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Abstract: Etched ion-track polycarbonate membranes with conical nanochannels of aspect ratios
of ~3000 are coated with Al2O3, TiO2, and SiO2 thin films of thicknesses between 10 and 20 nm
by atomic layer deposition (ALD). By combining ion-track technology and ALD, the fabrication of
two kinds of functional structures with customized surfaces is presented: (i) arrays of free-standing
conical nanotubes with controlled geometry and wall thickness, interesting for, e.g., drug delivery
and surface wettability regulation, and (ii) single nanochannel membranes with inorganic surfaces
and adjustable isoelectric points for nanofluidic applications.

Keywords: conical nanotube; ion-track technology; atomic layer deposition; nanopore confinement;
etched ion-track membrane; polymeric nanochannel; ion-current rectification

1. Introduction

Surface coating by atomic layer deposition (ALD) has the potential to significantly
widen the technological and scientific applications of etched ion-track membranes with
highly oriented and monodisperse channels by enabling a controlled tailoring of both
size and chemistry of the nanochannels. ALD is based on sequential and self-terminating
gas–solid surface reactions of typically two gaseous reactants and has been successfully
applied to coat complex three-dimensional topographies with homogeneous films of known
composition [1–5]. The self-limiting nature of the chemical reactions provides excellent
thickness control, even in deeply embedded surfaces such as the inner wall of nanopores
and nanochannels. In recent years, conformal TiO2, SiO2, and Al2O3 coating of cylindrical
nanochannels in porous alumina membranes [6,7] and in etched ion-track polycarbonate
membranes with aspect ratios (length over diameter) up to 3000 [8–16] was demonstrated.
In the latter case, specific low-temperature ALD processes ensured the thermal stability
of the polymer material [14,15]. ALD even allows coatings consisting of several layers
of different materials. For example, multichannel PET membranes were ALD-coated
with Al2O3 and ZnO layers, obtaining sub-10 nm channels, which were used to confine
gramicidin A inside the channels [17].

The advantage of etched ion-track membranes is the fact that size, geometry, and
density of the channels can be adjusted independently. During swift heavy ion irradiation,
each ion creates an individual track of a few nanometers in diameter and several tens
of micrometers in length. The energy deposited along the ion trajectory leads to severe
damage, including broken molecular bonds [18]. Given the focus and the high energy of the
ion beam, the tracks are parallel oriented and penetrate completely through the polymer
membrane. The track density can be varied from 1 per sample to about 1010 per cm2 or
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more [19–26]. In a suitable etching solution, the damaged track material is selectively dis-
solved, converting each ion track into an individual open channel, whose shape is tailored
by the etching conditions. When the etching solution attacks the ion tracks from both sides
of the membrane, cylindrical nanochannels are synthesized. Asymmetric etching condi-
tions lead to conical or bullet-like nanochannels [27–31]. In both cases, the nanochannel
diameter increases with etching time and can be adjusted in a controlled manner between
a few tens of nanometers and a few micrometers. The etching rate determines the growth
of the channel diameter over etching time. It depends on various parameters, including
composition and concentration of the etchant, temperature, and polymer type.

The most common ion-track membranes with symmetrically etched cylindrical chan-
nels are used for filtration and biotechnological applications and as templates for the
synthesis of nanowires by electrodeposition [26,31]. Asymmetrically etched membranes
with conically shaped channels have been applied as templates to fabricate free-standing
conical nanowire arrays [32,33].

In addition, membranes with single nanochannels are being widely investigated
regarding their ionic transport properties [34–43]. The ionic or molecular flow through
a confined nanopore is affected by the channel geometry (length, diameter, shape) and
surface chemistry. Solid-state nanochannels of sufficiently small diameter and charged
surfaces commonly show ion current rectification [27,35,44,45], a characteristic that plays
an important role in biological protein channels [46,47]. A broad range of approaches
has been applied for surface modification and functionalization of asymmetric etched
ion-track channels, including electroless deposition [48], chemical methods [36,49–51],
and more recently ALD [52]. This has resulted in an enormous palette of nanochannel
devices for nanofluidic applications [53–55] as well as for various chemical and biological
sensors, e.g., for urea [43] and glucose sensors [56]. The transport and sensing properties
of conical nanochannels are strongly influenced by their geometric parameters [57], and
the characterization of the pore replica offers a valuable tool to measure the dimensions
and morphology of a given nanopore [58].

