoms with high shear strain
value increased with the increase of the indentation depth. When the indenter was pressed
into the Cu64Zr36 amorphous layer, STZs activate at “weak spots” (defined as regions with
large free volume) around the contact zones, and the SDR emerged around the indenter [55].
The shear strain was further increased at an indentation depth of 35 Å, and STZs were
generated at the periphery of the previous SDR, resulting in a further expansion of the SDR.
As the indentation depth increased to 45 Å, the indenter was still in the amorphous layer.
The SDR extended further outwards.
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Similar to the distribution of the shear strain in Figure 4, the von Mises stress distribu-
tion also showed obvious localization; higher von Mises stress regions represent clusters of
atoms with the plastic flow, and the STZs gather from the local areas of these plastic flow
clusters. Figure 5 shows the von Mises stress distribution of the Cu64Zr36/Cu nanolami-
nates during indentation loading. The high von Mises stress was also concentrated around
the indenter more than at other locations of the Cu64Zr36 amorphous layer. Moreover, the
local stress increases by the pressure of the indenter with increasing indentation depth.
When the indenter penetrated the Cu crystal layer, the high von Mises stress was gradually
dispersed in the Cu64Zr36 amorphous layer, but the local stress was still concentrated
around the indenter in the crystalline layer. The reason was that the surface of the sub-
strate was directly affected by the pressure of the indenter; the local stress of the atomic
zone around the indenter was higher than in other areas. In brief, the high von Mises
stress concentration zones were concentrated around the indenter during nanoindentation
loading. The local stress in the amorphous layer was larger than in the crystalline layer,
which was consistent with findings by Goryaeva et al. [56]. This also indicated that the
ACNLs with incorporated crystalline layers, which dissipated energy and accommodated
plastic strain by dislocation slip, could avoid catastrophic localization, effectively impeding
SB propagation.
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3.3. Dislocation Analysis

In the amorphous layer, the high shear strain first appeared along the sides of the
indenter because the pressure of the indenter induced deformation (see Figure 6). With
further penetration of the amorphous layer, larger plastic zones formed around the indenter,
but there was no nucleation of dislocations or stacking faults up to an indentation depth of
45 Å. Hence, none of these plastic zones were a potential origin of dislocation nucleation in
the crystalline layer, as previously reported in the literature [32–35]. One reason for that
could be that in our case, no dominant shear band forms; thus, the local stress fluctuations
were too small to generate dislocation slip. When the indentation depth increased to 50 Å,
the indenter penetrated the crystalline layer; dislocation emitted from the interface between
the amorphous and crystalline layers, expressed through the appearance of dislocation
in the crystalline layer, as shown in Figure 7. As the indentation depth increased from 55
to 85 Å, the number of slip dislocations increased. These dislocations mainly included
1/2〈110〉 perfect dislocations, 1/6〈112〉 Shockley partial dislocations, 1/6〈110〉 stair–rod
partial dislocations, and 1/3〈100〉 Hirth dislocations. The plastic deformation of the
crystalline layers was much smaller than that of the amorphous layers. This was consistent
with the local stress distribution in the amorphous layers being much larger than in the
crystalline layers. As the indentation depth increased, the plastic deformation slightly
increased in the crystalline layers. The plastic deformation was significantly localized and
mainly concentrated under the indenter.



Materials 2021, 14, 2756 7 of 12

Materials 2021, 14, 2756 7 of 13 
 

 

depth increased from 55 to 85 Å, the number of slip dislocations increased. These disloca-
tions mainly included 1/ 2 110  perfect dislocations, 1/ 6 112  Shockley partial dislo-

cations, 1/ 6 110  stair–rod partial dislocations, and 1/ 3 100  Hirth dislocations. The 
plastic deformation of the crystalline layers was much smaller than that of the amorphous 
layers. This was consistent with the local stress distribution in the amorphous layers being 
much larger than in the crystalline layers. As the indentation depth increased, the plastic 
deformation slightly increased in the crystalline layers. The plastic deformation was sig-
nificantly localized and mainly concentrated under the indenter. 