In this work, polycarbonate multichannel membranes with conical nanochannels
are uniformly coated by ALD. By removing the membrane material, we demonstrate the
fabrication of arrays of SiO2, Al2O3, and TiO2 conical nanotubes with wall thicknesses
between ~10 and ~20 nm. The mechanical stability of free-standing nanocones depends on
both the material and thickness of the deposited wall.

In addition, the ion transport properties of single conical ALD-coated nanochannels
are investigated. By the coating process, the diameter of the pore tip can be reduced in a
controlled manner and by selecting a specific coating material, the surface chemistry and
charge of the channel wall can be tailored. ALD coating of asymmetric nanochannels with
oxides is of interest because it provides flexibility in further functionalization steps, enlarging
the opportunities of surface chemistry for novel nanochannel-based sensing devices.

2. Materials and Methods

Figure 1 shows the synthesis strategy adopted for the fabrication of ALD-coated
membranes with asymmetric channels (a–c) and free-standing tubular nanocones (d–f).
First, 30 µm thick polycarbonate foils (Makrofol N, Bayer, Leverkusen, Germany) of 3 cm
in diameter are irradiated with ~2 GeV Au ions at the UNILAC linear accelerator of the
GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany. The irradiation of
the foils is performed under normal beam incidence with a fluence of 106 ions/cm2 or
alternatively with one single ion per sample. The irradiated polymer foils are then exposed
to UV light for 1 h on each side and subsequently mounted between two compartments of
an electrochemical cell. For asymmetric etching, one compartment is filled with a 60:40
mixture of 9 mol/L NaOH and CH3OH as etchant, while the other cell compartment con-
tains deionized H2O (Millipore Direct-QTMS, Merck, Darmstadt, Germany) as a stopping
solution. The cell is thermostated at a temperature of 30 ◦C. For track etching, a potential of
+1 V is applied across the membrane. The etchant preferentially dissolves the ion tracks and
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converts the track damage into an open channel. Under the applied asymmetric etching
conditions, asymmetric channels of conical geometry are obtained, exhibiting a large base
and a small tip (b). Depending on the intended channel diameter, the etching process is
stopped by removing the membrane from the cell and rinsing it with deionized water.
To produce membranes with single conical nanochannels for ionic conductivity measure-
ments, an etching time of ~15 min is chosen, leading to a base diameter of ~3 µm. In a next
step, the polycarbonate membranes containing single or multiple conical nanochannels are
coated by ALD with three different materials: Al2O3, TiO2, and SiO2. The ALD process for
Al2O3 is applied at 110 ◦C and uses trimethylaluminium (25 ◦C, SAFC Hitech, Steinheim,
Germany) as well as deionized water (25 ◦C) as precursors. For the TiO2 deposition, taking
place at 110 ◦C [15], titanium isopropoxide (70 ◦C, SAFC Hitech, Steinheim, Germany)
and deionized H2O (25 ◦C) are used as precursors. SiO2 is deposited at 60 ◦C [14], by
application of silicon tetrachloride (25 ◦C, Sigma-Aldrich, Steinheim, Germany) and deion-
ized water (25 ◦C) as precursors. The SiO2 coating is conducted by pyridine (C5H5N,
anhydrous, Sigma-Aldrich, Steinheim, Germany) insertion into the reaction chamber in
both reaction steps just before the precursor. Pyridine acts as a catalyst and limits the
reaction temperature to 60 ◦C [14,59]. ALD layers of the three oxides deposited under
such low temperatures exhibit an amorphous structure [60–62]. The growth rate for these
low-temperature ALD processes is determined by ellipsometry of reference coatings on
silicon wafers as well as by SEM analysis of the coated nanochannels, yielding 0.86 Å/cycle
for Al2O3, 0.08 Å/cycle for TiO2, and 1.7 Å/cycle for SiO2. The number of ALD cycles is
systematically varied to fabricate coatings with thicknesses between 10 and 20 nm.

Before and after ALD coating, the ionic conductivity of the single-channel membranes
is investigated by inserting the membrane between the two chambers of an electrochemical
cell and recording current–voltage (I–V) curves. By using two Au electrodes and scanning
the voltage between ±1 V across the membrane, the current is monitored with a picoamme-
ter/voltage sourcemeter (Keithley 6487, Solon, OH, USA). Ion conductivity measurements
at room temperature are performed using a 1 M KCl solution (pH 5) that is pH adjusted by
adding HCl (37%, Carl Roth GmbH, Karlsruhe, Germany) for measurements with pH 2 and
disodium (hydrogen) phosphate (Na2HPO4, >99%, Sigma-Aldrich, Steinheim, Germany)
for pH 9 as an electrolyte.