 

 
Figure 6. The process of dislocation motion ofACNLs during loading. 

 
Figure 7. The dislocation emits from the interface of ACNLsat indentation depth of 50 �. 

3.4. Analysis of STZs and Dislocations during Loading and Unloading 
Atomic-scale deformation is often characterized by the local shear invariant [27] or 

the non-affine squared displacement (D2min) as a structural parameter providing infor-
mation about non-elastic deformations [55]. To elucidate the activation of STZs and dislo-
cation movement during nanoindentation loading and unloading, we calculated the 
atomic shear strain, D2min, and the von Mises stress at maximum indentation depth and 
after complete unloading stages. Figure 8 shows cross-section snapshots of atomic shear 
strain, D2min, and von Mises stress of nanolaminates at maximum depth and complete un-
loading stages. The distributions of atomic shear strain and D2min reveal that high shear 
strain and high D2min concentration zones developed around the indenter at the maximum 
indentation. The high shear strain and high D2min concentration zones were still concen-
trated around the indenter after complete unloading. A high von Mises stress was also 
concentrated around the indenter at the maximum indentation stage. Moreover, the von 
Mises stress was dispersed in the Cu64Zr36 amorphous layer, but high local stress was still 
concentrated around the indenter even after complete unloading. Figure 8 quantitatively 

Figure 6. The process of dislocation motion ofACNLs during loading.

Materials 2021, 14, 2756 7 of 13 
 

 

depth increased from 55 to 85 Å, the number of slip dislocations increased. These disloca-
tions mainly included 1/ 2 110  perfect dislocations, 1/ 6 112  Shockley partial dislo-

cations, 1/ 6 110  stair–rod partial dislocations, and 1/ 3 100  Hirth dislocations. The 
plastic deformation of the crystalline layers was much smaller than that of the amorphous 
layers. This was consistent with the local stress distribution in the amorphous layers being 
much larger than in the crystalline layers. As the indentation depth increased, the plastic 
deformation slightly increased in the crystalline layers. The plastic deformation was sig-
nificantly localized and mainly concentrated under the indenter. 

 

 
Figure 6. The process of dislocation motion ofACNLs during loading. 

 
Figure 7. The dislocation emits from the interface of ACNLsat indentation depth of 50 �. 

3.4. Analysis of STZs and Dislocations during Loading and Unloading 
Atomic-scale deformation is often characterized by the local shear invariant [27] or 

the non-affine squared displacement (D2min) as a structural parameter providing infor-
mation about non-elastic deformations [55]. To elucidate the activation of STZs and dislo-
cation movement during nanoindentation loading and unloading, we calculated the 
atomic shear strain, D2min, and the von Mises stress at maximum indentation depth and 
after complete unloading stages. Figure 8 shows cross-section snapshots of atomic shear 
strain, D2min, and von Mises stress of nanolaminates at maximum depth and complete un-
loading stages. The distributions of atomic shear strain and D2min reveal that high shear 
strain and high D2min concentration zones developed around the indenter at the maximum 
indentation. The high shear strain and high D2min concentration zones were still concen-
trated around the indenter after complete unloading. A high von Mises stress was also 
concentrated around the indenter at the maximum indentation stage. Moreover, the von 
Mises stress was dispersed in the Cu64Zr36 amorphous layer, but high local stress was still 
concentrated around the indenter even after complete unloading. Figure 8 quantitatively 

Figure 7. The dislocation emits from the interface of ACNLsat indentation depth of 50 Å.