Thickness, homogeneity, and conformity of the ALD coating inside the conical nanochan-
nels are visualized by dissolving the polycarbonate template in dichloromethane (>99.5%, Carl
Roth GmbH, Karlsruhe, Germany) and collecting the released conical nanotubes on a standard
Cu-lacey transmission electron microscopy grid (TEM grid). The nanotubes are characterized
with a transmission electron detector (STEM-in-SEM) in a high-resolution scanning electron
microscope (JEOL JSM-7401F, Akishima, Japan). The elemental composition is investigated
by energy dispersive X-ray spectroscopy (EDX) using a Bruker Xflash 5030 EDX Spectrometer,
Billerica, MA, USA.

To fabricate arrays of free-standing conical nanotubes (Figure 1d–f), the ALD-coated
templates are mechanically stabilized by a metal layer on the base side before dissolving
the polycarbonate. After the ALD process, a ~200 nm thin Au layer is sputtered onto
the base side of the membrane using an Edwards Sputter Coater S150B (Figure 1d). To
reinforce the Au layer as a substrate, Cu is electrodeposited using a copper sulfate based
electrolyte (238 g/L Cu2SO4 and 21 g/L H2SO4) in a two-electrode configuration applying
U = −0.5 V (vs. Cu rod) in an electrochemical cell. After 10 min of electrodeposition
at room temperature, the Cu layer is about 10 µm thick (Figure 1e). Once the substrate
is fabricated, the polymer foil is dissolved in dichloromethane. During the dissolution
process, the thin planar ALD oxide layer on the top surface of the membrane is lifted off.
The resulting nanocone arrays are visualized by SEM under 20◦ tilting. The nanotube
replica of the single-nanochannel membranes for SEM visualization are prepared after the
I–V conductivity measurements in the same way, i.e., sputtering a gold layer, reinforcement
by copper deposition, and finally polymer dissolution.
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temperature atomic layer deposition of Al2O3 (red), TiO2 (green), and SiO2 (blue). (d–f) Fabrication 
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template. 
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3.1. Transport Properties of ALD-Coated Single Conical Nanochannels 

The ALD processes for Al2O3, TiO2, and SiO2 are applied to coat membranes 
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Figure 1. Fabrication of nanocone arrays by combining ion-track technology and ALD. (a) Swift
heavy ion irradiation of polycarbonate foils, leading to parallel-oriented tracks. (b) Scheme of
the electrochemical cell employed for asymmetric etching of the irradiated foils. Each ion track is
converted into a conical nanochannel. (c) Conformal surface coating of etched membranes by low-
temperature atomic layer deposition of Al2O3 (red), TiO2 (green), and SiO2 (blue). (d–f) Fabrication
steps for free-standing tubular nanocone samples. (d) Sputtering of Au onto the coated membrane
side with large nanochannel openings. (e) Reinforcing the sputtered Au layer by electrodeposition of
additional Cu layer. (f) Free-standing tubular nanocones after dissolution of the polymer template.

3. Results and Discussion
3.1. Transport Properties of ALD-Coated Single Conical Nanochannels

The ALD processes for Al2O3, TiO2, and SiO2 are applied to coat membranes contain-
ing one single conical nanochannel. The ionic conductivity of these channels is measured
before and after ALD coating in an electrochemical cell (Figure 2a) by recording I–V curves
between ±1 V across the membrane (Figure 2b–d). The conductivity of the single channel
is given by

I
U

=
π ∗ κ ∗ d ∗ D

4 ∗ L
(1)

with I being the recorded electrical current, U the voltage applied between the two Au
electrodes, κ the electrical conductivity of the electrolyte, L the length of the nanochannel,
d its tip diameter, and D the base diameter [35].
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Figure 2. Scheme of electrochemical cell for I–V measurements (a). I–V curves for single conical nanochannels uncoated
(blue) and coated with ~15 nm TiO2 (b), SiO2 (c), and Al2O3 (d) at different pH values. I–V curves were recorded in a 1 M
KCl solution adjusted to pH values of 2 (green), 5 (purple), and 9 (red).

The uncoated membrane is measured at pH 5, close to the isoelectric point (IEP) of
polycarbonate. At this value, the polymer surface is not charged [63], and the I–V curve is
rather linear, indicating symmetric ion transport along the nanochannel.

In a first run, I–V measurements on the ALD-coated single channels are performed
at a specific pH value, which is close to the isoelectric point of the different materials, i.e.,
pH 9 for Al2O3, pH 5 for TiO2, and pH 2 for SiO2 [64]. At pH ~IEP, the nanochannel
surface is uncharged and both positive and negative ions flow unhindered through the
nanochannel [65]. Consistently, the I–V curves obtained at pH 5 for TiO2-coated and pH 2 for
SiO2-coated nanochannels are linear, i.e., they show no rectification behavior (Figure 2b,c). In
contrast, the I–V curve for the Al2O3-coated conical nanochannel at pH 9 (Figure 2d) exhibits
a non-linear behavior with a small rectification factor of frec = 1.5 (frec = (I (−1 V)/I (+1 V). This
slight deviation is possibly due to the poor stability of Al2O3 in aqueous solutions, which
may lead to local surface charge inhomogeneities [66]. From these I–V curves measured
at pH values at the respective IEPs of the surface material, we deduce the diameter of the
nanochannel tip before and after the different ALD coatings. The tip diameter d is calculated
by Equation (2), which is the transformed version of the conductivity formula (Equation (1)).

d =
4 ∗ L ∗ I

U ∗ D ∗ π ∗ κ (2)

The nanochannel length L corresponds to the thickness of the PC membrane, the
pore base diameter D is deduced from SEM images of the corresponding free-standing
single nanocone replica (see section below), and the specific conductivity κ is 10.68 Sm−1 at
25 ◦C for a 1 M KCl solution [67]. Table 1 presents the tip and base diameters of the single
nanopores before and after the ALD coating process.
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Table 1. Tip and base diameter of the single conical nanopores.

Coating Material Tip Diameter Uncoated Tip Diameter Coated

TiO2 107 nm 71 nm
SiO2 106 nm 72 nm

Al2O3 103 nm 74 nm

For the single nanochannel coated with TiO2, a tip diameter of ~107 nm before and
~71 nm after ALD coating is calculated. For the SiO2-coated nanochannel, the tip diameter
was ~106 nm before and ~72 nm after ALD coating. For the Al2O3-coated nanochannel,
the respective tip diameters were ~103 nm before and ~74 nm after the ALD coating. In all
three cases, the measured difference in tip diameter before and after coating is in excellent
agreement with the nominal ALD coating thickness of 15 nm.

Subsequently, the ionic conductivity of each coated nanopore is measured at two other
pH values, one higher and one lower than the IEP. Depending on the pH value, the surface
charge of the nanochannel wall changes. This has a direct influence on the electrical
double layer (EDL) and thus on the ion flow along the nanochannel, especially at the tip
where the diameter is small. For the TiO2-coated nanochannel (Figure 2b), ion current
rectification factors of frec = 2.6 at pH = 2, frec = 1.2 at pH = 5, and frec = −4.4 at pH = 9 are
obtained. The negative surface charge is expressed by a negative rectification factor [68].
The TiO2-coated nanopore shows no rectification at a solution pH = 5 (equal to the surface
IEP), as anticipated. However, for a smaller pH value, a positive rectification factor and,
for a higher pH value, a negative rectification factor are obtained, indicating that a TiO2-
coated conical nanopore can act as a cation or anion selector depending on the pH value of
the environment.

For the SiO2-coated nanopore (Figure 2c), the IEP is ~2. Higher pH values result
in a rectification factor of frec = 1.5 at pH = 5 and frec = −2.1 at pH = 9. Obviously, the
more negatively the surface is charged, the more anions are hindered in passing through
the nanochannel. This observation is in agreement with the Derjaguin-Landau-Verwey-
Overbeek theory [65].

For the Al2O3-coated nanochannel, the variation of the rectification factor frec as a
function of the pH value is almost negligible, being frec = 1.5 at pH = 9, frec = 1.5 at pH = 5,
and frec = 2.1 at pH = 2 (Figure 2d). The rectification factor is positive in all cases, because at
pH values lower than the IEP, the channel surface is charged positively. We also attribute
the weak pH dependency to the instability of the Al2O3 layer in aqueous solution, although
this remains to be clarified.

These results clearly show that by ALD coating with different oxides, the IEP of a
single conical nanopore can be adjusted, resulting in the creation of nanopores with anion,
cation, or ambivalent selectivity.

The determined rectification factors are low due to the fact that the tip diameters of our
nanochannels are rather large (between ~70 and 100 nm) compared to the EDL thickness
(~0.3 nm for 1 M KCl electrolyte [65]). Ion current rectification in relatively large channels
has been reported previously [69,70] and numerical simulations explain this phenomenon
by a concentration of the nanopore surface charge at the tip, resulting in a local increase in
the EDL thickness [71].