3.4. Analysis of STZs and Dislocations during Loading and Unloading

Atomic-scale deformation is often characterized by the local shear invariant [27] or the
non-affine squared displacement (D2

min) as a structural parameter providing information
about non-elastic deformations [55]. To elucidate the activation of STZs and dislocation
movement during nanoindentation loading and unloading, we calculated the atomic shear
strain, D2

min, and the von Mises stress at maximum indentation depth and after complete
unloading stages. Figure 8 shows cross-section snapshots of atomic shear strain, D2

min, and
von Mises stress of nanolaminates at maximum depth and complete unloading stages. The
distributions of atomic shear strain and D2

min reveal that high shear strain and high D2
min

concentration zones developed around the indenter at the maximum indentation. The high
shear strain and high D2

min concentration zones were still concentrated around the indenter
after complete unloading. A high von Mises stress was also concentrated around the
indenter at the maximum indentation stage. Moreover, the von Mises stress was dispersed
in the Cu64Zr36 amorphous layer, but high local stress was still concentrated around the
indenter even after complete unloading. Figure 8 quantitatively presents the variation of
the percentage of STZ atoms with indentation depth during the loading and unloading
stages. To quantitatively demonstrate the changes in the STZ activation during the loading
and unloading process, as mentioned above, atoms with a shear strain larger than 0.2 were
considered to visualize the local plastic deformation within the sample [36,42,53], which
was also consistent with our previous study on the value of atomic shear strain of STZ
activation during creep [57]. The percentage of STZ atoms in the total number of atoms
increases slowly from 0% to 4.5% when the indentation depth increases from 0 to 30 Å,
and the percentage of STZs shows a very rapid increase from 4.5% to 27.0% at indentation
depths from 30 to 85 Å (maximum depth). During the unloading stage, the percentage of
STZ atoms very rapidly decreases from 27.0% to 7.0%. Subsequently, the percentage of STZ
shows a small increase and basically maintains at 9.0% until complete unloading, as shown
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in Figure 9. This indicated that some new STZs still activate in the unloading stage, and
these activated STZs were mainly concentrated around the indenter both at the loading
and unloading stages.

Materials 2021, 14, 2756 8 of 13 
 

 

presents the variation of the percentage of STZ atoms with indentation depth during the 
loading and unloading stages. To quantitatively demonstrate the changes in the STZ acti-
vation during the loading and unloading process, as mentioned above, atoms with a shear 
strain larger than 0.2 were considered to visualize the local plastic deformation within the 
sample [36,42,53], which was also consistent with our previous study on the value of 
atomic shear strain of STZ activation during creep [57]. The percentage of STZ atoms in 
the total number of atoms increases slowly from 0% to 4.5% when the indentation depth 
increases from 0 to 30 Å, and the percentage of STZs shows a very rapid increase from 
4.5% to 27.0% at indentation depths from 30 to 85 Å (maximum depth). During the un-
loading stage, the percentage of STZ atoms very rapidly decreases from 27.0% to 7.0%. 
Subsequently, the percentage of STZ shows a small increase and basically maintains at 
9.0% until complete unloading, as shown in Figure 9. This indicated that some new STZs 
still activate in the unloading stage, and these activated STZs were mainly concentrated 
around the indenter both at the loading and unloading stages. 

Figure 10 shows the dislocation evolution in the nanolaminates at maximum depth 
and complete unloading stated. It could be clearly seen that a larger number of disloca-
tions emits from the interface in the crystalline layer; these dislocations were mainly com-
posed of 1/ 6 112  Shockley partial dislocations and 1/ 6 110  stair–rod partial dis-
locations. The number of dislocations decreases, but some dislocations survive the un-
loading process. Figure 11 shows the variation of the dislocation density with indentation 
depth during loading and unloading. During loading, the dislocation density was close to 
zero in the amorphous layer, indicating no dislocations nucleated when the indenter was 
pressed into the amorphous layer. Once the indenter penetrated the crystalline layer, dis-
locations were emitted from the interface, and their number increases rapidly with in-
creasing indentation depth. The dislocation density decreases rapidly during unloading, 
and when the indenter returns to the initial position, the dislocation density remains un-
changed. This indicated that some dislocations still existed in the crystalline layer even 
after complete unloading. These results were consistent with those in Figure 9. 