Finally, it also should be mentioned that ALD-coated single conical nanochannels
exhibited much higher stability than uncoated nanochannels: I–V measurements could be
performed for three months compared to several days for uncoated channels. We therefore
consider ALD coating as a promising process for nanochannel applications that require
good long-term stability.

In order to gain additional access to the geometrical parameters, first a stabilizing
Au layer is sputtered onto the bottom side and is reinforced by an electrodeposited Cu
layer, which protrudes a few µm into the nanotubes. The nanocones are then released from
the membranes by dissolving the polymer. SEM images of single free-standing conical
Al2O3 and TiO2 nanotubes are shown in Figure 3a,b. The cones consist of a ~15 nm thick
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ALD layer. Since the tip diameter is too small to be determined from SEM images, we
measure the base diameter D and insert this value into Equation (2) together with the data
obtained from the I–V measurements for the tip diameter calculation. The base diameters
determined for the single cone membranes are in good agreement with reference samples
synthesized in multichannel membranes under the same etching conditions.
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Figure 3. SEM images of free-standing single conical nanotubes of Al2O3 (a) and TiO2 (b). The cones
are stable although the tube wall consists of a ~15 nm thick ALD layer.

3.2. Geometrical and Compositional Characterization

In the following section, we further characterize the geometry and composition of
ALD-fabricated nanotube arrays released from multichannel templates. Figure 4 shows
STEM-in-SEM images of representative tubular cones of (a) Al2O3, (b) TiO2, and (c) SiO2
exhibiting a nominal wall thickness of ~16 nm. For all three materials, ALD coating
produces a homogeneous shape-conforming replica of the track-etched conical nanopores
along their entire length of 30 µm. The high magnification image in Figure 4c gives
evidence that the SiO2 wall has a thickness of ~16 nm along the full length of the nanocone.
The smoothness of the wall is in agreement with earlier investigations on ALD-coated
cylindrical channels in polycarbonate [15] and confirms the smooth channel walls reported
for PC in contrast to the rather rough walls of track-etched polyethylene terephthalate
(PET) membranes [69,72]. The inset of Figure 4b shows the tip of a TiO2 nanocone. The
inner and outer diameters of the tip are approximately 30 nm and 50 nm, respectively.
Due to the small size, SEM focusing of the tip is challenging and we are faced with the
uncertainty that the original top of the tip may have been broken off.
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Figure 4. STEM-in-SEM images of ~30 µm long conical Al2O3 (a), TiO2 (b), and SiO2 (c) nanotubes
with a wall thickness of ~16 nm. The inset in (b) shows the open tip of a TiO2 tubular nanocone
(~16 nm wall thickness) in detail. Images with higher magnification in (c) demonstrate a homoge-
neous wall thickness along the entire cone length. The scale bar shown in (b) also applies for (a–c).

Figure 5a shows EDX multipoint spectra of Al2O3, TiO2, and SiO2 conical nanotubes
with a wall thickness of ~20 nm. The spectra present the corresponding elemental peaks
of aluminum, titanium, silicon, and oxygen. Copper and carbon peaks are contributions
from the Cu-lacey TEM grids. The height of the carbon signal varies, depending on the
position of the nanocone with respect to the carbon support film. These EDX spectra clearly
demonstrate that the ALD process within the conical polycarbonate nanochannels leads to
pure and well-defined coating layers for all three materials. In addition, EDX linescans are
taken to display the material distribution in the nanocones. Figure 5b displays the EDX
linescan across an Al2O3 nanocone and the corresponding STEM-in-SEM image (inset)
with the position of the recorded EDX marked in yellow. The intensity of the aluminum
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and oxygen signals is high at the position of the tube walls and drops between the walls,
which gives further evidence of the tubular shape of the nanocones.
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Figure 5. (a) EDX multipoint spectra of Al2O3, TiO2, and SiO2 nanocones with a wall thickness of
~20 nm, lying on a lacey Cu-TEM grid. (b) EDX linescan across an Al2O3 nanocone. In the STEM
dark field image, the position of the linescan is marked in yellow. The intensity distribution of the
corresponding aluminum (red solid line) and oxygen (black dashed line) signals confirms the tubular
shape of the nanocones.