 
Figure 8. Cross-section snapshots of atomic shear strain, D2min, and von Mises stress of ACNLs at 
maximum depth and complete unloading stages. (a,c,e) are atomic shear strain, D2min, and von 
Mises stress of ACNLs at maximum depth stage, respectively; (b,d,f) are atomic shear strain, D2min, 
and von Mises stress of ACNLs at complete unloading stage, respectively. 

Figure 8. Cross-section snapshots of atomic shear strain, D2
min, and von Mises stress of ACNLs at

maximum depth and complete unloading stages. (a,c,e) are atomic shear strain, D2
min, and von

Mises stress of ACNLs at maximum depth stage, respectively; (b,d,f) are atomic shear strain, D2
min,

and von Mises stress of ACNLs at complete unloading stage, respectively.

Materials 2021, 14, 2756 9 of 13 
 

 

 
Figure 9. Variation of the percentage of activated STZ atoms (those atoms with shear strains > 0.2) 
with indentation depth during loading and unloading. 

 

 
Figure 10. The process of dislocation motion at maximum depth and complete unloading. 

Figure 9. Variation of the percentage of activated STZ atoms (those atoms with shear strains > 0.2)
with indentation depth during loading and unloading.

Figure 10 shows the dislocation evolution in the nanolaminates at maximum depth
and complete unloading stated. It could be clearly seen that a larger number of dislocations
emits from the interface in the crystalline layer; these dislocations were mainly composed
of 1/6〈112〉 Shockley partial dislocations and 1/6〈110〉 stair–rod partial dislocations. The
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number of dislocations decreases, but some dislocations survive the unloading process.
Figure 11 shows the variation of the dislocation density with indentation depth during
loading and unloading. During loading, the dislocation density was close to zero in the
amorphous layer, indicating no dislocations nucleated when the indenter was pressed into
the amorphous layer. Once the indenter penetrated the crystalline layer, dislocations were
emitted from the interface, and their number increases rapidly with increasing indentation
depth. The dislocation density decreases rapidly during unloading, and when the indenter
returns to the initial position, the dislocation density remains unchanged. This indicated
that some dislocations still existed in the crystalline layer even after complete unloading.
These results were consistent with those in Figure 9.
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4. Conclusions

MD simulations were performed to investigate the nanoindentation behavior of
Cu64Zr36/Cu amorphous/crystalline nanolaminate composites. The characteristics of
plastic deformation (STZ activation and dislocations emission) of the nanolaminate com-
posites are observed during nanoindentation loading and unloading. The main findings
are as follows:
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(1) The load–displacement curves of the nanolaminate composites showed small
fluctuations in the amorphous layer, which are related to STZ activation, whereas larger
fluctuations occur in the crystalline layer, which is related to dislocation emission. The
force value increases with the increasing loading rate and the tip radius of the indenter.

(2) The local STZ activation occurred during loading, and the number of STZs in-
creased with an increase of the indentation depth in the amorphous layer. These activated
STZs were mostly concentrated around the indenter. When the indenter penetrated the
crystalline layer, dislocations emitted from the amorphous/crystalline interface. They were
localized around the indenter, and their number increased with increasing indentation
depth. During unloading, the overall number of STZs and dislocations decreased, but also
new STZs activated, and dislocations nucleated.

(3) During loading, high stresses were rather concentrated around the indenter than at
other locations in the amorphous layer. When the indenter penetrated the crystalline layer,
the high stresses were gradually dispersed in the amorphous layer, but the local stresses
were still concentrated around the indenter in the crystalline layer. During unloading, the
high stresses were dispersed in the amorphous layer, and the stressed in the amorphous
layer were larger than in the crystalline layer.
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