3.3. Free-Standing Conical Nanotube Arrays

Arrays of high-aspect-ratio conical nanotubes are successfully fabricated by mechani-
cally stabilizing the ALD-coated multichannel membranes prior to the dissolution of the
polymer membrane (cf. Figure 1d–f). The intimate contact between the metal supporting
layer and the micrometer-sized bases of the ALD-coated channels stabilizes the sample
during its immersion in dichloromethane for dissolution of the polymer and avoids the
dispersion of the conical tubes in the solution.

Figure 6 shows representative SEM images of the resulting TiO2 (a–c), SiO2 (d–f), and
Al2O3 (g–i) nanocone arrays with wall thicknesses of ~20 nm (left), ~15 nm (center), and
~10 nm (right). For all samples, the number of cones per cm2 counted at various positions is
in excellent agreement with the number of channels in the membrane, demonstrating that
all nanochannels were coated. The wall thickness is determined from reference samples
coated simultaneously and analyzed by STEM-in-SEM (see Figure 4). We find that the
thickness for all analyzed conical tubes is the same, evidencing that the ALD process was
homogeneous across the whole membrane area, as expected.
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Figure 6. SEM images of TiO2 (a–c), SiO2 (d–f), and Al2O3 (g–i) free-standing nanocones with wall thicknesses of ~20 nm,
~15 nm, and ~10 nm. The sputtered Au and electrodeposited Cu close to the cone base are visible at a higher magnification
(single cones in a,d,g). The images are recorded under a tilting angle of 20◦.

After the release from the polycarbonate template, all cones with a wall thickness
of ~20 nm are free-standing and stable (Figure 6a,d,g). For a wall thickness of ~15 nm,
many SiO2 and some Al2O3 cones are broken (Figure 6b,e,h). This instability is even more
pronounced if the wall is only ~10 nm thick (Figure 6c,f,i). The damage is partially ascribed
to mechanical forces during the dissolution process of the template and sample handling.
However, we also observe bending and finally collapsing of Al2O3 and SiO2 nanocones in
situ when the electron beam is kept focused on a nanocone for longer periods of time. Thin
Al2O3 conical tubes are most severely affected by charging effects under the SEM electron
beam. It is striking that almost none of the TiO2 cones are broken (Figure 6a–c), including
the very thin ones with a ~10 nm wall thickness (Figure 6c). The fracture toughness
values for bulk material are ~0.77 MPa m1/2 for SiO2 [73], ~2.8 MPa m1/2 for TiO2 [74],
and ~5 MPa m1/2 for Al2O3 [75]. The low fracture toughness may explain the instability
of the SiO2 tubes. In contrast, the remarkable stability of the TiO2 conical nanotubes
can be attributed to size effects. In TiO2 low-dimensional systems, it was reported that
refinement of the TiO2 grains leads to crack arrest and fracture toughness values up to
27 MPa m1/2 [76]. This effect may also stabilize the thin ALD walls of our TiO2 nanocones.

4. Conclusions

Al2O3, SiO2, and TiO2 conical nanotubes with wall thicknesses between 10 and 20 nm
are fabricated by ALD coating of polycarbonate multi- and single-ion-track etched mem-
branes with conical nanochannels. By dissolving the polycarbonate template, arrays of
free-standing nanotubes are obtained. The released cones are homogeneous and intact,
demonstrating that the ALD process yields conformal coating along the whole 30 µm of the
conical nanochannels. The mechanical stability of nanocones with a wall thickness between
15 and 20 nm is relatively high, whereas nanocones with 10 nm thick walls become slightly
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fragile. Those free-standing conical nanotube arrays can be potentially applied as platforms
for the investigation of drug delivery to cells and cell–nanostructure interactions [8]. Due
to their stability, the conical nanotubes also provide an excellent replica for studying the
geometrical structure of synthetic nanopores.

The coating of single-channel membranes with Al2O3, SiO2, and TiO2 changes the
isoelectric point of the surface and leads to preferential cation, anion, and ambivalent
selectivity of ionic transport. Thus, ALD-coated conical nanopores offer excellent sys-
tems for nanofluidic studies. The possibility to regulate ionic transport in a controlled
manner offers a potential application for nanometer-sized electric devices, e.g., nano field
effect transistors.

The ALD technology in combination with track-etched membranes provides interest-
ing hybrid systems and creates new possibilities for tailored ion transport systems. ALD
coating of the polymer template produces an inorganic surface with a defined IEP. The
coating maintains the flexible character of the membrane, increases the long-term stability
of the system, and offers new perspectives for tailoring nanofluidic systems, where ALD
coatings provide a novel base for surface functionalization.
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